被动式自呼吸直接甲醇燃料电池温度特性及可视化实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界人口的迅速增长和人均能源消耗量的持续增大,全球性能源短缺问题日趋突出。与此同时,日益严重的环境污染问题也成为倍受人们关注的焦点。如果没有新型能源动力,世界将从目前的能源短缺很快走向能源枯竭,因此发展清洁、高效的新能源动力技术是刻不容缓的。燃料电池以其高效和清洁的特点为人们带来了曙光,其中直接甲醇燃料电池(DMFC)作为新型的便携能源,具有结构紧凑、环境友好、方便持久、能量密度高等优点,是一种具有广阔市场应用前景的高新技术,正成为电化学和能源科学里的一个研究热点。被动式自呼吸DMFC阴极不需要外部辅助设备(如泵或风扇)的帮助,就可以从氧气中获得氧化剂;阳极甲醇存储在紧贴在阳极基板的燃料罐内,通过浓度梯度可以到达阳极催化层表面。被动式自呼吸DMFC以其高的可靠性、低成本、简单的结构、高的燃料利用率以及高的能量密度等特点,成为未来移动设备首选的电源。
     本课题利用亚克力制作电池夹具和燃料罐,利用碳纸、Nafion 117等制备MEA,利用不锈钢材料加工流场板,组装完成有效面积为4.41 cm2的被动式自呼吸DMFC,并对该电池进行了性能研究、可视化实验和温度特性研究。探讨了催化剂种类、Nafion膜材料、扩散层材料、甲醇浓度、环境温度、环境湿度等因素对于电池性能的影响;可视化研究了放电电流、环境温度、环境湿度等参数对于阴极液滴生成规律的影响;讨论了甲醇浓度、放电电流对于电池温度特性的影响,并研究了该电池的能量效率特性。主要研究成果如下:
     ①对电池进行了一系列的性能实验并对电池进行优化,发现在制作MEA催化层时,碳黑担载量为15wt %时电池性能较好;由于浓差极化和甲醇渗透的共同作用,随着甲醇浓度的增加,电池功率密度先上升后下降,在甲醇浓度为4 mol/L时电池性能最佳;与碳纸相比,碳布孔隙分布较均匀,喷涂扩散层和催化层时物质分布更加均匀,传质阻力较小,电池性能较好;Nafion膜越薄,甲醇渗透就越严重,当膜薄到一定程度时,甲醇渗透致使电池性能急剧下降;
     ②周围环境相对湿度对于电池性能的影响取决于环境温度:当环境温度低于10℃时,相对湿度对于燃料电池性能影响很小;当环境温度为20℃和35℃时,可以发现,在低电流区域和中电流区域,湿度对于燃料电池的性能影响也不大;而在高电流区域,燃料电池的性能随着相对湿度的增加而变差;当环境温度为50℃时,在低电流区域电池的性能随着相对湿度的增加而变好,在高电流区域,燃料电池的性能随着湿度的增加而变差;
     ③随着周围环境温度的升高,燃料电池的性能明显提高;
     ④随着放电的进行,阴极侧液体分布从分散的小液滴到聚合形成大液滴,直到形成液膜最后覆盖整个呼吸孔,造成严重的阴极水淹现象;同一放电时刻,随着电流密度的增大,液体覆盖率增大;温度一定时,湿度越大越易引起阴极水淹;湿度一定时,温度越低越易引起阴极水淹;
     ⑤注入燃料后,电池电压迅速上升,然后缓慢下降,最后又略有回升;而电池温度先迅速上升,升高速度渐缓,最后达到稳定;放电开始瞬间,电池电压突降,随着放电的进行缓慢下降,电池温度先升高后下降;电池温度随着放电电流密度和甲醇浓度的增大而变大;
     ⑥随着温度的提高,电池能量效率显著提高;随着相对湿度、甲醇浓度和放电电流的增加,电池能量效率显著降低。
With the rapid growth of world population and continued increase of per capita energy consumption, the problem of global energy shortage is getting increasingly pronounced. Meanwhile, the increasingly serious problem of environmental pollution has become the focus of attention. If there were no new power sources, the existing power sources would be exhausted. Therefore it is urgent to develop clean and efficient energy technology. It is Fuel cell that brings the dawn for people because its efficiency and cleanliness. Direct methanol fuel cell (DMFC) is one of the high technologies with broad market prospect and now becoming a research hotspot in electrochemical science and energy field due to its high energy density, long-life and no need for charging. The passive air-breathing DMFC operates without the help of external devices for pumping methanol and blowing air into the cell, and thus oxygen diffuses into the cathode from the ambient air, and methanol diffuses into the anode from a built-in feed reservoir driven by concentration gradient between the anode and the reservoir. The passive air-breathing DMFC becomes the preferred power for mobile devices because its high reliability, low cost, simple structure, high fuel efficiency and high energy density.
     In the present study, a passive air-breathing direct methanol fuel cell with an active area of 4.41 cm2 and a built-in methanol solution reservoir of 6.7 ml was used to investigate the cell performance, visualization study of cathodic flooding and temperature characteristics. The effects of catalyzer, Nafion membrane, gas diffusion layer material, methanol concentration, relative humidity (RH) and temperature of ambient atmosphere on cell performance were discussed. The distribution of water droplets at different discharging current densities, relative humidities and temperatures were visualized and discussed. The effects of methanol concentration and discharging current density on the cell temperature characteristics were also discussed. Some remarkable conclusions are drawn as follows:
     ①A series of experiments were carried out to optimize the cell performance. It was found that in the production of MEA catalyst layer, a better cell performance was gained when the amount of carbon was 15 wt%. The performance becomes better with higher concentrations, which can be attributed to the higher temperature caused by the exothermic reaction between the permeated methanol and oxygen on the cathode. However, when the concentration was too high, methanol crossover would cause excessive mixed potential and result in the reduction of cell performance. A maximum power density of 12.5 mW/cm2 was obtained with 4.0 M methanol solution. As to different GDL material, carbon cloth got a better cell performance because the pores distribution of carbon cloth was more uniform, resulting in more evenly distributed catalytic layer and smaller mass transfer resistance. Methanol crossover was more serious when the thin membrane was used, which caused a sharp decline in cell performance. So a thicker membrane was recommended for passive DMFC that operate with high methanol concentrations.
     ②It was found that the effects of RH on cell performance were dependent upon temperature. When the temperature is below 10 oC, RH shows no effect on the cell performance. At the temperature of 20 oC and 35 oC, RH also shows little influence on the cell performance at low to medium current densities, and the cell performance decreases with the increase of RH at high current densities. In the case of 50 oC, the increasing RH has a greater effect on the cell performance than those at lower temperature: the cell performance is improved at low to medium current densities, whereas it is depraved at high current densities.
     ③It was found that the cell performance improved with the increase of ambient temperature.
     ④Some dispersed liquid droplets appeared at the beginning of constant current discharge, and then grew big enough to coalesce. The liquid film formed and covered the whole air-breathing hole at the end of discharge. The cell voltage dropped evidently when the serious water flooding happened in the cathode. The cover ratio of liquid in the cathode increased with the increase of discharging current density, and it increased sharply at the beginning of discharge. A higher relative humidity and lower ambient temperature led to more serious water flooding in the cathode.
     ⑤The open circuit voltage rise rapidly after the fuel injection, then declined slowly, and a slight rebound in the final, while the cell temperature increased because of methanol crossover. After discharge started the cell voltage dump firstly, and then declined slowly with the discharge. The cell temperature increased at first and then decreased continuously, and it dropped evidently after constant current discharge. The cell temperature increased with an increase in discharging current density. A higher methanol concentration led to a higher temperature due to much more permeated methanol.
     ⑥The cell energy efficiency improved significantly with the increase of ambient temperature, and reduced with the increase of relative humidity, methanol concentration and discharge current density.
引文
[1]衣宝廉.燃料电池——原理·技术·应用[M].北京:化学工业出版社,2003.
    [2]吴博.燃料电池金属双极板电弧离子镀薄膜改性研究[D].大连:大连理工大学, 2007.
    [3]郑雪艳.直接甲醇燃料电池内阳极侧两相流动与传输特性[D].重庆:重庆大学, 2007.
    [4]陈志.直接甲醇质子交换膜燃料电池中阳极CO2去除及水热的综合管理[D].南京:东南大学, 2006.
    [5]张亚.不同工况下PEM燃料电池性能研究[D].南京:南京航空航天大学, 2007.
    [6]谢晋.质子交换膜燃料电池一(PEMFC)控料和管理系统的研究[D].上海:上海海事大学,2006.
    [7]康明艳.直接甲醇燃料电池的一维数学模型[D].天津:天津大学, 2006.
    [8]熊济时.质子交换膜燃料电池的流场结构优化与新型流场研究[D].武汉:武汉理工大学, 2006.
    [9]汪国雄.直接甲醇燃料电池膜电极制备及阴极结构研究[D].大连:中国科学院研究生院大连化学物理研究所, 2006.
    [10]孙艳,苏伟,周理著.氢燃料[M].北京:化学工业出版社,2005.
    [11]毛宗强著.燃料电池[M].北京:化学工业出版社,2005.
    [12] Liu J, Barnett S A. Operation of anode-supported solid oxide fuel cells on methane and natural gas. Solid State Ionics[J]. 2003, 158: 11-16.
    [13] Estevam V S, Almir O N, T R R, et al. Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process[J].. Journal of Power Sources,2004, 137: 17-23.
    [14] Wang H, Jusys Z, Behm R J. Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields[J]. Journal of Physical Chemistry B, 2004, 108: 19413-19424.
    [15]刘凤君著.高效环保的燃料电池发电系统及其应用[M].北京:机械工业出版社,2005.
    [16]方波.微型燃料电池便携设备的持续动力源[R].慧聪电子元器件商务网. 2003,10.
    [17] Blum A,et al.Water–neutral micro direct–methanol fuel cell(DMFC)for portable applications[J]. Journal of Power Sources,2003,117(1–2):22–25.
    [18] Wang Z H,Wang C Y,Chen K S.Two–phase flow and transport in the air cathode of proton exchange membrane fuel cells[J]. Journal of Power Sources,2001,94(1):40–50.
    [19] Kamarudin S K,Daud W R W,Ho S L,et al.Overview on the challenges and developments of micro–direct methanol fuel cells(DMFC)[J]. Journal of Power Sources,2007,163(2):743–754.
    [20] Besmann,Theodore M,Burchell,et al.Bipolar plate/ diffuser for a proton exchange membrane fuel cell:US,6171720[P]. 2001–01–09.
    [21] Trabolda T A,Owejana J P,Jacobsonb D L,et al.In situ investigation of water transport in an operating PEM fuel cell using neutron radiography Part 1– Experimental method and serpentine flow field results[J]. International Journal of Heat and Mass Transfer,2006,49(25–26):4712–4720.
    [22] Yao Shi Chune,Tang Xu Dong,Hsieh Cheng Chieh,et al.Micro–electro–mechanical systems (MEMS)–based micro–scale direct methanol fuel cell development[J]. Energy,2006,31(5):636–649.
    [23]任学佑.质子交换膜燃料电池的研究进展[J].中国工程科学,2005,7(1):86–94.
    [24]林才顺,靳尉仁.直接甲醇燃料电池用流场的研究进展[J].湿法冶金,2005,24(4):188–191.
    [25] Yang H,Zhao T S. Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells[J]. Electrochimica Acta,2005,50(16–17):3243–3252.
    [26] Argyropoulos P,Scott K,Taama W M.Carbon dioxide evolution patterns in direct methanol fuel cells[J]. Electrochimica Acta,1999,44(20),3575–3584.
    [27] Scott K,Argyropoulos P,Yiannopoulos P,et al.Electrochemical and gas evolution characteristics of direct methanol cells with stainless steel mesh flow beds[J]. Journal of Applied Electrochemistry,2001,31(8):823–832.
    [28] Wong C W,Zhao T S Ye Z Q,et al.Transient capillary blocking in the flow field of a micro–DMFC and its effect on cell performance[J]. Journal of The Electrochemical Society,2005,152(8):A1600–A1605.
    [29] Yang H,Zhao T S,Ye Q. In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields[J]. Journal of Power Sources,2005,139(1–2):79–90.
    [30] Joakim Nordlund,Cyril Picard,Erik Birgersson,et al.The design and usage of a visual direct methanol fuel cell[J]. Journal of Applied Electrochemistry,2004,34(8):763–770.
    [31] Mench M M,Boslet S,Thynell S,et al.Experimental study of a direct methanol fuel cell[C]// Proc.of the symposium on direct methanol fuel cells,the 199th Electrochemical Society Proceedings Series,Princeton,2001.
    [32] Yang H,Zhao T S,Cheng P.Characteristics of gas–liquid two–phase flow patterns in miniature channel having a gas permeable sidewall[C]. International Mechanical Engineering Congress and Exhibition. New Orleans,USA,2002.
    [33] Lu G Q,Wang C Y.Electrochemical and flow characterization of a direct methanol fuelcell[J]. Journal of Power Sources,2004,134(1):33–40.
    [34] Fu B R,Pan Chin.Flow pattern transition instability in a microchannel with CO2 bubbles produced by chemical reactions[J]. International Journal of Heat and Mass Transfer,2005,48(21–22):4397–4409.
    [35] Bewer T,Beckmann T,Dohle H,et al.Novel method for investigation of two–phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution[J]. Journal of Power Sources,2004,125(1):1–9.
    [36] Berning T,Djilaliz N.A 3D,Multiphase,Multicomponent model of the cathode and anode of a PEM fuel cell[J]. Journal of The Electrochemical Society,2003,150(12):A1589–A1598.
    [37] Liu Xuan,Guo Hang,Ye Fang,et al.Water flooding and pressure drop characteristics in flow channels of proton exchange membrane fuel cells[J ]. Electrochimica Acta,2007,52(11):3607–3614.
    [38]胡桂林.质子交换膜燃料电池的两相流和动态模拟研究[D].浙江:浙江大学,2005.
    [39] Liu Xuan,Guo Hang,Ma Chongfang.Water flooding and two–phase flow in cathode channels of proto n exchange membrane fuel cells[J ]. Journal of Power Sources,2005,156(2):267–280.
    [40] Zawodzinski T A,Springer T E,Davey J,et al.A comparative study of water uptake by and transport through ionomeric fuel cell membranes[J]. Electrochem.Society,1993,140(7):1981–1985.
    [41] Ren X,Springer T E,Gottesfeld S.Water and methanol uptakes in nafion membranes and membrane effects on direct methanol cell performance[J]. Electrochem.Socirty,2000,147(1):92–98.
    [42] Kumar A,Reddy R G.Effect of channel dimensions and shape in the flow–field distributor on the performance of polymer electrolyte membrane fuel cells[J]. Journal of Power Sources,2003,113(1):11–18.
    [43] Kumar A,Reddy R G.Modelling of polymer electrolyte membrane fuel cell with metal foam in the flow–field of bipolar/end plates[J]. Journal of Power Sources,2003,114(1):54–62.
    [44] Mench M M,Dong Q L,Wang C Y.In situ water distribution measurmants in a polymer electrolyte fuel cell[J]. Journal of Power Sources,2003,124(1):90–98.
    [45] Kimihiko Sugiura,Motoki Nakata,Tadakatsu Yodo,et al.Evaluation of a cathode gas channel with a water absorption layer/waste channel in a PEFC by using visualization technique[J]. Journal of Power Sources,2005,145(2):526–533.
    [46] Liu Xuan,Guo Hang,Ye Fang,Ma Chongfang.Water flooding and pressure dropcharacteristics in flow channels of proton exchange membrane fuel cells[J ]. Electrochimica Acta,2007,52(11):3607–3614.
    [47] Hakenjos A,Muenter H,Wittstadt U,et al.A PEM fuel cell for combined measurement of current and temperature distribution and flow field flooding[J]. Journal of Power Sources,2004,131(1–2):213–216.
    [48] Tuber K,Oedegaard A,Hermann M,et al.Investigation of fractal flow–fields in portable proton exchange membrane and direct methanol fuel cells[J]. Journal of Power Sources,2004,131(1–2):175–181.
    [49] Klaus Tüber,David Pócza,Christopher Hebling.Visualization of water buildup in the cathode of a transparent PEM fuel cell[J ]. Journal of Power Sources,2003,124(2):403–414.
    [50] Kim Han Sang,Ha Tae Hun,Park Sung Jin,et al.Visualization study of cathode flooding with different operating conditions in A PEM Unit Fuel Cell[C]. Proceedings of FUELCELL2005.Third International Conference on Fuel Cell Science,Engineering and Technology. Ypsilanti,Michigan,2005.
    [51] Mench M M,Wang C Y,Ishikawa,et al.In situ current distribution measurements in polymer electrolyte fuel cells[J]. J.of Electrochem.Soc.,2003,150(8):A1052–A1059.
    [52] Dilip Natarajan,Trung Van Nguyen.Effect of electrode configuration and electronic conductivity on current density distribution measurements in PEM fuel cells[J]. Journal of Power Sources,2004,135(1–2):95–109.
    [53] Zhang J,Shimoi R,Shinohara K,et al.Visualization and quantification of the water distribution inside an operating fuel cell by neutron radiography[C]//14th International Conference on the Properties of Water and Steam,Kyoto,2004.
    [54]刘璿,郭航,叶芳,等.质子交换膜燃料电池流道淹没与传质强化[J].工程热物理学报,2006,27(S2):53–56.
    [55] Yang X G,Zhang F Y,Lubawy A L,et al.Visualization of liquid water transport in a PEFC[J ]. Electrochemical and Solid–State Letters,2004,7(11):A408–A411.
    [56] Pekula N,Heller K,Chuang P A,et al.Study of water distribution and transport in a polymer electrolyte fuel cell using neutron imaging[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2005,542(1–3):134–141.
    [57] Satija R,Jacobson D L,Arif M et al.In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells[J]. Journal of Power Sources,2004,129(2):238–245.
    [58] Borrelli John,Kandlikar Satish G,Trabold Thomas,et al.Water transport visualization andtwo phase pressure drop measurement in a simulated PEMFC cathode mini channel.Proceedings of ICMM2005 3rd International Conference on Microchannels and Minichannels,June 13–15,2005 [C],Toronto,Ontario,Canada,2005.
    [59]侯明,吴金锋,衣宝廉,等.质子交换膜燃料电池新型静态排水结构[J].电源技术,2002,26(3):131–133.
    [60] Tatsuhiro Okadae.The effect of magnetic field on the oxygen reduction reaction and its application in PEMFC[J]. Electrochemical Acta,2003,48(5):531–539.
    [61] Qi Zhigang,Kaufman Arthur.Improvement of water management by a microporous sublayer for PEM fuel cells[J]. Journal of Power Sources,2002,109(1):38–46.
    [62] Vladimr Gurau , Michael J B Bluemle , Emory S De Castro, et al . Zawodzinski Jr.Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells1:Wettability(internal contact angle to water and surface energy of GDL fibers)[J]. Journal of Power Sources,2006,160(2):1156–1162.
    [63] Moreira J,Ocampo A L,Sebastian P J,et al.Influence of the hydrophobic material content in the gas diffusion electrodes on the performance of a PEM fuel cell[J]. International Journal of Hydrogen Energy,2003,28(6):625– 627.
    [64] Liu Fuqiang,Lu Guoqiang,Wang Chaoyang.Low crossover of methanol and water through thin membranes in direct methanol fuel cells[J]. Journal of The Electrochemical Society,2006,153(3):A543–A553l.
    [65] Lim Chan,Wang C Y.Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell[J]. Electrochimica Acta,2004,49(24):4149–4156.
    [66] Choi K H,Peck D H,Kim C S,et al.Water transport in polymer membranes for PEMFC [J]. Journal of Power Sources,2000,86(1–2):197– 201.
    [67]律翠萍,叶芳,郭航,等.质子交换膜燃料电池的水热管理[J].节能,2005(8):6–10.
    [68] Nam Jin Hyun,Kaviany Massoud.Effective diffusivity and water–saturation distribution in single– and two–layer PEMFC diffusion medium[J]. International Journal of Heat and Mass Transfer,2003,46( 24):4595–4611.
    [69] Pasaogullari Ugur,Wang C Y.Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells[J]. Journal of The Electrochemical Society,2004,151(3):A399–A406.
    [70] Litster S,Sinton D,Djilali N.Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers[J]. Journal of Power Sources,2006,154(1):95–105.
    [71] Amey Y.Karnik,Stefanopoulou Anna G,Sun Jing. Water equilibria and management using a two–volume model of a polymer electrolyte fuel cell[J]. Journal of Power Sources,2007,164(2):590–605.
    [72] Ma H P,Zhang H M,Hu J,et al.Diagnostic tool to detect liquid water removal in the cathode channels of proton exchange membrane fuel cells[J]. Journal of Power Sources,2006,162(1):469–473.
    [73] Weng Fang Bor,Su Ay,Hsu Chun Ying.The study of the effect of gas stoichiometric flow rate on the channel flooding and performance in a transparent fuel cell[J]. International Journal of Hydrogen Energy,2007,32(6):666–676.
    [74] Weng Fang Bor,Su Ay,Hsu Chun Ying,et al.Study of water–flooding behaviour in cathode channel of a transparent proton–exchange membrane fuel cell[J]. Journal of Power Sources,2006,157(2):674–680.
    [75] Bellows R J,Lin M Y,Arif M,et al.Neutron imaging technique for Insitu measurement of water transport gradients within Nafion in polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society,1999,146:1099–1103.
    [76]裴宇阳,唐国有,郭之虞.中子照相技术及其应用[J].新技术应用,2004(5):17–22.
    [77] Ludlow D J,Calebrese C M,Yu S H,et al.PEM fuel cell membrane hydration measurement by neutron imaging[J]. Journal of Power Sources,2006,162(1):271–278.
    [78] Turhan A,Heller K,Brenizer J S,et al.Quantification of liquid water accumulation and distribution in a polymer electrolyte fuel cell using neutron imaging[J]. Journal of Power Sources,2006,160(2):1195–1203.
    [79] Kramer Denis,Zhang Jianbo,Shimoi Ryoichi,et al.In situ diagnostic of two–phase flow phenomena in polymer electrolyte fuel cells by neutron imaging:Part A.Experimental,data treatment,and quantification[J]. Electrochimica Acta,2005,50(13):2603–2614.
    [80] Zhang Jianbo,Kramer Denis,Shimoi Ryoichi,et al.In situ diagnostic of two–phase flow phenomena in polymer electrolyte fuel cells by neutron imaging:Part B.Material variations[J]. Electrochimica Acta,2006,51(13):2715–2727.
    [81] Li Xianguo,Sabir Imran,Park Jaewan.A flow channel design procedure for PEM fuel cells with effective water removal[J]. Journal of Power Sources,2007,163(2):933–942.
    [82] Bazylak A,Sinton D,Liu Z S,et al.Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers[J]. Journal of Power Sources,2007,163(2):784–792.
    [83] Feindel K W,LaRocque L P A,Starke D,et al.In situ observations of water production and distribution in an operating H2/O2 PEM fuel cell assembly using H–NMR microscopy[J]. Journal of the American Chemical Society,2004,126(37):11436–11437.
    [84] Shohji Tsushima,Kazuhiro Teranishi,Kousuke Nishida,et al.Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply[J].Magnetic Resonance Imaging,2005,23(2):255–258.
    [85] Sinha P K,Halleck P,Wang C Y.Quantification of liquid water saturation in a PEM fuel cell diffusion medium using X–ray microtomography[J]. Electrochemical & Solid–State Letters,2006,9(7):A344–348.
    [86]杨兴,周兆英,叶雄英,王晓浩. MEMS微型燃料电池及其基于压电风扇的换气方法[J].微电子技术. 2003, 7/8. 379.
    [87]宋文生,王宇新,张玉清. DMFC研究进展及影响性能的主要因素[J].拖拉机与农用运输车,2006,01-0052-04.
    [88]于景荣,衣宝廉,张华民,侯明.微型燃料电池的研究和发展[J].电源技术,2004,08-0515-05.
    [89] Greg Mozgai,Junghoom Yeom. A silicon microfabricated direct formic acid fuel cell[A].The 12th International Conference on Solid State Sensors, Actuators and Microsystems [C].Boston(USA):Transducers’03 Conference c/o Preferred Meeting management, Inc, 2003.1738-1741.
    [90] S J Lee. Design and fabrication of a micro fuel cell array with“flip-flop”interconnection[J].Journal of Power Soures,2002,112:410-418.
    [91] Kyong-Bok Min, Shuji Tanaka. Silicon-based micro-polymer electrolyte fuel cells[J]. Journal of Power Sources,2003,109:379-382.
    [92]王哲新,石荣,王连卫.微型直接甲醇燃料电池研究进展[J].节能与环保.2006,8:26-28.
    [93]魏昭彬,刘建国,乔亚光,等.直接甲醇燃料电池性能[J].电源技术,2000,7(2):228-233.
    [94] Q.Ye, T.S.Zhao. A natural-circulation fuel delivery system for direct methanol fuel cells[J]. Journal of Power Sources,2005,147:196-202.
    [95] Takahiro Shimizu, Toshiyuki Momma, inc. Design and fabrication of pumpless small direct methanol fuel cells for portable applications[J]. Journal of Power Sources, 2004,137:277-283.
    [96]于如军,曹广益,刘秀清,李中芳.管状空气自呼吸直接甲醇燃料电池的研制[J].电源技术,2005,07-0427-04.
    [97] Z.Guo, Y,Cao. A passive fuel delivery system for portable direct methanol fuel cells [J]. Journal of Power Sources, 2003,132:86-91.
    [98] Yuming Yang, Yung C. Liang. A direct methanol fuel cell system with passive fuel delivery based on liquid surface tension[J]. Journal of Power Sources,2007,165:185-195.
    [99] Wilson M S,Gottesfeld S. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes[J].J Appl-electrochem,1992:22:1-7.
    [100] Wei Z B, Wang S L,Yi B L,et al.[J].J Power Sources,2002,106(1-2):364-369.
    [101] Taylor E J,Anderson E B,Vilambi N R K.[J].J Electrochem Soc,1992,139(5):L45-L46.
    [102]黄镇江,燃料电池及其应用[M].电子工业出版社,2005.8.
    [103] W.M.Yang,S.K.Chou,C.Shu Effect of current-collector structure on performance of passive micro direct methanol fuel cell [J]. Journal of Power Sources 2007 164:549-554.
    [104] J. M. Song, S. Y. Cha, W. M. Lee. Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method [J]. J.Power Sources,2001,94(1):78-84.
    [105] Ralph T.R.Hogarth M.P.Catalysis for low temperature fuel cells.part I;the cathode challenges[J].Platinum Metals Review.2002.46(1).3-14.
    [106] C.Y. Chen, P. Yang, Y.S. Lee, K.F. Lin. Fabrication of electrocatalyst layers for direct methanol fuel cells. Journal of Power Sources. 2005, 141:24-29.
    [107] L. Liu, C. Pu, R. Viswanathan, Q. Fan, R. Liu, E.S. Smotkin. Carbon supported and unsupported Pt-Ru anodes for liquid feed direct methanol fuel cells. Electrochimica Acta. 1998, 43(24):3657-3663.
    [108] X. Ren, P. Zelenay, S. Thomas, J. Davey, S. Gottesfeld. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. Journal of Power Sources, 2000, 86:111-116.
    [109] C. Xie, J. Bostaph, J. Pavio. Development of a 2 W direct methanol fuel cell power source. Journal of Power Sources, 2004, 136:55-65.
    [110] D.H. Jung, C. H. Lee, C.S. Kim, D.R. Shin. Performance of a direct methanol polymer electrolyte fuel cell. Journal of Power Sources, 1998, 71: 169-173.
    [111] J.G. Liu, T.S. Zhao, R. Chen, C.W. Wong. Effect of methanol concentration on passive DMFC performance. Feature article in Fuel Cell Bulletin. 2005, 2:12-14.
    [112] C.Y. Chen, P. Yang. Performance of an air-breathing direct methanol fuel cell. Journal of Power Sources.2003, 123:37-42.
    [113] W.M. Yang, S. K. Chou, C. Shu. Effect of current-collector structure on performance of passive micro direct methanol fuel cell. Journal of Power Sources, 2007, 164(2):549-554.
    [114] R. Chen, T.S. Zhao. Performance characterization of passive direct methanol fuel cells. Journal of Power Sources, 2007, 167:455-460.
    [115] R. Chen, T.S. Zhao. Porous current collectors for passive direct methanol fuel cells. Electrochimica Acta, 2007, 52:4317-4324.
    [116]刘建国,衣宝廉,王素力等.Nafion膜厚度对直接甲醇燃料电池性能的研究..电源技术.2002(1):17-19.
    [117] Tibor Fabian, Jonathan D. Posner, Ryan O’Hayre, Suk-Won Cha, John K. Eaton, Fritz B. Prinz, Juan G. Santiago. The role of ambient conditions on the performance of a planar, air-breathing hydrogen PEM fuel cell[J]. Journal of Power Sources,2006,161 (1):168–182.
    [118] R. Chen, T.S. Zhao, J.G. Liu. Effect of cell orientation on the performance of passive DMFCs.J. Power Sources, 2006, 157: 351-357.
    [119] M. Chisaka, T. Okada, T. Yachi. Study on highly efficient direct methanol fuel cells for portable applications. IEICE/IEEE INTELEC’03, Japan, Pacifico Yokohama, 2003,: 72-76.
    [120] B. K. Kho, B. Bae, M. A. Scibioh, J. Lee, H. Y. Ha. On the consequences of methanol crossover in passive air-breathing direct methanol fuel cells. J. Power Sources, 2005, 142: 50-55.
    [121] Young-Jin Kim, Byungchan Bae, M. Aulice Scibioh, EunAe Cho, Heung Yong Ha.Behavioral pattern of a monopolar passive direct methanol fuel cell stack[J]. Journal of Power Sources,2006,157 (1):253–259.
    [122] Beck Kyun Kho, Byungchan Bae, M. Aulice Scibioh, Jaeyoung Lee, Heung Yong Ha. On the consequences of methanol crossover in passive air-breathing direct methanol fuel cells[J]. J. Power Sources,2005,142 (1-2) :50-55.
    [123] A. Küver, W. Vielstich, Investigation of methanol crossover and single electrode performance during PEMDMFC operation: A study using a solid polymer electrolyte membrane fuel cell system[J]. J. Power Sources,1998,74 (2):211-218.
    [124] Zhigang Qi, Arthur Kaufman, Open circuit voltage and methanol crossover in DMFCs [J]. J. Power Sources,2002,110 (1) 177-185.
    [125] Jiang Rongzhong,Chu Deryn.Comparative studies of methanol crossover and cell performance for a DMFC[J].J.Electrochem.Soc,2004,151:A69~A76.
    [126] Bogdan Gurau, Eugene S. Smotkin, Methanol crossover in direct methanol fuel cells: a link between power and energy density [J]. J. Power Sources,2002,112 (2) 339-352.
    [127] J. Prabhuram, T.S. Zhao, H. Yang, Methanol adsorbates on the DMFC cathode and their effect on the cell performance [J]. Journal of Electroanalytical Chemistry,2005,578 105–112.
    [128] A. Heinzel, V. M. Barragán, A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells[J]. J. Power Sources,1999 ,84 (1) 70-74.
    [129] D. Linden and T.B. Reddy. Handbook of batteries, 3rd edition[M]. New York: McGraw-Hill, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700