钢管混凝土斜交网格相贯节点受压性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜交网格结构体系是一种新型的结构体系,其主要特征为竖向构件采用斜向相交的柱代替普通竖直柱,以形成多个三角形几何不变体抵抗外部荷载。斜交网格体系具有抗侧刚度大,抗风抗震性能好的优点,近年来已应用于超高层及高层建筑结构中。研究表明,斜交网格柱受力以轴压为主,采用圆钢管混凝土作为其斜柱构件,能很好地发挥其轴压承载力高、延性好的优势。但由于斜交网格结构的节点处有包括4根斜柱在内的至少6根结构构件相汇,节点的构造设计与力学性能成为斜交网格结构能否广泛应用于工程实践的关键问题。
     本文在总结有关钢管混凝土和斜交网格结构体系的大量文献资料的基础上,对钢管混凝土斜交网格结构体系的力学性能进行了研究和分析,并针对该结构提出了一种由4根圆钢管、椭圆形连接板、环向加强板、环板、加劲肋板和节点外伸牛腿组成的相贯节点。该节点具有传力明确、承载力高、质量轻、性能好、施工方便,能有效地连接上下部斜交网格柱等特点,实现钢管混凝土斜柱节点空间相贯,有很好的工程应用前景。本文采用试验研究、三维非线性有限元分析和力学理论方法对此类相贯节点的受压力学性能进行了研究,具体包括以下几方面的内容:
     1)以节点构造措施、平面内角度、加载方式为研究参数,对8个平面相贯节点试件的试验过程、破坏形态、受力性能等进行了详尽的分析,验证了该种新型钢管混凝土斜交网格相贯节点的构造措施合理,节点的承载能力满足设计要求。分析了各参数对试件承载力、应变发展过程及延性等力学性能的影响,结果表明,环向加强板+衬板型节点力学性能优于法兰板节点,宜采用全节点区内衬板加强,以提高整个节点区对核心混凝土的约束效应。
     2)提出一种刚度协调的多向加载试验方法,以节点平面内、平面外角度、椭圆形连接板厚度、加载方式为研究参数,进行了8个空间相贯节点试件的试验研究,详尽地分析了各参数对节点力学性能和试验后试件内部形态的影响,结果表明相贯节点具有较好的力学性能,可用于工程实践。
     3)对现有混凝土三维非线性本构模型进行评述,提出一种适用于相贯节点的核心混凝土等效应力-应变关系,并对该模型进行了校核。采用该模型对平面相贯节点和空间相贯节点进行了三维双重非线性有限元分析,揭示了节点的传力机理,椭圆形连接板、环向加强板和衬板均有效地增大了节点区的约束效应,提高节点承载力。采用相同模型,分别研究了平面内相贯角度、平面外相贯角度、椭圆形连接板厚度、环向加强板厚度、衬板厚度、平面外约束等参数对节点承载力和刚度的影响。
     4)对平面相贯节点的弹性刚度和极限轴压承载力进行了力学分析,指出节点的破坏截面,通过12个带钢板的钢管混凝土短柱轴压试验研究了其承载力。基于修正的核心混凝土模型,采用有限元分析方法对核心混凝土强度、钢管壁厚和钢板厚度对节点破坏截面承载力的影响进行深入研究,提出并验证了节点破坏截面、平面相贯节点和空间相贯节点的承载力计算公式。
     5)基于筒体结构的受力特征,提出一种矩形平面斜交网格结构的斜柱截面估算方法,最后将本文提出的相贯节点成功应用于广州一幢超高层建筑的工程实例,介绍了其实际应用效果。该节点力学性能优良、施工简便、经济性好,在工程应用中取得了显著的经济效益和社会效益,证明其具有较广泛的适用性和应用前景。
Diagrid structural system is an innovative structural system, which commonly utilizes intersecting diagonal members instead of the conventional vertical columns as structural supporting system. Compared to conventional frame structures, diagrid structures can provide much larger lateral stiffness and better performance to resist most of the horizontal loads such as wind loads and earthquake effect owing to the triangulated configuration. These advantanges make diagrid structural system widely used in high-rise buildings recently. Previous research indicates that diagonal members carry much larger axial compressive forces than conventional columns, thus circular concrete filled steel tubular (CFST) columns, which can offer high compressive strength and high ductility, are apparently ideal for use in diagrid structural systems. However, connection design is one of the most great challenges of diagrid structural systems because more than six components from various angles are concentrated at one point. In other words, the design and mechanical behavior of the connection are indeed essential for spreading application of diagrid structural system.
     Based on the conclusion of an amount of references on CFST structures and diagrid structural system, the behavior of CFST diagrid structures was studied, and a kind of intersecting connection with four circular steel tubes, an elliptical plate, a ring reinforcing plate, two ring plates, several stiffening ribs and brackets was proposed. This connection provides high strength, light weight, outstanding structural performance and convienence in construction. In addition, it can effectively connects upper and lower diagonal columns and makes the columns intersecting each other, has a blooming prospect in field construction. By means of experimental study, three dimensional nonlinear finite element analysis (FEA) and mechanical theoretical method, this paper studies the compressive behavior of the intersecting connection, including the following aspects:
     1) Based on the test results of eight planar intersecting connection specimens with different connection details, in-plane angles and loading types, comprehensive analyses on the test procedure, failure modes and structural behavior are conducted. The details are proved to be reasonably designed and the bearing capacity can fulfilled the requirement stipulated by Chinese codes. The effect of parameters on the behavior of specimens such as bearing capacity, development of the strain and the ductility are analyzed. Test results indicate that the connection with ring reinforcing plate and lining plate provides better performance than the connection with flange plate. Therefore, the confinement effect on the concrete core should be reinforced by increasing the thickness of the steel tubes in the connection zone.
     2) A stiffness-based multiple direction loading test method was proposed and applied to a series test of eight spatial intersecting connection specimens with different in-plane and out-of-plane angle, thickness of elliptical plate and loading type. The effect of parameters on the behavior and internal failure modes is analyzed, and the behavior of the intersecting connection is verified to be excellent for practical use.
     3) An equivalent constitute model for concrete core of intersecting connection is proposed based on evaluation on currenet three-dimensional nonlinear constitute models for concrete. A three-dimensional dual nonlinear FEA is conducted on planar and spatial intersecting connections to investigate the stress distribution. The confinement effect and the bearing capacity of the connection zone are remarkably increased by introduction of elliptical plate, ring reinforcing plate and lining plate. In addition, the effect of in-plane and out-of-plane angles, thickness of elliptical plate, ring reinforcing plate, lining plate and out-of-plane constraint on the behavior of connection are analyzed using the similar model.
     4) The elastic stiffness and ultimate bearing capacity of the planar intersecting connection is analyzed by mechanical method, the failure cross-section for the connection is assumed. A series test of 12 CFST stub column with a gusset plate under axial compressive loading was conducted on the purpose of investigating the bearing capacity. The effect of different concrete strength, thickness of steel tube and gusset plate on the bearing capacity of the failure cross-section is analyzed by FEA and modified model. As a result, the formulate for calculating the bearing capacity of failure cross-section, planar intersecting connection and spatial intersecting connection is put forward and veried by test and FEA results.
     5) Based on the structural behavior of tubular structures, a method to estimate the section area of diagonal columns in diagrid structures with rectangular plan is deduced. As a result, the connection proposed in this paper has been applied to an ultra high-rise building in Guanghzou, the details and applied advantages are introduced. Excellent mechanical behavior, convienence in construction and satisfactory commercial results make the intersecting connection ideal for use in the diagrid structures.
引文
[1]刘维亚.钢与混凝土组合结构理论与实践[M].北京:中国建筑工业出版社, 2008
    [2]傅学怡.空间结构理念在高层建筑中的应用与发展[J].空间结构, 2009, 15(3): 85-96
    [3]董石,罗尧治,赵阳.大跨度空间结构的工程实践与学科发展[J].空间结构, 2005, 11(4): 3-10
    [4]范重,刘先明,范学伟,等.国家体育场大跨度钢结构设计与研究[J].建筑结构学报, 2007, 28(2): 12-16
    [5]王肇民,马人乐.塔式结构[M].北京:科学出版社, 2004
    [6] Chilton J. Space Grid Structures[M]. Kidlington: Elsevier Science Ltd, 2000
    [7]胥传熹,丁晓唐,倪军,等.竖向承重网架墙体的稳定计算[J].河海大学学报(自然科学版), 1998, 26(4): 59-64
    [8]汪大绥,姜文伟,包联进,等.中央电视台(CCTV)新主楼的结构设计及关键技术[J].建筑结构, 2007, 37(5): 6-12
    [9]方小丹,曾宪武,韦宏,等.珠江新城西塔巨型斜交网格外筒节点设计研究[J].建筑结构, 2009, 39(6): 9-14, 122
    [10]傅学怡,吴兵,陈贤川,等.卡塔尔某超高层建筑结构设计[J].深圳大学学报(理工版), 2007, 24(1): 1-8
    [11]傅学怡,吴兵,陈贤川,等.卡塔尔某超高层建筑结构设计研究综述[J].建筑结构学报, 2008, 29(1): 1-9, 15
    [12] Moon Kyoung-Sun, Jerome J. Connor, John E. Fernandez. Diagrid structural systems for tall buildings: Characteristics and methodology for preliminary design[J]. Structural design of tall and special buildings, 2007, 16(2): 205-230
    [13] Moon Kyoung Sun. Sustainable Structural Engineering Strategies for Tall Buildings[J]. The structural design of tall and special buildings, 2008, 17(5): 895-914
    [14] Kowalczyk R, Sinn R, Kilmister M. B. Structural Systems for Tall Buildings[M]. McGraw-Hill: New York: Council on Tall Buildings and Urban Habitat Monograph, 1995
    [15]韩小雷,杨春,季静,等.广东现代国际展览中心结构设计[J].建筑结构学报, 2003, 24(3): 91-96
    [16]方小丹,韦宏,江毅,等.广州西塔结构抗震设计[J].建筑结构学报, 2010, 31(1):47-55
    [17]江毅,方小丹,韦宏,等.广州西塔风荷载研究[J].建筑结构, 2009, 39(4): 1-7
    [18]方小丹,韩小雷,韦宏,等.广州西塔巨型斜交网格平面相贯节点试验研究[J].建筑结构学报, 2010, 31(1): 56-62
    [19]韩小雷,黄超,方小丹,等.广州西塔巨型斜交网格空间相贯节点试验研究[J].建筑结构学报, 2010, 31(1): 63-69
    [20]季静,方小丹,韩小雷,等.钢管混凝土空间相贯节点试验与研究[J].工程力学, 2009(05): 102-109
    [21]孟美莉,傅学怡,吴兵.卡塔尔某超高层建筑部分预应力环梁设计研究[J].建筑结构, 2008, 38(12): 69-72
    [22]张耀春,袁振军.大型支撑框筒结构参数分析[J].哈尔滨建筑大学学报, 2001, 34(2): 11-15
    [23]周健,汪大绥.高层斜交网格结构体系的性能研究[J].建筑结构, 2007, 37(5): 87-91
    [24]张崇厚,赵丰.高层网筒结构体系的基本概念[J].清华大学学报(自然科学版), 2008, 48(9): 19-23
    [25]张崇厚,赵丰.高层斜交网筒结构体系抗侧性能相关影响因素分析[J].土木工程学报, 2009(11): 41-46
    [26]马人乐,曾根生,何敏娟,等.高河南塔异型钢管X型节点的有限元分析[J].特种结构, 2007, 24(1): 42-45, 60
    [27]马人乐,赵林,何敏娟.大型超高钢结构电视塔抗震性能分析[J].同济大学学报(自然科学版), 2007, 35(10): 1310-1315
    [28]马人乐,梁峰.河南省广播电视发射塔结构设计与试验研究[J].特种结构, 2006, 23(3): 1-4
    [29]韩小雷,唐剑秋,黄艺燕,等.钢管混凝土巨型斜交网格筒体结构非线性分析[J].地震工程与工程振动, 2009, 29(4): 77-84
    [30]黄艺燕.基于纤维模型的钢管混凝土巨型斜交网格筒中筒结构非线性分析[D].广州:华南理工大学, 2008
    [31] KIM J., LEE Y. H. Progressive collapse resisting capacity of tube-type structures[J]. The Structural Design of Tall and Special Buildings, 2009, 18(3): 1-17
    [32]陈俊岭,马人乐,何敏娟.“桉叶糖”异型钢管相贯焊节点试验和有限元分析[J].同济大学学报(自然科学版), 2009, 37(3): 308-311
    [33]邱国志,赵金城. X型圆钢管相贯节点刚度试验[J].上海交通大学学报, 2008, 42(6): 966-970
    [34]孟宪德,王伟,陈以一,等. X型厚壁圆管相贯节点平面外受弯抗震性能试验研究[J].建筑结构学报, 2009, 30(5): 126-131
    [35]朱世哲,罗尧治,娄荣.双拱结构X型钢管相贯节点试验研究[J].浙江大学学报(工学版), 2008, 42(1): 99-104, 110
    [36]蔡绍怀.我国钢管混凝土结构技术的最新进展[J].土木工程学报, 1999, 32(8): 16-26
    [37]韩小雷,贺锐波,季静.带环板的穿心暗牛腿钢管混凝土柱节点试验研究[J].工业建筑, 2005, 35(11): 21-23
    [38]李至钧.钢管混凝土框架加强环节点的研究与设计[J].工业建筑, 1987, 17(12): 17-25
    [39]李至钧,阎善章.钢管混凝土框架梁柱刚性抗震节点的试验研究[J].工业建筑, 1994, 24(12): 8-15
    [40]刘志斌,钟善桐.钢管混凝上梁柱钢筋混凝土双梁节点的刚性研究[J].哈尔滨建筑大学学报, 2001, 33(4): 26-29
    [41]季静,陈庆军,韩小雷.穿心暗牛腿钢管混凝土柱节点的模型试验研究[J].华南理工大学学报(自然科学版), 2001, 29(7): 70-73
    [42]韩小雷,陈晖,季静,等.穿心暗牛腿钢管混凝土柱节点试验研究[J].华南理工大学学报(自然科学版), 1999, 27(10): 96-100
    [43]苏恒强,蔡健,姚大鑫.钢管混凝土加强环式节点的试验研究[J].华南理工大学学报(自然科学版), 2004, 32(1): 80-84
    [44]陈庆军,蔡健,林遥明,等.柱钢管不直通的新型钢管混凝土柱—梁节点(I)——轴压下采用钢筋网加强钢管不直通的节点区的性能[J].华南理工大学学报(自然科学版), 2002, 30(9): 91-99
    [45]陈庆军,蔡健,林遥明,等.柱钢管不直通的新型钢管混凝土柱—梁节点(II)——轴压下采用环形钢筋加强钢管不直通的节点区的性能[J].华南理工大学学报(自然科学版), 2002, 30(12): 58-61
    [46]李贤,肖岩,郭玉荣.圆钢管混凝土柱钢梁框架节点型式的介绍[J].建筑钢结构进展, 2005, 7(8): 22-26
    [47]杨强跃,郑悦.钢框架梁柱节点连接方式的介绍与分析[J].建筑结构, 2004, 34(6):44-48
    [48]方小丹,李少云,钱稼茹.钢管混凝土柱一环梁节点抗震性能的试验研究[J].建筑结构学报, 2002, 35(6): 10-18
    [49]方小丹,李少云,陈爱军.新型钢管混凝土节点的试验研究[J].建筑结构学报, 1999, 20(5): 2-14
    [50]龚昌基.钢管混凝土柱节点型式的探讨[J].建筑科学, 2001, 16(2): 30-34
    [51]王洪涛,谢礼立,韩庆华.新型方钢管混凝土柱-钢梁节点分析与应用[J].沈阳建筑大学学报(自然科学版), 2006, 22(6): 544-547
    [52]李少云,方小丹,杨润强.广州市翠湖山庄工程钢管混凝土柱节点足尺静载试验研究[J].土木工程学报, 2001, 34(5): 11-16
    [53]蔡健,黄泰赟,苏恒强.新型钢管混凝土中柱劲性环梁式节点的设计方法初探[J].土木工程学报, 1999, 32(8): 6-10
    [54]钟善桐.钢管混凝土结构(第三版)[M].北京:清华大学出版社, 2003
    [55]蔡绍怀.现代钢管混凝土结构(修订版)[M].北京:人民交通出版社, 2007
    [56]韩林海.钢管混凝土结构—理论与实践[M].科学出版社:北京, 2004
    [57] Recommendations For Design And Construction Of Concrete Filled Steel Tubular Structures [S]. Aij Architectural Institute Of Japan, 1997
    [58] CECS 28:90,钢管混凝土结构设计与施工规程[S].北京: 1990
    [59] CECS 104: 99,高强混凝土结构技术规程[S].北京: 1999
    [60] JCJ 01-89,钢管混凝土结构施工与验收规程[S].上海: 1989
    [61] DL/T 5085-1999,钢-混凝土组合结构设计规程[S]. 1999
    [62] DG/TJ08-015-2004,高层建筑钢—混凝土混合结构设计规程[S]. 2004
    [63] DBJ 13-51-2003,钢管混凝土结构技术规程[S].福建: 2003
    [64] GJB 4142-2000,战时军港抢修早强型组合结构技术规程[S]. 2000
    [65] Kloppel V. K, Goder W. An investigation of the load carrying capacity of concrete-filled steel tubes and development of design formula[J]. Der Stahlbau, 1957, 26(1): 1-10
    [66] Furlong R. W. Strength of steel-encased concrete beam-columns[J]. Journal of Structural Division, ASCE, 1967, 93(1): 113-124
    [67] Gardner J, Jacobson E. R. Structural behavior of concrete filled steel tubes[J]. ACI Structural Journal, 1967, 64(7): 404-413
    [68] Knowles R. B, Park R. Axial load design for concrete filled steel tubes[J]. Journal ofStructural Division, ASCE, 1970, 96(ST10): 2125-2153
    [69] Knowles R. B, Park R. Strength of concrete filled steel tubular columns [J]. Journal of Structural Division, ASCE, 1969, 95(ST12): 2565-2587
    [70] Virdi K. S, Bowling P. J. Bond strength in concrete filled steel tubes[C]. IABSE Proceeding. 1980, 12-139
    [71] Virdi K. S, Bowling P. J. Bond strength in concrete filled circular steel tubes[R]. London: Imperial College, 1975
    [72] Tomii M, Yosbimaro K, Morisbita Y. Experimental studies on concrete filled steel tubular stub column under concentric loading[C]. Proceedings of the International Colloquium on Stability of Structures under Static and Dymanic Loads. SSRC/ASCE/. Washington: 1977, 718-741
    [73] Task Group. A specification for the design of steel-concrete composite columns[J]. Engineering Journal, AISC, 1979, 16(4): 101-145
    [74] Morishita Y, Tomii M, Yosbimura K. Experimental studies on bond strength in concrete filled circular steel tubular columns subjected to axial loads[J]. Transactions of Japan Concrete Institute, 1979(1): 351-358
    [75] Morishita Y, Tomii M, Yosbimura K. Experimental studies on bond strength in concrete filled square and octagonal steel tubular columns subjected to axial loads[J]. Transactions of Japan Concrete Institute, 1979(1): 359-366
    [76] Morishita Y, Tomii M. Experimental studies on bond strength between square steel tube and encased concrete core under cyclic shearing force and constant anal force [J]. Transactions of Japan Concrete Institute, 1982(4): 363-370
    [77]汤关柞,招炳泉,竺惠仙,等.钢管混凝土基本力学性能的研究[J].建筑结构学报, 1982, 3(1): 13-31
    [78]蔡绍怀,焦占拴.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报, 1984, 5(6): 13-29
    [79]蔡绍怀,顾万黎.钢管混凝土长柱的性能和强度计算[J].建筑结构学报, 1985, 6(1): 32-40
    [80] Sakino K, Tomii M. Watanabe K. Sustaining load capacity of plain concrete stub columns confined by circular steel tubes [C]. Proceedings of the International Special Conference on Concrete-Filled Steel Tubular Structures. ASCCS. Harbin. China: 1985, 112-118
    [81]李继读.钢管混凝土轴压承载力的研究[J].工业建筑, 1985, 5(2): 25-31
    [82]荆树英,郑小庆,朱金铨.方形厚壁钢管混凝土短柱受力性能的研究[J].工业建筑, 1989, 9(11): 8-13
    [83]潘友光,钟善桐.钢管混凝土轴心受拉本构关系[J].工业建筑, 1990, 10(4): 30-37
    [84]顾维平,蔡绍怀,冯文林.钢管高强混凝土长柱性能和承载能力的研究[J].建筑科学, 1991, 7(3): 3-8
    [85] Luksba L. K, Nesterovich A. P. Strength testing of larger-diameter concrete filled steel tubular members[C]. Proceedings of the Third International Conference on Steel-Concrete Composite Structures. ASCCS. Fukuoka. Japan: 1991, 67-70
    [86] Masuo K, Adachi M, Kawabata K, et al. Buckling behavior of concrete filled circular steel tubular columns using light-weight concrete[C]. Proceedings of the Third International Conference on Steel-Concrete Composite Structures. ASCCS. Fukuoka. Japan: 1991, 95-100
    [87] Ge H. B, Usami T. Strength of concrete-filled thin-walled steel beam columns: experiment[J]. Journal of Structural Engineering, ASCE, 1992, 118(11): 3006-3054
    [88] Ge H. B, Usami T. Strength analysis of concrete-filled thin-walled steel beam columns[J]. Journal of Constructional Steel Research, 1994, 30(4): 607-612
    [89] Sbakir-Kbalil H. Push out strength of concrete-filled steel hollow sections[J]. The Structural Engineer, 1993, 71(13): 230-243
    [90] Shakir-Kbalil H, Al-Rawdan. Experimental behaviour and numerical modelling of concrete-filled rectangular hollow section tubular columns[C]. Composite Construction in steel and concrete III, Proceedings of an Engineering Foundation Conference. Irsee. Germany: 1997, 222-235
    [91]张素梅,周明.方钢管约束下混凝土的抗压强度[C].哈尔滨:哈尔滨建筑大学学报增刊(中国钢协钢一混凝土组合结构协会第七次年会论文集), 1999
    [92] Shiiba K, Harada N. An experiment study on concrete -filled square steel tubular columns[C]. Proceedings of the 4th International Conference on Steel-Concrete Composite Structures. Slovakia: 1994, 103-106
    [93] Prion H. G. L, Boehme J. Beam-column behaviour of steel tubes filled with high strength concrete[J]. Canadian Journal of Civil Engineering, 1994, 21: 207-218
    [94] Nakamura T. Experimental study on compression strength of concrete-filled square tubular steel columns[J]. Journal of Structural Engineering, ASCE, 1994, 120(4): 411-417
    [95] Bradford M. A. Design strength of slender concrete filled rectangular steel tubes[J]. ACIStructural Journal, 1996, 93(2): 229-235
    [96] Kato B. Column curves of steel-concrete composite members[J]. Journal of Constructional Steel Research, 1996, 39(2): 121-135
    [97] O'Shea M. D, Bridge R. Q. Tests on circular thin-walled steel tubes filled with medium and high strength concrete[R]. Sydney, Australia: The University of Sydney, 1997
    [98] O'Shea M. D, Bridge R. Q. Tests on circular thin-walled steel tubes filled with very high strength concrete [R]. Sydney, Australia: The University of Sydney, 1997
    [99] O'Shea M. D, Bridge R. Q. Local Buckling of thin-walled circular steel sections with or without internal restraint[R]. Sydney, Australia: The University of Sydney, 1997
    [100] O'Shea M. D, Bridge R. Q. Behavior of thin-walled beam sections with lateral restraint [R]. Sydney, Australia: The University of Sydney, 1997
    [101] Song J. Y, Kwon Y. B. Structural behavior of concrete-filled steel beam sections[C]. International Conference Report on Composite Construction-Conventional and Innovative. Innsbruck. Austria: 1997, 795-800
    [102] Tsuda K, Matsui C. Limitation on width (diameter)-thickness ratio of steel tubes of composite tube and concrete columns with encased tube section[C]. Proceedings of the Fifth Pacific Structural Steel Conference. Seoul. Korea: 1998, 86-87
    [103] Konno K, Sato Y, Kakuta Y, et al. The property of recycled concrete column encased by steel tube subjected to axial compression[J]. Transactions of the Japan Concrete Institute, 1997, 19: 351-358
    [104] Roeder C. W, Cameron B, Brown C. B. Composite action in concrete filled tubes[J]. Journal of Structural Engineering, ASCE, 1999, 125(5): 477-484
    [105] Uy B. Local and post-local buckling of concrete filled steel welded beam columns[J]. Journal of Constructional Steel Research, 1998, 47(1-2): 47-72
    [106] Uy B. Strength of concrete filled steel beam columns incorporating local buckling[J]. Journal of Structural Engineering, ASCE, 2000, 126(3): 341-352
    [107] Uy B. Strength of short concrete filled high strength steel beam columns [J]. Journal of Constructional Steel Research, 2001, 57(2): 113-134
    [108] Vrcelj Z, Uy B. Behaviour and design of steel square hollow sections filled with high strength concrete[J]. Australian Journal of Structural Engineering, 2001, 3(3): 153-169
    [109]谭克锋,蒲心诚,蔡绍怀.钢管超高强混凝土的性能与极限承载能力的研究[J].建筑结构学报, 1999, 20(1): 10-15
    [110]谭克锋,蒲心诚.钢管超高强混凝土长柱及偏压柱的性能与极限承载能力的研究[J].建筑结构学报, 2000, 21(2): 12-19
    [111]吕西林,余勇,陈以一,等.轴心受压方钢管混凝土短柱的性能研究:I试验[J].建筑结构, 1999, 29(10): 41-43
    [112] Johansson M. Structural behavior of circular steel-concrete composite columns: Non-linear finite element analyses and experiments[D]. Goteborg. Sweden: Chalmers University of Technology, 2000
    [113] Johansson M, Gylltoft K. Structural behavior of slender circular steel-concrete composite columns under various means of load application[J]. Steel and Composite Structures, 2001, 1(4): 393-410
    [114] Johansson M, Gylltoft K. Mechanical behavior of circular steel-concrete composite [J]. Journal of Structural Engineering, ASCE, 2002, 128(8): 1073-1081
    [115] Gupta L. M, Parlewar P. M. An investigation of concrete-filled steel beam columns[J]. Journal of Structural Engineering, ASCE, 2001, 127(1): 33-38
    [116] Oyawa W. O, Sugiura K, Watanabe E. Polymer concrete-filled steel tubes under axial compression[J]. Construction and Building Materials, 2001, 15(4): 187-197
    [117] Han L. H. Tests on stub columns of concrete-filled RHS sections[J]. Journal of Constructional Steel Research, 2002, 58(3): 353-372
    [118] Han L. H, Zhao X. L, Tao Z. Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns[J]. Steel and Composite Structures-An International Journal, 2001, 1(1): 51-74
    [119]陶忠.方形截面钢管混凝土力学性能及承载力的理论分析与试验研究[D].哈尔滨:哈尔滨建筑大学, 1998
    [120]杨有福.矩形截面钢管混凝土构件力学性能的若干关键问题研究[D].哈尔滨:哈尔滨工业大学, 2003
    [121] Han L. H. Tests on concrete filled steel tubular columns with high slenderness ratio[J]. Advances in Structural Engineering-An International Journal, 2000, 3(4): 337-344
    [122]王力尚,钱稼茹.钢管高强混凝土柱轴向受压承载力试验研究[J].建筑结构, 2003, 33(7): 46-49
    [123]王力尚,钱稼茹.钢管高强混凝土柱轴心受压承载力试验[C].长沙:高强与高性能混凝土及其应用第四届学术讨论会论文集, 2001
    [124] Huang C. S, Yeb Y. K, Liu G. Y, et al. Axial load behavior of stiffened concrete-filled steel columns[J]. Journal of Structural Engineering, ASCE, 2002, 128(9): 1222-1230
    [125] Yamamoto T, Kawaguchi J, Morino S. Size effect on ultimate compressive strength of concrete-filled steel tube short columns[C]. Proceedings of the Structural Engineers World Congress (CD-ROM). Yokobama. Japan: 2002,
    [126]余志武,丁发兴,林松.钢管高性能混凝土短柱受力性能研究[J].建筑结构学报, 2002, 23(2): 41-47
    [127]李帼昌,刘之洋,杨良志.钢管煤矸石硅中核心硅的强度准则及本构关系[J].东北大学学报(自然科学版), 2002, 23(1): 64-66
    [128]赵均海,顾强,马淑芳.基于双剪统一强度理论的轴心受压钢管混凝土承载力的研究[J].工程力学, 2002, 19(4): 32-35
    [129] Mursi M, Uy B. Strength of concrete filled steel beam columns incorporating interaction buckling[J]. Journal of Structural Engineering, ASCE, 2003, 129(5): 626-639
    [130] Mursi M, Uy B. Strength of slender concrete filled high strength steel beam columns[J]. Journal of Constructional Steel Research, 2004, 60(12): 1825-1848
    [131] Ghannam S, Jawad Y. A, Hunaiti Y. Failure of lightweight aggregate concrete-filled steel tubular columns[J]. Steel and CompositeStructures-An International Journal, 2004, 4(1): 1-8
    [132] Giakoumelis G, Lam D. Axial capacity of circular concrete-filled tube columns[J]. Journal of Constructional Steel Research, 2004, 60(7): 1049-1068
    [133] ACI318-95, Building Code Requirements for Structural Concrete[S]. US:1995
    [134] AS4100 , Australian code [S]. Australia:1998
    [135] EC4, EuroCode 4[S]. British:1994
    [136] Lam D, Williams C. A. Experimental study on concrete filled square hollow sections [J]. Steel and Composite Structures, 2004, 4(2): 9-112
    [137]吉伯海,王晓亮,马敬海,等.钢管高强轻集料混凝土短柱轴压性能的试验研究[J].建筑结构学报, 2005, 26(5): 60-65
    [138] Zegbiche J, Chaoui K. An experimental behaviour of concrete-filled steel tubular columns [J]. Journal of Constructional Steel Research, 2005, 61(1): 53-66
    [139]张耀春,王秋萍,毛小勇,等.薄壁钢管混凝土短柱轴压力学性能试验研究[J].建筑结构, 2005, 35(1): 22-27
    [140]张耀春,许辉,曹宝珠.薄壁钢管混凝土长柱轴压性能试验研究[J].建筑结构, 2005, 35(1): 28-31
    [141] Lachemi M, Hossain K. MA, Lambros V. B. Axial load behavior of self-consolidating concrete-filled steel tube columns in construction and service stages[J]. ACI Structural Journal, 2006, 103(1): 38-47
    [142] Young B, Ellobody E. Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns[J]. Journal of Constructional Steel Research, 2006, 62(5): 484-492
    [143] AS/NZS 2001, Cold-formed stainless steel structures[S]. Sydney:2001
    [144]张素梅,刘界鹏,马乐,等.圆钢管约束高强混凝土轴压短柱的试验研究与承载力分析[J].土木工程学报, 2007, 40(3): 24-31, 68
    [145] Gupta P. K, Sarda S. M, Kumar M. S. Experimental and computational study of concrete filled steel tubular columns under axial loads[J]. Journal of Constructional Steel Research, 2007, 63(2): 182-193
    [146] Yu Z W, Ding F X, Cai C. S. Experimental behavior of circular concrete-filled steel tube stub columns[J]. Journal of Constructional Steel Research, 2007, 63(2): 165-174
    [147]黄超,韩小雷,季静.国内外规程关于圆钢管高强混凝土短柱轴压承载力计算公式的对比[J].建筑结构学报, 2009, 30(S1): 187-190
    [148]韩林海.钢管混凝土压弯扭构件工作机理研究[D].哈尔滨:哈尔滨建筑工程学院, 1993
    [149]韩林海.钢管混凝土统一设计理论研究[R].黑龙江:国家地震局工程力学研究所, 1995
    [150]韩林海,钟善桐.钢管混凝土力学[M].大连:大连理工大学出版社, 1996
    [151]余勇,吕西林,K Tanaka,等.轴心受压方钢管混凝土短柱的性能研究:II分析[J].建筑结构, 2000, 30(2): 43-46
    [152]陈洪涛,钟善桐,张素梅.钢管混凝土构件双重非线性分析[J].哈尔滨建筑大学学报, 2001, 34(6): 32-35
    [153]徐兴,程晓东,凌道盛.钢管混凝土轴心受压构件极限承载力的有限元分析[J].固体力学学报, 2002, 23(4): 419-425
    [154]严志刚,王德军,盛洪飞.钢管混凝土三维非线性梁单元的研究与应用[J].哈尔滨工业大学学报, 2003, 35(3): 334-337
    [155]程晓东,叶贵如,程莉莎,等.方钢管混凝土偏压柱非线性屈曲承载力的有限元分析[J].土木工程学报, 2003, 36(12): 31-38
    [156]程晓东,程莉莎,叶贵如.圆钢管混凝土压弯长柱非线性屈曲承载力的理论研究[J].工程力学, 2004, 21(6): 131-137
    [157]袁伟斌,金伟良.钢管混凝土的等效本构关系研究[J].浙江大学学报, 2004, 38(8): 984-988
    [158] Hatzigeorgiou D. G. Numerical model for the behavior and capacity of circular CFT columns, Part I: Theory[J]. Engineering Structures, 2008, 30(10): 1573-1578
    [159] Liang Q. Q, Fragomeni S. Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading[J]. Journal of Constructional Steel Research, 2009, 65(12): 2186-2196
    [160] Valipour R. H, Foster J. S. Nonlinear static and cyclic analysis of concrete-filled steel columns[J]. Journal of Constructional Steel Research, 2010, 66(6): 793-802
    [161] Hibbitt, Karlson, Sorenson. ABAQUS Version 6.8: Theory manual. users' manual. verification manual and example problems manual[M]. Hibbitt. Karlson and Sorenson Inc, 2008
    [162]庄茁,张帆,岑松,等. ABAQUS非线性有限元分析与实例[M].北京:科学出版社, 2005
    [163] Al-Rodan A, Al-Tarawnab S. FE analysis of the flexural behavior of rectangular tubular sections filled with high-strength concrete[J]. Emirates Journal for Engineering Research, 2003, 8(1): 71-77
    [164] Schneider S. P. Axially loaded concrete-filled steel tubes[J]. Journal of Structural Engineering, ASCE, 1998, 124(10): 1112-1138
    [165] Shams M, Saadeghvaziri M. A. Nonlinear response of concrete-filled steel tubular columns under axial loading [J]. ACI Structural Journal, 1999, 96(6): 1009-1017
    [166] Varma A. H. Seismic behavior. Analysis and design of high strength square concrete-filled steel tube (CFT) columns[D]. Lehigh University, 2000
    [167] Varma A. H, Rides J. M, Sause R, et al. Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns[J]. Journal of Constructional Steel Research, 2002, 58(5-8): 725-758
    [168] Susantha K. A. S, Ge H. B, Usami T. Confinement evaluation of concrete-filled beam-shaped steel columns [J]. Steel and Composite Structures, 2001, 1(3): 313-328
    [169] Hu H. T, Huang C. S, Wu M. H. Nonlinear analysis of axial-loaded concrete-filled tube columns with confinement effect [J]. Journal of Structural Engineering, ASCE, 2003, 129(10): 1322-1329
    [170] Hu H. T, Huang C. S, Chen Z. L. Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination[J]. Journal of Constructional Steel Research, 2005, 61(12): 1692-1712
    [171] Ellobody E, Young B, Lam D. Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns[J]. Journal of Constructional Steel Research, 2006, 62(7): 706-715
    [172] Ellobody E. Nonlinear behavior of concrete-filled stainless steel stiffened slender tube columns[J]. Thin-Walled Structures, 2007, 45(3): 259-273
    [173] Ellobody E, Young B. Design and behaviour of concrete-filled cold-formed stainless steel tube columns[J]. Engineering Structures, 2006, 28(5): 716-728
    [174]刘威.钢管混凝土局部受压时的工作机理研究[D].福州:福州大学, 2005
    [175]尧国皇.钢管混凝土构件在复杂受力状态下的工作机理研究[D].福州:福州大学, 2006
    [176] Tao Z, Uy B, Han L H. Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression[J]. Thin-Walled Structures, 2009, 47(12): 1544-1556
    [177] Computers And Structures Inc. CSI Analysis Reference Manual[M]. Berkeley, California, USA: Computers and Structures, Inc, 2007
    [178] JGJ99-98 ,高层民用建筑钢结构技术规程[S]. 1999
    [179] GB50009-2001 ,建筑结构荷载规范[S]. 2001
    [180] JGJ3-2002 ,高层建筑混凝土结构技术规程[S]. 2002
    [181] SEI/ASCE 7-02 , Minimum Design Loads for Buildings and Other Structures[S]. 2002
    [182] GB50011-2001 ,建筑抗震设计规范[S]. 2001
    [183] GB228-87,金属拉伸试验方法[S]. 1987
    [184] GBJ81-85,普通混凝土力学性能试验方法[S]. 1985
    [185]丁阳,张向荣,王志远,等.天津奥林匹克中心体育场铸钢节点试验研究[J].建筑结构学报, 2008, 29(5): 8-12
    [186]赵宪忠,王冠男,陈以一,等.北京奥运会老山自行车馆柱脚铸钢节点试验研究[J].建筑结构学报, 2008, 29(1): 10-15
    [187]王永泉,郭正兴,罗斌,等.复杂铸钢节点受力性能试验研究[J].东南大学学报(自然科学版), 2009, 39(1): 47-52
    [188]李俊,卫星,李小珍,等.大型钢网壳结构铸钢节点复杂受力的试验研究[J].土木工程学报, 2005, 38(6): 8-12
    [189] Lubliner J. J, Oliver S, Oller E. A Plastic-Damage Model for Concrete[J]. International Journal of Solids and Structures, 1989, 25: 299-329
    [190] Lee J, Fenves G. L. Plastic-Damage Model for Cyclic Loading of Concrete Structures[J]. Journal of Engineering Mechanics, ASCE, 1998, 124(8): 892-900
    [191] Kupfer H. B, Hilsdorf H. K, Rusch H. Behavior of concrete under biaxial stress[J]. ACI Journal, 1969, 66(8): 656-666
    [192] Hognestad E, Hanson N. W, McHenry D. Concrete stress distribution in ultimate strength design[J]. ACI Journal, 1955, 52(4): 455-479
    [193] Hillerborg A, Modeer M, Peterson P. E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-782
    [194]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700