焦炭显微光学组织自动识别关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦炭是高炉炼铁的重要燃料和原料。焦炭的微观组织结构与其质量密切相关,其中的显微光学组织结构是焦炭在高炉中劣化的一个重要因素,它在很大程度上决定了焦炭的反应性和反应后强度。此外,配煤比相近的煤样,对应焦炭的显微光学组织结构十分相似,且配煤比的微小变化也会在光学组织结构中体现。因此,对焦炭显微结构中光学组织的分类识别研究,不仅可以加深对焦炭性质及其劣化行为的认识,而且对评价焦炭质量和指导炼焦配煤都具有十分重要的意义。
     目前国内外对焦炭显微光学组织的分析主要还是采用人工对照标准图谱进行数点统计方法或半自动检测方法。虽然近年来,数字图像处理与分析技术引起了广泛兴趣,但研究成果主要集中在焦炭的气孔参数测定上,对显微光学组织的自动识别研究进展比较缓慢,尤其是对各向异性光学组织中各小类成功识别的研究鲜见报道。
     基于上述背景,本文利用现代信号处理技术,通过对焦炭显微光学组织自动识别的关键技术和难点问题分析,从焦炭显微图像的空间分辨率增强、不同光学组织成分区域分割以及光学组织的自动分类识别三个方面展开研究与探讨,力图给出一些理论指导与参考方法,从而在一定程度上为炼焦配煤中提高生产效率和节约能源、降低成本提供一点有益帮助。
     本文主要研究工作与成果总结如下:
     (1)针对焦炭光学组织成分多样性和复杂性,提出一种基于两步学习的单帧焦炭显微图像分辨率增强算法。在构建两个理想图像对样本库基础上,通过动态改变训练样本和样本协方差矩阵特征向量,改进传统主分量学习算法,获取能够保持全局特征的高分辨率估计图像。通过引入“流形学习”概念,提出基于残差块的加权近邻线性嵌入流形学习算法,实现无特征量提取的细节预测补偿。最后经合成获得分辨率增强图像。实验结果表明,算法有效克服了学习方法中常见的测试样本“新数据”和图像对共生模型先验估计不足等问题。
     (2)在凸集优化原理基础上,通过对小波域凸集投影的可行性与优势分析,提出一种针对焦炭显微视频序列的图像分辨率增强算法。分别在小波域中构建帧间和帧内两个不同的凸集和投影算子,充分提取出隐含在相邻低分辨率图像中的细节信息,并在空域最大后验概率框架下设计一个简单的预处理共轭梯度估计器,预测观测模型中相邻因子的搜索方向与步长,约束凸集投影解的可行域,保证快速获取图像重建唯一最优解或近似最优解。实验结果验证了算法的有效性和鲁棒性。
     (3)针对一幅焦炭显微图像中可能包含多种不同光学组织成分,且相似成分和不同成分区域相互粘连、边界模糊不连续等特点,提出一种基于边缘置信度的改进均值偏移聚类分割算法。根据图像梯度信息设计像素的边缘置信度函数,并在传统均值偏移算法中引入权值参量,减少了运算迭代次数,提高了模式点的检测精度。通过修正空间域和色彩域特征的聚类条件,改善初次聚类结果,最终实现了光学组织区域的有效分割。
     (4)由于传统空域和频域方法对焦炭光学组织的分类识别效果都不太理想,提出一种基于小波轮廓波变换和局部二进制模式的多特征融合自动识别算法,实现了焦炭光学组织的较完备数学模型描述。算法首先通过对轮廓波变换的频谱混叠现象分析,提出一种小波轮廓波变换,完成图像多尺度多方向分解。并根据分解系数的边缘分布特性,提取出子频带四个统计特征参量。其次,提出改进的均匀局部二进制模式编码,分析选取出编码直方图为空域纹理特征参量。最后,设计完整的多特征融合方案,运用最近邻分类器完成焦炭光学组织的自动分类。实验结果显示,算法识别率可达90%以上,并具有良好抗干扰性能。
     (5)为进一步解决焦炭光学组织多样性和特征复杂性,提高自动识别精度,充分利用图像冗余信息,提出一种基于最优轮廓波包的焦炭光学组织自动识别算法。首先采用非抽样小波和非抽样方向滤波器组构建冗余轮廓波包变换,完成焦炭显微图像多尺度多方向分解。然后引入2-方向2-维主分量分析和虚拟样本概念,提出一种自适应加权的最优轮廓波包基选择算法。最后通过设计相似性判定准则,实现焦炭光学组织的自动识别。对比实验结果验证了算法的有效性、抗干扰性和鲁棒性。
Coke is the important fuel and raw materials for blast furnace ironmaking. The microstructureof coke is closely related to its quality, and the microscopic optical texture structure is an importantfactor of coke's degradation in blast furnace, which determines the coke reactivity and post reactionstrength to a great extent. In addition, when coal samples have approximate blending proportion, thecorresponding coke microscopic optical texture structure is also very similar. Moreover, the tinychanges of blending proportion will also be reflected from coke optical texture structure. Therefore,the research on the classification and identification of coke optical texture will help us furtherunderstand the nature of coke and its degradation behavior, and it also has very importantsignificance for evaluation of coke quality and guidance of coking blending.
     At present, however, the traditional analysis methods on coke microscopic optical texture aremainly rely on artificial numbered statistics according to the standard maps or semi-automaticdetection. Although digital image processing and analyzing technologies have attracted considerableinterest in recent years, the majority of the research results focus on the determination of cokestomatal parameters and the automatic identification research on coke microscopic optical texturedevelop slowly. Particularly, the achievements about successful identification to the small classes ofcoke anisotropic optical texture are rarely few.
     Based on the above background, through the key technique and difficult problem analysis forautomatic identification of coke optitcal texture, we studied and discussed the following threeaspects in this work: the first one was the spatial resolution enhancement of coke micrographs; andthe second one was the segmentation of different optical texture regions; and the last one was theautomatic classification and identification for different optical textures. The goal is to provide sometheoretical guidance and reference methods, which may provide some useful helps in a certain extentto improve the efficiency, save the energy and reduce the costs in metallurgy coke production.
     The main research contents and innovative contributions of this dissertation are as follows:
     (1) Because coke microscopic optical textures have the nature of diversity and complexity, anew two-step learning scheme was proposed in this work. Firstly, two ideal sample libraries wereconstructed with high-and low-resolution coke micrographs. The high resolution estimated imageof any a test sample would be able to preserve standard global features through improved principalcomponent analysis (IPCA) learning algorithm with dynamic training samples and eigenvectors ofcovariance matrices. Then, the concept of “manifold learning” was introduced, and the detailed localinformation of the test sample was obtained by an overlapped patch-based residue prediction usingweighted neighbor linear embedding (WNLE) manifold learning algorithm. Furthermore, theresolution enhancement image was achieved after synthesis. Numerical experimental results demonstrated that the proposed algorithm effectively overcame some common problems intraditional learning methods such as test sample "new data" and image prior estimate of symbioticmodel et al.
     (2) Based on the principle of convex set optimization, through the feasibility and superiorityanalysis on the convex set projecting under wavelet domain, an improved reconstruction method wasproposed to enhance the coke micrograph resolution for multi-frame video sequence. Two differentconvex sets and projection operators were designed under the wavelet-domain, from the aspects ofinter-frame and intra-frame to extract the details hidden among the adjacent observed low-resolutionframes. Furthermore, a simplified spatial-domain estimator was employed by introducing thepreconditioned conjugate gradient method to forecast the search direction and the step length ofadjacent factors in prediction model. Taking advantage of the spatial estimator to put constraints onthe potential solutions of the POCS, it could get unique optimal or near optimal solution quickly.Experimental results verified the effectiveness and robustness of the proposed algorithm.
     (3) Since a coke micrograph may consists of two or more different optical texturecompositions, and similar or different component regions have the characteristics with fuzzy anduncertain borders, an improved mean-shift clustering segmentation algorithm was put forward basedon the edge of confidence. Firstly, the edge confidence function was designed according to the imagegradient information. Secondly, based on this function, weight parameters are introduced to thetraditional mean-shift algorithm, which leaded to reduce the iteration times and improve theaccuracy of detected modes. Thirdly, through revising the clustering conditions in both space andcolor domains, the initial clustering results were improved, and different optical texture regions wereeffectively segmented finally.
     (4) As the results of the traditional methods in spatial and frequency domains are both not ideal,a fusion algorithm was proposed to bridge the gap in this work based on WBCT (Wavelet-BasedContourlet Transform, WBCT) and LBP (Local Binary Pattern, LBP), which realized the completemathematical model description of coke optical texture. Firstly, through the analysis of spectrumaliasing phenomenon about contourlet transformation, a new wavelet-base contourlet transformationwas presented, which would complete the decomposition of coke micrograph for multi-scale andmulti-direction. In particular, four features vectors were extracted out in each sub-band according tothe edge distribution features of the decomposition coefficients. Then, we proposed an improveduniform local binary pattern coding algorithm, and confirmed encoded image histogram as a spatialtexture feature. Finally, according to the designed fusion scheme and similarity measure criteria, theclasses of coke optical textures could be automaticly recognized by the nearest neighbor classifier.Extensive experimental results demonstrated the effectiveness and strong anti-interference performances of our algorithm. The recognition rate was above90%.
     (5) To solve the diversity and complexity problems of coke optical textures further, andimprove identification accuracy, a novel automatic recognition algorithm was developed based onoptimal contourlet packet transformation, which made full use of the image redundant information.Firstly, coke micrograph was decomposed for multi-scale and multi-direction by a nonsubsampledwavelet transformation (NWT) and a nonsubsampled directional filter banks (NSDFB). In addition,an adaptively weighted algorithm for selecting optimal basis was proposed by introducing the2-directonal2-dimensional PCA method and the virtual sample concept. Finally, the classes of cokeoptical textures were recognized according to the designed similarity measure criteria oneigenvectors of the selected basis. Experimental results are provided to validate the effectiveness,anti-interference and robustness performances of the proposed scheme.
引文
[1]傅永宁.高炉焦炭[M].北京:冶金工业出版社,1995
    [2]周师庸,赵俊国.炼焦煤性质与高炉焦炭质量[M].北京:冶金工业出版社,2005
    [3]中华人民共和国冶金工业部. YB/T077-1995,焦炭光学组织的测定方法[S].中国标准出版社,1996
    [4]姚昭章,郑明东.炼焦学[M].北京:冶金工业出版,2008
    [5]陈洪博,白向飞,王大力,姜英.焦炭光学组织与煤焦质量关系研究[J].洁净煤技术,2009,15(6):78-82
    [6]项茹,张前香,薛改凤.焦炭光学组织在煤质鉴别中的应用[J],煤化工,2010(2):18-22
    [7]韩德馨.中国煤岩学[M].徐州:中国矿业大学出版社,1996
    [8] Lin Q.L, Su W, Xie Y. Effect of rosin to coal-tar pitch on carbonization behavior and opticaltexture of resultant semi-cokes[J], Journal of analytical and applied pyrolysis,2009,86(1):8-13
    [9] Ashok K, Singh T. Microstructures and microtextures of natural cokes: A case study ofheat-affected coking coals from the Jharia coalfield [J]. International Journal of Coal Geology (2006),India, doi:10.1016/j.coal.2006.08.06
    [10] Yang J.L. Characteristics and carbonization behaviors of coal extracts [J]. Fuel processingtechnology,2002(79):207-215.
    [11]付利俊,胡红玲.焦炭光学组织与反应性关系的研究[J].包钢科技,2005,31(3):51-53
    [12]张士金.焦炭热反应性的研究[D].博士学位论文.上海:中国科学院上海冶金研究所,2000
    [13]杨敏.冶金焦气化反应前后光学组织的研究,燃料与化工,2003,35(5):241-244
    [14]张代林,赵梅梅,王培珍,余亮,郑明东.影响焦炭热性质因素的研究[J],钢铁,2009,44(10):10-13
    [15]张代林,余亮,郑明东.炼焦煤的煤岩特征对其结焦性质的影响[J].钢铁,2009,44(1):15-18
    [16] Pusz S, Kwiecinska B, Koszorek A, Krzesinska M, Pilawa B. Relationship between the opticalreflectance of coal blends and the microscopic characteristics of their cokes [J]. International Journalof Coal Geology,2009,77(3,4):356-362
    [17]马名杰,张胜局,闫燕,王永刚.焦炭结构的研究进展[J].中国煤炭,2006,32(8):54-60
    [18]陈启厚,杨俊和.焦炭抗拉强度与气孔结构间关系初探[J].燃料与化工,2003(2):68-71
    [19] Alvarez R, Drez M. A, Barriocanal C. An approach to blast furnace coke quality prediction [J].Fuel,2007,86(14):2159-2166
    [20]张进春,吴超.基于多重多元回归的焦炭质量预测模型[J],科技导报,2010,28(12):79-84
    [21]薛改凤,项茹,陈鹏,刘尚超.炼焦煤质量指标评价体系的研究[J].武汉科技大学学报,2009,32(1):36-41
    [22] Pusz S, Krzesinska M, Smedowski L et al. Changes in a coke structure due to reaction withcarbon dioxide [J]. International Journal of Coal Geology,2010,81(4):287-292
    [23]陈洪博,白向飞,王大力,姜英.焦炭光学组织与煤焦质量关系研究[J].洁净煤技术,2009,15(6):78-82
    [24]项茹,张前香,薛改凤.焦炭光学组织在煤质鉴别中的应用[J],煤化工,2010(2):18-22
    [25]张启锋,夏红波,张代林,余亮,赵梅梅,郑明东.焦炭热性质加和性在配煤研究中的应用[J],钢铁,2009,44(11):17-20
    [26]吴瑞,张德详.贫煤、贫瘦煤对焦炭光学组织的影响[J].2011,42(1):10-14
    [27]高晋生.炼焦配煤与焦炭质量预测技术[M].北京:化学工业出版社,2011
    [28]崔秀文,姚伯元.焦炭光学组织[DB/OL]. http://www.chinabaike.Com/article/baike/1049/2008/200807281567396_4.html
    [29] Koziol K.R. Ext. Abstr. Program.[A]. In proceeding of11st Biennal Conference on Carbon[C],1973:59-60
    [30] Otlik A. Freib. Forsch.-H. A625,1980:53-67
    [31] Hole M, Foosnas T, Qye H.A. Relationship between Thermal Expansion and Optical Textureof Petrol Coke [J]. Light Metals,1991:575-579
    [32] Hole M, K. M. S. Qye, and H. A. Qye, Carbon,1992, pp:172-174
    [33] Jeulin D., Lenoir E. Automatic detection of optical textures in coke carbon phase bymulti-image analysis[A].In proceeding of4th European Symposium of Stereology[C], ActaStereologica,1987, pp:335-340.
    [34] Morishita N, Tsukada K, Suzuki N, Nemoto K.L. Development of automatic coal/CokeMicroscropic analyzer and its application to cokemaking[A], In proceeding of InternationalConference on Iromaking [C],1988, Washington D.C, USA,45(2):203-209
    [35] Bellot D, Dubus A, Fouletier M, et al. Automatic measurement of coke texture by imageanalysis [J], Light Metals1992,1992, San Diego, California, USA,1-5Mar pp:659-663
    [36] Hino Y, Nakamura K, Hojo N, Mori M. Automatic measurement of coke microtexture byimage anlysis and its application [A]. In proceedings of44th Ironmaking Conference [C], Detroit,MI,1985:347-353.
    [37] Eilertsen J.L, Hole M, Foosn s T and Qye H.A. Image Analysis for Classification of Coke forAnode Production[A]. In proceeding of21st Biennal Conference on Carbon[C], Buffalu. NY(1993):675-676.
    [38] Eilertsen J.L. An automatic image analysis of coke texture [J]. Carbon,1996,34(3):375-385.
    [39]刘小除.图像处理技术在焦炭光学组织自动分析软件中的应用[D]:硕士学位论文.上海:复旦大学,2005
    [40]夏京城.图像处理与模式识别技术在焦炭颗粒识别中的应用研究[D]:硕士学位论文.上海:复旦大学,2005
    [41]张代林.利用图像分析法测定焦炭气孔结构的研究[J].燃料与化工,2003年,34(4):175-178
    [42]任世彪,张代林.图像分析在焦炭气孔结构参数测定中的应用[J].安徽工业大学学报,2003,20(1):66-68.
    [43]亓学山,于世友李明富.图像分析系统在煤焦岩相分析中的应用[J].燃料与化工,2006,37(4):18-20.
    [44]汤国华.焦炭微观结构的表征研究[D]:硕士学位论文.上海:华东理工大学,2004
    [45]刘小除,尹文义,胡德生,刘其真.一种快速煤岩显微图像模式分类方法[J].中国图象图形学报,2005,8(9):680-683.
    [46]胡德生,王文韬刘其真.数字化自动煤岩分析技术的开发[J].钢铁,2005,40(7):17-21.
    [47]赵爱红,廖毅,唐修义,任有中.离散分形布朗增量随机场模型在煤微结构定量分析中的应用[J].电子显微学报,1998,17(6):748-751.
    [48] Wang P.Z, Wang Q.F, Gao S.Y.Texture feature analysis of coke slice image [J]. Journal ofAlgorithms&Computational Technology,2008,2(1):175-183
    [49]胡松,孙学信,邹祖桥等.煤焦外表面分形维数在燃烧过程中的变化[J].燃料化学学报,2002,30(2):136-140
    [50]汪琴芳.基于图像的焦炭微观结构特征提取与研究[D]:硕士学位论文.马鞍山:安徽工业大学,2007.
    [51]尹文义.数字化煤岩分析系统的设计与实现[D]:硕士学位论文.上海:复旦大学,2006
    [52]光学显微镜国内外品牌选择[DB/OL]. http://www.yiqi800.com/tech/detail/t10703.html
    [53]姚伯元. HD型全自动显微镜光度计软件使用说明书[EB/CD].
    [54]姚伯元,吴亚东,魏林. HD型全自动显微镜光度计硬件开发技术[J],燃料与化工,2006,37(5):1-5
    [55]中国钢铁工业协会. GB/T1997-2008,焦炭试样的采取和制备[S].中国标准出版社,2008
    [56]中国煤炭工业协会.GB/T16773-2008,煤岩分析样品制备方法[S].中国标准出版社,2008
    [57]马学刚.焦炭光学组织的测定与分析.山东冶金[J].2003,25(4):34-42
    [1] Baker S, Kanade T. Limits on super-resolution and how to break them [J], IEEE Trans. onPattern Analysis and Machine Intelligence,2002,24(9):1167~1183
    [2] Hertzmann A, Jacobs C E, Oliver N. Image analogies[A],Computer Graphics Proceedings [C],Annual Conference Series, ACM SIGGRAPH, Los Angeles,2001:327~340
    [3] Freeman W T, Pasztor E C, Carmichall O T. Learning low level vision [J]. International Journalof Computer Vision,2000,40(1):25~47
    [4] Liu C, Shum H Y, Freeman W T. Face hallucination: theory and practice [J]. InternationalJournal of Computer Vision,2007,75(1):115~134
    [5] Chakrabarti A, Rajagopalan A N, Chellappa R. Super-resolution of face images using kernelPCA-based prior [J], IEEE Transactions on Multimedia,2007,9(4):888~892
    [6] Miravet C, Rodriguez F B. A two-step neural-network based algorithm for fast imagesuper-resolution [J], Image and Vision Computing,2007,25:1449~1473.
    [7] Chan T M, Zhang J. Pu J,Huang H. Neighbor embedding based super-resolution algorithmthrough edge detection and features election [J], Pattern Recognition Letters,2009,30:494~502.
    [8] Li B, Chang H,.Shan S, Chen X. Aligning coupled manifolds for face hallucination [J], IEEESignal Processing Letters,2009,16(11):957~960
    [9] Turk M, Pentland A, Eigenfaces for recognition [J], Journal of cognitive neuroscience,1991,3:71~86.
    [10] Wang X G, X. O. Tang X O, Hallucinating face by eigen transformation [J], IEEE Transactionson System, Man, and Cybernetics, Part C: Applications and Reviews,2005,35:425~434.
    [11] Wang H,Chen S,Hu Z,Zheng W. Locality-preserved maximum information projection [J].IEEE Transactions on Neural Networks,2008,19(4):571-585
    [12]陈省身,陈维桓.微分几何讲义[M].北京:北京大学出版社,1983.
    [13]赵连伟,罗四维,赵艳敞,等.高维数据的低维嵌入及嵌入维数研究[J].软件学报,2005,16(8):1423-1430.
    [14]何力,张军,周志平.基于放大因子和延伸方向研究流形学习算法[J].计算机学报,2005,28(12):2000–2009.
    [15] Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlineardimensionality reduction[J]. Science,2000,290(5500):2319~2323.
    [16] Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J].Science,2000,290(5500):2323~2326.
    [17] He X F, Niyogi P. Locality preserving projections [A], Proceedings of Advances in NeuralInformation Processing Systems [C], Vancouver,2003:327~334.
    [18]吴炜,杨晓敏,陈默等.基于流形学习的人脸图像超分辨率技术研究[J],光学技术,2009,35(1):84~89
    [19] Irani M, Peleg S. Improving Resolution by Image Registration [J]. Graphical Models&ImageProcessing.1991,53:231~239.
    [20] Elad M, Feuer A. Restoration of a Single super-resolution image from several blurred, noisy,and under-sampled measured Images [J] IEEE trans. Image Process,1997,6(12):1646-1658.
    [21]黄华,樊鑫,齐春等.基于识别的凸集投影人脸图像超分辨率重建[J],计算机研究与发展,2005,42(10):1718~1725.
    [22] Guo L, He Z M. A Projection on Convex Sets Super-Resolution Algorithm Using WaveletTransform [A]. In proceedings of International Conference on Signal Processing [C],Beijing,China,2008:1039-1041
    [23] Park S.C, Park M.K, and Kang M.G. Super-resolution image reconstruction: A TechnicalOverview [J], IEEE Signal Processing Magazine,2003,20(3):21-36.
    [24] Schultz R.R and Stevenson R.L. Extraction of high-resolution frames from video sequences [J].IEEE Trans. Image Processing,1996,5(6):996-1011
    [25]周亮,朱秀昌.基于Bayesian理论的压缩视频超分辨率重构算法[J],中国图象图形学报,2006,11(5):730-735.
    [26] Shen H F, Zhang L P, Huang B, et al. A MAP Approach for Joint Motion Estimation,Segmentation and Super Resolution [J]. IEEE Transactions on Image Processing,2007,16(2):479-490.
    [27] Humblot F and Djafari A, Super-Resolution Using Hidden Markov Model and BayesianDetection Estimation Framework[J], EURASIP Journal on Applied Signal Processing,2006,2006(10):1-16.
    [28] Zhou L, Zheng B.Y, Wei A, et al, A Robust Resolution-Enhancement Scheme for VideoTransmission over Mobile Ad-Hoc Networks[J], IEEE Transactions on Broadcasting,2008,54(2):312-321.
    [29] Nguyen N, Milanfar P, and Golub G, A computationally efficient super-resolution imagereconstruction algorithm [J]. IEEE Trans. Image Process,2001,10(4):573-583
    [30] Wang S. and Shen L, Object-based Super Resolution for intelligent visual surveillance video [J],Journal of Electronics (China)[J],2008,25(1):140-144
    [31] Zomet A, Rav-Acha A, and Peleg S, Robust super resolution[C]//Proc. Int. Conf. ComputerVision and Patern Recognition,2001, vol.1, pp.645-650
    [32] Farsiu S, Robinson M.D, Elad M, et al, Fast and Robust multiframe super-resolution[J]. IEEETrans on Image Process,2004,13(10):1327-1344.
    [33]黄华,孔玲莉,齐春等.基于凸集投影和线过程模型的超分辨率图像重建[J].西安交通大学学报,2003,10:13~16
    [34]张德丰.小波分析与工程应用[M].北京:国防工业出版社,2008.
    [35] Stephane Mallat.信号处理的小波导论[M].北京:机械工业出版社,2002.
    [36]赵书斌,张蓬,彭思龙.基于小波域LS方法的图像超分辨率重建算法[J].中国图象图形学报,2003,8(11):1281~1285.
    [37] Rajan D and Chaudhuri S, An MRF-based approach to generation of super-resolution imagesfrom blurred observations [J]. Journal of Mathematical Imaging and Vision,2002,16(5):5-15.
    [1]章毓晋.图像分割[M].北京:科学出版社,2001
    [2] Rafael C Gonzalez,Richard E Wood.数字图像处理[M].阮秋奇,阮字智,等译.北京:电子工业出版社,2005
    [3] Cheng H D, Jiang X H, Sun Y, et a1. Color image segmentation:Advances and prospects[J].Pattern Recognition,2001,34(12):2259~2281
    [4]林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报,2005,10(1):l~lO
    [5] Krishna K,Murty M N.Genetic k-means algorithm[J].IEEE Transaction on Systems,Man,and Cybernetics:Part B,1999,29(3):433-439
    [6]刘盈盈,石跃祥,莫浩澜.基于改进K-均值算法在彩色图像分割中的应用[J].计算机工程与应用,2008,44(29):191~194
    [7] Chuang K S, Teng H L,Chen S,et a1.Fuzzy e-means clustering with spatial information forimage segmentation[J].Computedzed Medical Imaging and Graphics,2006,30:9~16
    [8]卜娟,王向阳,孙艺峰.基于模糊C均值聚类的多分量彩色图像分割算法[J].中国图象图形学报,2008,13(10):1837-1841
    [9]耿振伟,粟毅,郁文贤.一种快速自适应的均值漂移聚类算法[J].信号处理,2009,25(1):153~156
    [10] Cheng Y Z.Mean shift,mode seeking,and clustering [J].IEEE Transactions on PattemAnalysis and Machine Intelligence,1995,17(8):790~799
    [11]李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365~374
    [12] Nummiaro K, Koller M E, Gool L. An adaptive color-based particle filter[J]. Image andVision Computing,2003,21(1):91~110
    [13]王科俊,郭庆昌.基于均值移动算法的图像平滑[J].哈尔滨工程大学学报,2007,28(11):1228~1235
    [14] Kuan Y H,Kuo C M,Yang N C.Color-based image salient region segmentation using novelregion merging strategy[J].IEEE Transactions on Multimedia,2008,10(5):832~845
    [15]汤杨,潘志庚,汤敏.基于分级mean shift的图像分割算法[J].计算机研究与发展,2009,46(9):1424~1431
    [16] Chen H, Meer P. Robust fusion of uncertain information [C].In Proc. of Intenational Conf.Computer Vision and Pattem Recognition,2003:16~22
    [17] Li P.An Adaptive Binning Color Model for Mean Shift Tracking [J].IEEE Trans on Circuitsand Systems for Video Technology,2008,18(9):1293~1299
    [18]蒋建国,孙洪艳,齐美彬.基于mean-shift算法的人脸实时跟踪方法[J],计算机应用研究,2008,25(7):2225~2227
    [19] Zhou H Y,Gerald S F,Shi C.A mean shift based fuzzy c-means algorithm for imagesegmentation[C].In Proc. of30th Annual International Conference of the IEEE Engineering inMedicine and Biology Society,2008:3091~3094
    [20] Rosenblatt M. Remarks on some nonparametric estimates of a density function [J]. Annals ofMathematical Statistics,1956,27(6):832~837
    [21] Parzen E. On estimation of a probability density function and mode [J]. Annals of MathematicalStatistics,1962,33(8):1065~1076
    [22]张学工.模式识别(第三版)[M],北京:清华大学出版社,2010
    [23]周芳芳,樊晓平.均值漂移算法的研究与应用[J].控制与决策,2007,22(8):841~847
    [24] Meer P, Georgescu B. Edge detection with embedded confidence [J]. IEEE Trans. PatternAnal. Mach. Intell.,2001,23(12):1351~1365
    [25] Juan Ramón J A, Verónica M B, Oscar Y S, Data-Driven Brain MRI Segmentation Supportedon Edge Confidence and A Priori Tissue Information [J]. IEEE Transactions on Medical Imaging,2006,25(1):74~83
    [26] Sharma C,Trussell H.Digital color image [J].IEEE Transaction on Image Processing,1997,6(7):901~932
    [27]陈兆学,赵晓静,聂生东. Mean shift方法在图像处理中的研究与应用[J].中国医学物理学杂志,2010,27(6):2244~2250
    [28]王爽,夏玉,焦李成.基于均值漂移的自适应纹理图像分割方法[J],软件学报,2010,21(6):1451~1461
    [29]李庆忠,石巍,褚东升.一种融合聚类与区域生长的彩色图像分割方法[J],计算机工程与应用,2006,42(14):76~79
    [1] Laws K.I. Rapid texture identification SPIE.1980,8000:376-380.
    [2] Ojala T, Pietikainen M, Maenpaa T. Multi-resolution gray-scale and rotation invariant textureclassification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2002,24(7):971~987.
    [3] Jain A.K, Farrokhnia F. Unsupervised texture segmentation using Gabor filters [J]. PatternRecogniton,1991,24(12):1167-1186.
    [4] Arivazhagan S, Ganesan L. Texture classification using wavelet transform [J]. PatternRecognition Letters,2003,24(9):1513-1521.
    [5] Li S.T, Shanwe-Taylor J. Comparision and fusion of multi-resolution features for textureclassification [J]. Pattern Recognition Letters,2005,26(5):633-638.
    [6] Arivazhagan S, Ganesan L, Angayarkanni V. Color texture classification using wavelet transform
    [C]//Sixth International Conference of Computional Intelligence and Multimedia Application,2005:315-320.
    [7]焦李成,谭山.图像多尺度几何分析:回顾和展望[J].电子学报,2003,31(12):43~50.
    [8] Do M.N, Vetterli M, The Contourlet transform: an efficient directional multiresolution imagerepresentation [J]. IEEE Transaction on Image Processing,2005,14(12):2091-2106.
    [9] Gluckman J. Visually distinct patterns with matching sub-band statistics [J]. IEEE Transactionson Pattern Analysis and Machine Intelligence,2005,27(2):252~264
    [10] Donoho M N, Vetterlin M. The contourlet transform: An efficient directional multiresolutionimage representation [J], IEEE Transactions on Image Processing,2005,14(2):2091~2106
    [11] Burt P J, Adelson E H. The Laplacian pyramid as a compact image code. IEEE Trans. Commun.,April1983,31(4):532-540.
    [12] Do M N. Directional Multiresolution Image Representation. PhD thesis, Swiss Federal Instituteof Technology, Lausanne, Switzerland, December2001.
    [13]焦李成,侯彪,王爽等.图像多尺度几何分析理论与应用[M],西安:西安电子科技大学出版社,2008.
    [14] Nguyen T T, Oraintara S. The multiresolution direction filterbanks: theory, design andapplications, IEEE Transactions on Signal Processing,2005,53(10):3895-3905.
    [15]胡广书著,现代信号处理教程[M].北京:清华大学出版社,2004
    [16]陶然,张惠云,王越.多抽样率数字信号处理理论及其应用[M],北京:清华大学出版社,2007
    [17] Yi Chen.Design and Application of Quincunx Filter Banks [D].USA: University of Victoria,2006
    [18]冯鹏,魏彪,潘英俊等.基于拉普拉斯塔型变换的Contourlet变换频谱混叠特性分析[J].光学学报,2008,28(11):2090-2096
    [19] Ahonen T,Hadid A,Pietikainen M.Face description with local binary patterns:application toface recognition [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(12):2037-2041
    [20]业宁,丁建文,王迪等.基于LBP特征提取的木材纹理缺陷检测[J].计算机研究与发展,2007,44(suppl.):383-387
    [21] Po D D Y, Do M N. Directional multiscale modeling of image using the Contourlet transform[J]. IEEE Transactions on Image Processing,2006,15(6):1610-1620
    [22]王文,芮国胜,王晓东等.图像多尺度统计模型综述[J],中国图象图形学报,2007,12(6):961-969
    [23]程正兴.小波分析与应用实例[M].西安:西安交通大学出版社,2006
    [24] Rafael C. Gonzalez, Richard E. Woods著,阮秋琦,阮宇智等译,数字图像处理(第二版)
    [M].北京:电子工业出版社,2007
    [1] Eslami R, Radha H, Wavelet-based contourlet packet image coding [C]//In the Proceeings ofConference on Information Sciences and Systems [A], The Johns Hopkins University, March2005.
    [2] Yang S Y, Wang M, Jiao L C, Radar target recognition using contourlet packet transform andneural network approach [J], Signal Processing,2009,89(4):394-409.
    [3] J.L. Starck, J. Fadili, and F. Murtagh, The undecimated wavelet decomposition and itsreconstruction [J]. IEEE Transactions on Image Processing,2007,16(2):297-309
    [4] A.L. Cunha, J.P. Zhou, and M.N. Do, The nonsubsampled contourlet transform: theory, design,and applications [J]. IEEE Transactions on Image Processing,2006,15(10):3089-3101
    [5] Jolliffe I T, Principal Component Analysis [M], Springer-Verlag, New York,1986
    [6] Yang J, Zhang D, Frangi A F, and Yang J Y, Two-dimensional PCA: a new approach toappearance-based face representation and recognition [J], IEEE Trans. on Pattern Analysis andMachine Intelligence, vol.26, no.1, pp.131-137, Jan.2004.
    [7] Zhang D Q, Chen S C, and Liu J, Representing image matrices: Eigen images vs. Eigen vectors
    [C]//In the Proceedings of the2nd International Symposium on Neural Networks (ISNN'05),Chongqing, China, vol.2, pp.659-664,2005.
    [8] Ahn J H, Kim Y G, Song Y J, Chang U D, Kim D W, Face recognition using a fusion methodbased on bidirectional2DPCA [J], Applied Mathematics and Computation,2008,20(5):601–607
    [9]焦李成,候彪,王爽,刘芳.图像多尺度几何分析理论与应用[M],西安:西安电子科技大学出版社,2008
    [10] Coifman R, Wickerhanser M V. Entropy-based algorithms for best basis selection [J], IEEETrans. Inform. Theory,1992,38(2):713-718
    [11] Wu J D, Liu C H, An expert system for fault diagnosis in internal combustion engines usingwavelet packet transform and neural network [J]. Expert Systems with Applications,2009,36(3):4278-4286.
    [12] Lu Y, Do M N. CRISP-Contourlet: a critical sampled directional multi-resolution imagerepresentation [C]//Proc. SPIE Conf. on Wavelets X, San Diego, Aug,2003
    [13]陶然,张惠云,王越.多抽样率数字信号处理理论及其应用[M],北京:清华大学出版社,2007
    [14] Xiong H L, Zhang T X, and Moon Y S, A Translation-and Scale-Invariant Adaptive WaveletTransform [J]. IEEE Trans. Image Processing,2000,9(12):2100-2108,.
    [15]程正兴.小波分析与应用实例[M].西安:西安交通大学出版社,2006
    [16]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2006
    [17]李俊峰,李其申,张永,江泽涛.非下采样方向滤波器组在遥感图像融合中的应用[J].中国图象图形学报,2009,14(10):2047-2053
    [18] Yang X H, Jiao L C, Li D F. Directional Filter for SAR Images Based on NonsubsampledContourlet Transform and Immune Clonal Selection [J]. International Journal of Automation andComputing,2007,04(1):208~218
    [19] Tan P N, Michael S, Kumar V.数据挖掘导论[M/OL].范明,范宏建,译.北京:人民邮电出版社,2006[2007-11-10]. http://book. csdn. net/bookfiles/327/10032713191. shtml
    [20] Ahonen T, Hadid A, Pietikainen M. Face recognition with local binary patterns [C]//In theproceedings of the8th European Conference on Computer vision (ECCV), Prague, Czech Republic,pp.469~481. May2004.
    [21] Po D D-Y, Donoho M N, Directional multiscale modeling of images using the contourlettransform [J]. IEEE Trans. Image Processing,2006,15(6):1610-1620
    [22] Rafael C. Gonzalez, Richard E. Woods著,阮秋琦,阮宇智等译,数字图像处理[M].北京:电子工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700