基于单光纤光栅的分布式传感系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在研究单光纤光栅分布式传感的基础上,开发了基于单光纤光栅的扫描干涉解调系统;使用聚合物材料与粘胶剂对光纤埋置技术进行了改进,使用VB软件开发了数据采集及反馈控制程序,初步完成了基于光纤光栅传感网络的智能机械手开发项目的探索工作。论文从以下4个方面报道了所做工作:
     (1).开发了基于单光纤光栅传感的扫描干涉解调系统,能够对光栅光程内各点反射光能量进行测量,实现对光栅光程的精确确定;成功对光栅上待测压力的位置与大小进行了判断;并对光栅所受轴向应力进行了测量;
     (2).使用Visual Basic软件开发了基于串口通信的数据采集及反馈控制程序,程序可以对解调系统输出的相移值信号进行采集并调用EXCEL表格自动记录,通过对采集到的数据进行分析,实时调整机械手指的动作,达到智能化反馈控制的效果。
     (3).对光纤的封装埋置工艺进行了实验研究,通过对多种粘胶剂和聚合物材料性能的实验测试比较,确定了粘结固定光栅所用粘胶剂和用作机械手蒙皮的聚合物材料;并改进了常规的封装方式,成功增强了光纤与封装材料之间的粘结力。
     (4).用硅橡胶对马赫-曾德尔干涉仪的传感臂进行涂敷,增加干涉仪压力传感的灵敏度,验证了使用硅橡胶作为封装材料的增敏作用。实验中分别使用宽带和窄带光源,借助光谱仪和光功率计观测干涉谱波长漂移和光谱峰值功率变化,对微小压力进行了测量。当压力改变1.03×10~(-4)MPa的时候,波长改变约0.02nm,系统传感灵敏度为1.96×10~(-4)nm/Pa。
For the study of distributed sensing, a scanning interferometric demodulation system has been designed on the study on single FBG; improved the skill of fiber embedment by using coupling agent and viscose agent; developed the program of data acquisition and feedback control on Visual Basic. The exploration work of developing smart manipulator based on FBG sensor network was initially finished. The research work will be illustrated from the following four aspects:
     Firstly, developed a single FBG scanning interferometric demodulation system, it can observed the energy of reflect light of the different point in FBG, and confirmed the optical path of the FBG precisely; identified the position and quantity of pressure on FBG; measured the axial stress on FBG.
     Secondly, developed the program of data acquisition and feedback control on the basis of serial communication by using Visual Basic, the system can read data automatically and record the data by calling EXCEL. By real-time analyzing the data, the program can send command to the control circuit of the manipulator so that the fingers can adjust their action. It can reach the result of intelligent feedback control.
     Thirdly, studied the technology of fiber embedment, choosed the viscose agent and polymer materials which were used in bonding FBG and skin of manipulator by camparing several kinds of viscose agent and polymer materials in experiment; improved normal skill of embedment, enhanced the binding power between fiber and coating materials.
     Fourthly, one arm of the all-fiber Mach-Zehnder interferometer was covered with silicon fiber to increase the sensitivity of pressure sensing. Illumining with a broadband and a narrowband light source, respectively, wavelength- shift can be obtained by observing the variation of the peak position of the interferometric spectrum with an optical spectral analyzer (OSA). The change of its peak power is measured by using a power-meter. Successfully measured the mini-pressure and increased the accuracy of measurement. When the pressure is changed 1.03×10~(-4)MPa, the wavelength shifts 0.02nm, the sensitivity of sensing is 1.96×10~(-4)nm/Pa.
引文
[1] 余有龙.光纤光栅传感器及其网络化技术.黑龙江科学技术出版社.第一版,2003.1.
    [2] 涂亚庆,刘兴长.光纤智能结构.高等教育出版社.第一版,2005.5.
    [3] 李川,张以谟,赵永贵,李立京.光纤光栅:原理,技术与传感应用.科学出版社,第一版,2005.10.
    [4] Ferreira L A et al. Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings (J), IEEE Photon Technol Lett. 1997, 9(4):487-489
    [5] A. D. Kersey, T. A. Berkoff, W.W. Morey. Multiplexed Fiber Bragg Grating Strain-Sensor System with a Fiber Fabry-Perot Wavelength Filter. Optics Letters, 1993, 18(16):1370-1372
    [6] A.D. Kersey, T.A. Berkoff and W.W. Morey. High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection. Electron Letter. 1992, 28(3):236-238
    [7] M. LeBlanc, S. Y. Huang, M. Ohn, and R. M. Measures. Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis. Optics letters. 1996,21(17):1405-1407
    [8] C.J.S. de Matos, P. Torres, L.C.G. Valente, W. Margulis, Fiber Bragg Grating (FBG) Characterization and Shaping by Local Pressure", JOUENAL OF LIGHTWAVE TECHNOLOGY, 2001, 8:1206-1211.
    [9] 吴飞,李立新,李志全.均匀光纤布拉格光栅横向受力特性的理论分析.中国激光,2006,33(4):472-476.
    [10] Libo Yuan, Limin Zhou, Wei Jin. Quasi-distributed strain sensing with white-light interferometry. Optics letters, 2000, 25(15):1074-1077.
    [11] 苑立波.光纤白光干涉传感技术的发展与应用.黑龙江大学自然科学学报,2005,22(2):172-187.
    [12] Libo Yuan. White-light interferometric fiber-optic strain sensor from three peak wavelength broadband LED source. Applied Optics, 1997, 36(25):6426-6429
    [13]Libo Yuan, Limin Zhou. 1×N star coupler as a distributed fiber-optic strain sensor in a wehite-light interferometer. Applied Optics, 1998, 37(19):4168-4172.
    [14]Tajima N, Sakurai T, Takeda N, progress in demonstrator program of smart structure system project Proceedings of SPIE-The international Society for Optical Engineering, 2002, 47(1):108-117.
    [15]Darwish M N, Darwish A N, Intelligent structures for the future, AEJ-Alexandria Engineering Journal, 2001, 40(4):573-584.
    [16]K. O. Hill, Y Fuji.D. C. Janson and B.S.Kawasaki. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett., 1978, 32(64):7-649.
    [17]G. Meltz, W. W. Morey and H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 1989, 14(82) :3825
    [18]D. R. Hjelme. Application of Bragg Grating Sensors in the Characterization of Scaled Marine Vehicle Models. Applied Optics, 1997, 36:328-336
    [19]W. Weis. MWD Telemetry System for Coil Tubing Drilling Using Optical Fiber Grating Modulators down Hole. Proc of the Optical Fiber Sensors. (OFS 12).Williamsburg, VA, USA, 1997:416-419
    [20]Y. Ogawa, etal. A multiplexing load monitoring system for power transmission lines using fibre Bragg grating. Proc of the Optical Fibre Sensors Conf.Williamsburg, VA, USA. 1997: 468-471
    [21]Gusarov A I, Berghmans F, Deparis O et al. High Total Dose Radiation Effects on Temperature Sensing Fiber Bragg Gratings, IEEE Photonics Technology Letters, 1999,11(19):1159-1161
    [22]Hocker G B. Fiber-optic sensing of pressure and temperature. A pp1. Opt. 1979,18 (9):1445-1448
    [23]Model SR830 DSP Lock-In Amplifier User' s Manual [M]. Copyright 1993 by Stanford Research Systems 1290-D Reamwood Avenue Sunnyvale,California 94089 U.S.A
    [24] 范逸之,陈立元.Visual Basic与RS-232串行通信控制.清华大学出版社,北京:第一版,2002.6.
    [25] 刘新民,蔡琼,白康生.Visum Basic6.0程序设计.清华大学出版社,北京:第一版,2004.3.
    [26] 张运波.基于PLC的电机转速实时检测系统.微计算机信息,2005,21(9-1):120—122.
    [27] 申屠南英,高潮,郭永彩.基于微机测控技术的智能伺服操作系统.重庆大学学报,2003,26(9):73—76.
    [28] 郭骏,王道波.全数字机器人伺服控制系统的研制.计算机测量与控制,2006,14(6):769—781.
    [29] 王纪森,钟丹华.基于MRAC的电液伺服作动器同步控制.控制工程,2006.13(5):506—508.
    [30] 孟克,曹家年,王东红.光干涉与相关分析检测地下水管泄漏[J].计量学报,2003,24(4):289—292.
    [31] 李志全,范立娜.一种贴装式Mach—Zehnder光纤应变传感器的设计[J].传感技术学报,2002,3:91-93.
    [32] 廖延彪.光纤光学[M].清华大学出版社,北京,第一版,2001:186-191.
    [33] 王廷云,郭强,唐明珏,等.磁致伸缩效应光纤微分干涉电流传感器[J].光电子·激光,13(9):923—925.
    [34] 周寒青,陈曙英,隋成华.马赫-泽德光纤传感器实验研究[J].激光与红外,2005,35(10):794—796.
    [35] 邸岳森,肖悦娱,何赛灵.新颖的微弯结构Mach—Zehnder干涉仪型传感器及其优化设计[J].光子学报,2005,34(1):69—72
    [36] 周红,乔学光,王洪亮,等.nmSiO2对聚合物光纤光栅封装材料的改性研究[J].光子学报,2005,34(9):1332—1335.
    [37] 余有龙,刘盛春,刘士奎,等.非平衡全光纤干涉仪臂长差测量方法的研究[J].黑龙江大学自然科学学报,2005,22(2):216—218.
    [38] 詹亚歌,蔡海文,耿建新,等.铝槽封装光纤光栅传感器的增敏特性研究[J].光子学报,2004,33(8):952—955
    [39] 胡志新,朱军,张陵.新型高准确度光纤光栅压力传感系统[J].光子学报,2006,35(5):709—711.
    [40] 张兴周.光纤光栅传感器与“3S”系统.传感器技术,1998,17(2):54—60.
    [41] Hill K O, Meltz G. Fiber Bragg Grating Technology Fundamentals and Overview, Journal of Lightware Technology, 1997, 15(8) :1263-1276
    [42] 余有龙,谭华耀,锺永康,“基于干涉解调技术的光纤光栅传感系统”,《光学学报》,Vol.21,No.8,(Aug.2001),987—989
    [43] Meltz G, Morey W W, Glenn W H et al. IN-Fiber Bragg-Grating Temperature and Strain Sensors, Instrumentation in the Aerospace Industry, 1999,34(2):239
    [44] S. Keren, M. Horowitz, Distributed three-dimensional fiber Bragg grating refractometer for biochemical sensing, OPTICS LETTERS, 2003,28(21):2037-2039

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700