基于多模型切换的近空间飞行器鲁棒自适应协调控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近空间飞行器(NSV: Near Space Vehicle)集传统航空器与航天器的优点于一身,在军事和民用方面具备重大的战略价值,已成为各军事强国关注和研究的焦点。近空间飞行器的飞行环境特殊、飞行包络极大,并且在飞行过程中存在着多工作模式、多工作状态等特点,使得飞行器系统呈现出非常复杂的特性,因而飞行控制系统的设计是一项极具挑战但又意义重大的研究课题。本文针对这一科学问题,分别在飞行运动数学建模、不确定非线性鲁棒自适应飞行控制等方面开展了一系列研究工作。
     首先,综合现有的文献资料以及本课题组的前期研究成果,结合近空间飞行器的大飞行包络、多飞行任务等特点,考虑具体的飞行环境,对带翼锥形体且机翼后掠角可变的近空间飞行器进行了系统的飞行力学以及动力学分析,在地球坐标轴系下建立了它的飞行运动数学模型,并对受到干扰和不确定等影响的系统开环特性进行了检验和分析,论证了该系统能够体现近空间飞行器的严重非线性、强烈状态耦合、激烈快时变以及存在不确定等特点,可以满足飞控系统设计研究的需要。
     而后,围绕所建立的复杂非线性飞行运动方程,提出了一种基于模糊多模型的鲁棒软切换控制方法。首先根据机翼后掠角将近空间飞行器的工作区域划分为多个模糊区域,然后利用广义系统的方法设计系统的局部鲁棒控制器,减少了计算量和复杂度,最后对局部控制器进行模糊加权从而实现了控制器的软切换。通过变气动外形近空间飞行器的飞行运动仿真验证说明了所设计方法的有效性。
     接着,为了降低系统模型集的复杂度,考虑近空间飞行器气动参数等未知以及受到外界干扰影响的条件下,提出了一种基于多非线性模型切换的鲁棒自适应控制策略。利用模糊系统来在线逼近系统中的未知函数,并设计鲁棒控制器来对逼近误差进行补偿,根据公共Lyapunov函数方法证明了闭环系统的稳定性。为了获得更好的逼近效果,在模糊系统中增加了变论域的思想,相当于在不改变系统复杂度的前提下增加了模糊规则,显著提高了模糊系统性能。仿真结果表明两种方法都能够很好地实现对近空间飞行器的鲁棒自适应控制。
     然后,针对近空间飞行器在飞行过程中存在的环境干扰以及系统本身的建模不确定,提出了一种基于模糊观测器的多模型切换控制算法。充分利用系统的已知信息,构造多模型模糊观测器来实现对包含复合干扰的未知函数的估计,并设计了系统的鲁棒控制器,利用公共Lyapunov函数方法推导出可以保证闭环系统所有信号最终一致有界的参数自适应调整律。进一步,为了避免模糊系统过度依赖专家经验并改善模糊系统的逼近性能,设计了一种全调节多模型模糊观测器,模糊系统的中心、宽度和模糊参数均可在线调节,并据此提出了基于全调节模糊观测器的多模型切换控制方法。将上述两种方法用于变机翼后掠角近空间飞行器的姿态跟踪控制,取得了理想的控制效果。
     最后,考虑近空间飞行器的实际飞行需要,设计了一种基于多模型切换的输入输出受限控制律。设定系统的跟踪误差运动范围,构造系统的输出约束环节,然后将理想控制输入经过控制指令滤波器进行滤波得到实际控制输入,利用切换模糊系统对理想控制与实际控制之间的差值以及复合干扰进行估计,并用以补偿理想控制器的输出。仿真结果说明当近空间飞行器存在复合干扰,且气动外形发生改变时,所设计方法能够实现高精度的稳定跟踪控制,并且控制输入和输出均在所限制的区域内。
Near space vehicle (NSV) has great strategic value both in military and civilian area, whichcombines the advantages of traditional aircrafts and spacecrafts. It has become a focus of concern andresearch for many military powers. NSV has special characteristics, such as special flightenvironments, large flight envelop, multiple work modes and multiple flight states. These make NSVpossess some very complicated features. Therefore, the NSV control system design is a challengingand meaningful research project. The dissertation carries out a series of research work in NSVmodeling and robust adaptive flight control for nonlinear uncertain systems.
     First of all, on the basis of the published literatures and the contributions of our research group,the flight mechanics and dynamics of the NSV with variable sweep angle are systematically analyzed,and a set of equations are established to describe the flight motion in the earth coordinate system. Theopen-loop control dynamics with disturbances and uncertainties are studied. They demonstrate thatthe developed model can embody the characteristics of NSV, such as serious nonlinearity, intensestate-coupling, fast time variation and uncertainties and can meet the requirements of flight controlsystem design.
     Secondly, a robust soft-switching control method based on multiple fuzzy models is presentedfor the nonlinear flight motion equations. The work space of NSV is divided into multiple fuzzyregions according to the sweep angle. Then local robust controllers are designed by the descriptorsystem method, which can reduce the calculation and complexity. The soft switching is realizedthrough combining local controllers with fuzzy weights. Simulations of NSV with variable sweepwings demonstrate the effectiveness of the proposed method.
     Thirdly, to decrease the scale of the model set, a robust adaptive control strategy based on theswitched multiple nonlinear systems is considered in the presence of unknown aerodynamicparameters and external disturbances. Fuzzy systems are employed to approximate the unknownfunctions, and robust controllers are designed to compensate for the approximation errors. Then thestability of the closed-loop system is proved according to the common Lyapunov function theory.Furthermore, the variable universe method is introduced to get better approach results. The fuzzy rulescan be increased without more complexity. The simulation results show that the two control methodscan realize robust adaptive control on NSV.
     In the following, a multi-model switching controller based on multi-model fuzzy observer isinvestigated in consideration of the disturbances in the environment and the unmodeled uncertainties in the NSV flight. The multi-model fuzzy observers are constructed by using the known systeminformation to approximate the unknown functions with dynamic lumped disturbances. Then robustcontrollers are also designed. The adaptive laws of the fuzzy weights and robust gains are derived bythe common Lyapunov function theory and the closed-loop system can be ultimately uniformlybounded. Further more, a fully tuned fuzzy observer is introduced to avoid overly relying on expertiseand improve the fuzzy system performance. The centers, widths and fuzzy weights of the fuzzysystem can be adjusted on line. And a multi-model switching control method based on fully tunedfuzzy observer is proposed. At last, the two schemes are used to track the attitudes for the NSV andreach ideal control effects.
     Finally, considering the actual flight requirements, a multi-model switching control law withconstrained-input and constrained-output is presented. The constrained-output part is constructedaccording to the given error range. Then the command filter is applied to the designed controller to getactual input. The switched fuzzy system is introduced to approximate the difference between thedesigned and actual controller as well as lumped disturbances. The estimates can be used tocompensate for the controller. The simulation results show that the designed method can realizehigh-precision tracking control with appropriate input and output.
引文
[1]崔尔杰.近空间飞行器研究发展现状及关键技术问题[J].力学进展,2009,39(6):658-673.
    [2]李勇,姚伟,郑威,等.近空间系统的类型与特点[J].卫星应用,2006,14(3):1-6.
    [3] Hetzel C N, Olson D S. High Altitude Balloon Experiment [C]. AIAA International BalloonTechnology Conference. Reston, Virginia. AIAA,1997:10-18.
    [4] Browning W M, Olson D S, Keenan D E, et al. High altitude balloon experiment programupdate [C]. AIAA International Balloon Technology Conference, Reston: AIAA,1999:1-10.
    [5]王彦广,李健全,李勇,等.近空间飞行器的特点及其应用前景[J].航天器工程,2007,16(1):50-57.
    [6]尹志忠,李强.近空间飞行器及其军事应用分析[J].装备指挥技术学院学报,2006,17(5):64-68.
    [7]段锋.临近空间飞行器现状与发展[J].航空科学技术,2007,(06):22-25.
    [8] Onda M. Design and applications of a stratospheric long-endurance LTA platform [C].1stAIAA Aircraft Technology, Integration, and Operations Forum at Aviation Week's AerospaceExpo Conference&Exhibit, Los Angeles, USA, AIAA2001-5266:1-5.
    [9] Fidan B, Mirmirani M, Ioannou P A. Flight dynamics and control of air-breathing hypersonicvehicles: review and new directions [C].12th AIAA International Space Planes andHypersonic Systems and Technologies, Norfolk, USA, AIAA2003-7081:1-24.
    [10] Hanson J M. Advanced guidance and control project for reusable launch vehicles [C]. AIAAGuidance, Navigation, and Control Conference and Exhibit, Denver: AIAA,2000:1-10.
    [11] Lambert C. Developing architectures for high altitude airships [C]. AIAA’s3rd AnnualAviation Technology, Integration, and Operations (ATIO) Tech, Denver, USA, AIAA2003-6781:1-6.
    [12]曹秀云.近空间飞行器成为各国近期研究的热点(上)[J].中国航天,2006,37(6):32-35.
    [13]曹秀云.近空间飞行器成为各国近期研究的热点(下)[J].中国航天,2006,37(7):30-32.
    [14] Kanikdale T S, Marathe A G, Pant R S. Multi-disciplinary optimization of airship envelopeshape [C].10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, NewYork, AIAA2004-4411:1-21.
    [15] Schmidt D K. Dynamic modeling, control, and station-keeping guidance of a largehigh-altitude “near-space” airship [C]. AIAA Guidance, Navigation, and Control Conferenceand Exhibit. Keystone, USA: AIAA2006-6781:1-14.
    [16] Colozza A, Dolce J L. High altitude long endurance airships for coastal surveillance [R].NASA-TM-2005-213427:1-15.
    [17] McClinton C R, Rausch V L, Stiz J, et al. Hyper-X program status [C].39th AIAA AerospaceSciences Meeting and Exhibit, Reno, USA, AIAA2001-0828:1-11.
    [18] Elfes A, Bueno S S, Bergerman M, et al. A semi-autonomous robotic airship for environmentalmonitoring missions [C]. In: Proc. of the1998IEEE International Conference on Robotics&Automation, Leuven, Belgium,1998:3449-3455.
    [19] Johnson M D, Calise A J, Johnson E N. Evaluation of an adaptive method for launch vehicleflight control [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin,USA, AIAA2003-5789:1-11.
    [20] Blocker W D, Reubush D E. X-43A stage separation system-a flight data evaluation [C].AIAA/CIRA13th International Space Planes and Hypersonics Systems and Technologies,Capua, Italy, AIAA2005-3335:1-8.
    [21] Eguchi K, Yokomaku Y.2000Overview of stratospheric platform airship R&D Program inJapan [C]. Systems Workshop SPSW2000, Tokyo, Japan,2000:15-23.
    [22] Shaughnessy J D, Pinckney S Z, McMinn J D. Hypersonic vehicle simulation model:winged-cone configuration [M]. Langley Research Center Hampton, Virginia,1990.
    [23] Kim D M, Lee Y G. Korea stratospheric airship program and current results [C]. AIAA’s3rdAnnual Aviation Technology, Integration, and Operations (ATIO) Tech, Denver, USA, AIAA2003-6782:1-8.
    [24] Harsha P T, Keel L C, Castrogiovanni A, et al. X-43A vehicle design and manufacture [C].AIAA/CIRA13th International Space Planes and Hypersonics Systems and Technologies,AIAA2005-3334:1-9.
    [25] Nayler A. Airship activity and development world-wide-2003[C]. AIAA’s3rd Annual AviationTechnology, Integration, and Operations (ATIO) Tech, Denver, USA, AIAA2003-6727:1-11.
    [26] Joyce P J, Pomroy J B, Grindle L. The hyper-X launch vehicle: challenges and designconsiderations for hypersonic flight testing [C]. AIAA/CIRA13th International Space Planesand Hypersonics Systems and Technologies, Reston, USA: AIAA2005-3333:1-19.
    [27]陈予恕,郭虎伦,钟顺.高超声速飞行器若干问题研究进展[J].飞航导弹,2009,(8):26-33.
    [28] Chase R L. A history of the NASP program from the formation of the joint program office ofthe termination of the HySTP scramjet performance demonstration program [C]. AIAA SixthInternational Aerospace Planes and hypersonics Technologies Conference, Chattanooga, USA,AIAA-95-6031:1-14.
    [29] Peebles C. Learning from experience: case studies of the Hyper-X project [C].47th AIAAAerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition,Orlando, USA, AIAA2009-1523:1-6.
    [30] Boudreau A H. Status of the U.S. air force HyTech Program [C].12th AIAA InternationalSpace Planes and Hypersonic Systems and Technologies, Norfolk, USA, AIAA2003-6947:1-9.
    [31] Brase L O, Haudrich D P. Flutter and divergence assessment of the HyFly missile [C].50thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,Palm Springs, USA, AIAA2009-2462:1-14.
    [32] Walker S H, Sherk C J, Shell D, et al. The DARPA/AF falcon program: The hypersonictechnology vehicle#2(HTV-2) flight demonstration phase [C].15th AIAA International SpacePlanes and Hypersonic Systems and Technologies Conference, Dayton, USA, AIAA2008-2539:1-9.
    [33] Letchworth G. X-33Reusable launch vehicle demonstrator, spaceport and range [C]. AIAASPACE2011Conference&Exposition, Long Beach, USA, AIAA2011-7314:1-10.
    [34] Peebles C. The X-43fin actuation system problem-reliability in shade of gray [C]. Space2006, San Jose, USA, AIAA2006-7469:1-10.
    [35] Joseph M H, Murphy J S, Mutzman R C. The X-51A scramjet engine flight demonstrationprogram [C].15th AIAA International Space Planes and Hypersonic Systems and TechnologiesConference, Dayton, USA, AIAA2008-2540:1-13.
    [36] Du Y L, Wu Q X, Jiang C S, et al. Adaptive functional link network control of near-spacevehicles with dynamical uncertainties [J]. Journal of Systems Engineering and Electronics,2010,21(5):868-876.
    [37] Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft [J]. Journal ofGuidance, Control and Dynamics,2000,23(4):577-585.
    [38] Marren D, Lewis M, Maurice L Q. Experimentation, test, and evaluation requirements forfuture airbreathing hypersonic systems [J]. Journal of Propulsion and Power,2001,17(6):1361-1365.
    [39] Johnson D L. Terrestrial environment (climatic) criteria guidelines for use in aerospace vehicledevelopment,2008Revision [R]. NASA TM-2008-215633:49-156.
    [40] Dickeson J J, Rodriguez A A, Sridharan S, et al. Elevator sizing, placement, andcontrol-relevant tradeoffs for hypersonic vehicles [R]. AIAA2010-8339:1-23.
    [41] Smith T R, Bowcutt K G, Selmon J R, et al. HIFiRE4: A low-cost aerodynamics, stability, andcontrol hypersonic flight experiment [C].17th AIAA International Space Planes andHypersonic Systems and Technologies Conference, San Francisco, USA, AIAA2011-2275:1-32.
    [42] Huo Y, Mirmirani, Ioannou P, et al. Altitude and velocity tracking control for an airbreathinghypersonic cruise vehicle[C]. AIAA Guidance, Navigation, and Control Conference andExhibit, Keystone, USA, AIAA2006-6695:1-10.
    [43] Mooij E, Barkana I. Stability analysis of an adaptive guidance and control system applied to awinged re-entry vehicle[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,San Francisco, USA, AIAA2005-6290:1-13.
    [44] Shamma J S, Athans M. Guaranteed properties of gain scheduled control for linearparameter-varying plants [J]. Automatica,1991,27(3):559-564.
    [45] Blanchini F. The gain scheduling and the robust state feedback stabilization problems [J]. IEEETransactions on Automatic Control,2000,45(11):2061-2070.
    [46] Yoon M G, Ugrinovskii V A, Pszczel M. Gain-scheduling of minimax optimal state-feedbackcontrollers for uncertain LPV systems [J]. IEEE Transactions on Automatic Control,2007,52(2):311-317.
    [47] Blanchini F, Miani S. Gain scheduling versus robust control of LPV systems: the outputfeedback case [C].2010American Control Conference, Marriott Waterfront, USA,2010:3871-3876.
    [48] Yu G R. Nonlinear optimal control of helicopter using fuzzy gain scheduling [C].2005IEEEConference on Systems, Man and Cybernetics, Hawaii, USA,2005:3313-3318.
    [49] Kadmiry B, Driankov D. A fuzzy gain-scheduler for the attitude control of an unmannedhelicopter [J]. IEEE Transactions on Fuzzy Systems,2004,12(4):502-515.
    [50] Applebaum E, Asher J B, Weller T. Fuzzy gain scheduling for flutter suppression in anunmanned aerial vehicle [J]. Journal of Guidance, Control, and Dynamics,2005,28(6):1123-1130.
    [51] Sun Y, Zhang W G, Zhang M, et al. Design of neural network gain scheduling flight controllaw using a modified PSO algorithm based on immune clone principle [C].2009SecondInternational Conference on Intelligent Computation Technology and Automation, Changsha,2009:259-263.
    [52] Rugh W J. Analytical framework for gain scheduling [J]. IEEE Control. Systems Magzine,1991,11(l):79-84.
    [53] Tan S H, Hang C C, Chai J S. Gain scheduling: from conventional to neural-fuzzy [J].Automatica,1997,33(3):411-419.
    [54] Palm R, Rehfuess U. Fuzzy controllers as gain scheduling approximators [J]. Fuzzy sets andsystems,1997,85(2):233-246.
    [55] Rugh W J, Shamma J S. Research on gain scheduling [J]. Automatica,2000,36(10):1401-1425.
    [56] Chiu C S, Lian K Y, Liu P. Fuzzy gain scheduling for parallel parking a car-like robot [J]. IEEETransactions on Control Systems Technology,2005,13(6):1084-1092.
    [57] Li H B, Sun Z Q, Chow M Y, et al. Gain-scheduling-based state feedback integral control fornetworked control systems [J]. IEEE Transactions on Industrial Electronics,2011,58(6):2465-2472.
    [58] Agustin R M, Mangoubi R S, Hain R M, et al. Robust failure detection for reentry vehicleattitude control systems [J]. Journal of Guidance, Control and Dynamics,1999,22(6):839-845.
    [59] Wang J L, Sundararajan N. A nonlinear flight controller design for aircraft [J]. ControlEngineering Practice,1995,3(6):813-825.
    [60] Hanson J M. A plan for advanced guidance and control technology for2nd generation reusablelaunch vehicles [C]. AIAA Guidance, Navigation and Control Conference and Exhibit,Monterey, USA, AIAA2002-4557:460-468.
    [61] Lu P. Regulation about time-varying trajectories: precision entry guidance illustrated [J].Journal of Guidance. Control, and Dynamics,1999,22(6):784-790.
    [62] Shtesel Y B, Zhu J J, Daniels D. Reusable launch vehicle attitude control using time-varyingsliding modes [C]. AIAA Guidance, Navigation and Control Conference and Exhibit, Monterey,USA, AIAA2002-4779:1409-1418.
    [63] Esfandiari F, Khalil H K. Output feedback stabilization of fully linearizable systems [J].International Journal of Control,1992,56(5):1007-1037.
    [64] Isidori A. Nonlinear control systems: Communications and control engineering series [M].Berlin, Germany: Springer-Verlag,1995:70-118.
    [65] Sam G S, Wang J. Robust adaptive tracking for time-varying uncertain nonlinear systems withunknown control coefficients [J]. IEEE Transactions on Automatic Control,2003,48(8):1463-1469.
    [66] Khalil H K. Nonlinear system [M].3rd Ed, Upper Saddle River, New Jersey: Prentice-Hall,2002.
    [67] McFarland M B. Adaptive nonlinear control of missiles using neural networks [D]. Atlanta,Georgia Institute of Technology,1997.
    [68] McFarland M B, Calise A J. Adaptive nonlinear control of agile antiair missiles using neuralnetworks [J]. IEEE Transactions on Control Systems Technology,2000,8(5):749-756.
    [69] Brockett R W. Nonlinear systems and differential geometry [J]. Proceedings of the IEEE,1976,64(1):61-72.
    [70] Kuo C Y, Spetanto D, Chiou Y C. Geometric analysis of flight control command for tacticalmissile guidance [J]. IEEE Transactions on Control Systems Technology,2001,9(2):234-243.
    [71] Han Y T, Sun Y, Mo H W, et al. Design of flight control law for underwater supercavitatingvehicle [C]. Proceedings of the27th Chinese Control Conference, Kunming,2008:289-293.
    [72] White B A, Shin H Y, Tsourdos A. UAV obstacle avoidance using differential geometryconcepts [C].18th IFAC World Congress, Milano, Italy,2011:6325-6330.
    [73] Isidori A, Marconi L, Serrani A. Robust nonlinear motion control of a helicopter [J]. IEEETransactions on Automatic Control,2003.48(3):413-426.
    [74] Singh S N, Yim W. Feedback linearization and solar pressure satellite attitude control [J]. IEEETransactions on Aerospace and Electronic Systems,1996,32(2):732-741.
    [75] Meyer G, Su R, Hunt L R. Application of nonlinear transformation to automatic flight control[J], Automatica,1984,20(1):103-107.
    [76] Huang J, Lin C F, Cloutier J R, et al. Robust feedback linearization approach to autopilotdesign [C]. First IEEE Conference on Control Applications, Dayton, USA,1992:220-225.
    [77] Hauser J, Sastry S, Meyer G. Nonlinear control design for slightly non-minimum phasesystems: application to V/STOL aircraft [J]. Automatica,1992,28(4):665-679.
    [78] Godbole A A, Talole S E. Robust feedback linearization approach to pitch autopilot design [C].2011International Conference on Control, Robotics and Cybernetics, New Delhi, India,2011:76-80.
    [79] Tomlin C, Lygeros J, Benvenuti L. Output tracking for a non-minimum phase dynamic CTOLaircraft model [C], Proceeding of the34th IEEE Conference in Decision and Control, NewOrleans: USA,1995:1867-1872.
    [80] Lane S H, Stengel R F. Flight control design using nonlinear inverse dynamics [J]. Automatica,1988,24(4):471-483.
    [81] Snell S A. Nonlinear dynamic-inversion flight control of supermaneuverable aircraft [D].Minnesota: University of Minnesota,1991.
    [82] Sun X D, Clarke T. Advanced aircraft flight control using nonlinear inverse dynamics [J]. IEEproceedings of Control Theory and Applications,1994,141(6):418-426.
    [83] McFarland M B, Calise A J. Neural-adaptive nonlinear nonlinear autopilot design for an agileanti-air missile [C]. AIAA Guidance, Navigation and Control Conference, San Diego, USA,AIAA96-3914:1-9.
    [84] Somakumar R, Chandrasekhar J. Neural network based nonlinear inverse dynamics for flightcontroller design [C]. Proceedings of the1998IEEE International Conference on ControlApplications, Trieste, Italy,1998:187-191.
    [85] Zhu R G, Jiang C S, Feng B. Adaptive flight control system of armed helicopter using waveletneural network method [J], Transactions of Nanjing University of Aeronautics andAstronautics,2004,21(2):157-162.
    [86] Lee S. Neural network based adaptive control and its applications to aerial vehicles [D].Atlanta: Georgia Institute of Technology,2001.
    [87] Snell A, Enns D, Garrard W. Nonlinear inversion flight control for a super maneuverableaircraft [J]. Journal of Guidance, Control and Dynamics,1992,15(4):976-984.
    [88] Johnson E N. Limited authority adaptive flight control [D]. Atlanta: Georgia Institute ofTechnology,2000.
    [89] Leitner J, Calise A J, Prasad J V R. Analysis of adaptive neural networks for helicopter flightcontrols [J]. AIAA Journal of Guidance, Control, and Dynamics,1997,20(5):972-979.
    [90] Namba T, Uchiyama K. Fault-tolerant adaptive flight control system using feedbacklinearization [C]. AIAA Guidance, Navigation, and Control Conference, Portland, USA,AIAA-2011-6717:1-12.
    [91] Johnson E N, Calise A J. Limited authority ad adaptive flight control for reusable launchvehicles [J]. AIAA Journal of Guidance, Control, and Dynamics,2003,26(6):906-913.
    [92] Wunch W S. Reproduction of an arbitrary function of time by discontinuous control [D].Stanford: Stanford University,1953.
    [93] Daly J M, Wang D W L. Output feedback sliding mode control in the presence of unknowndisturbances [J]. Systems&Control Letters,2009,58(3):188-193.
    [94] Chung Y C, Wen B J, Lin Y C. Optimal fuzzy sliding-mode control for bio-microfluidicmanipulation [J]. Control Engineering Practice,2007,15(9):1093-1105.
    [95] Wu L, Ho D W C, Li C W. Sliding mode control of switched hybrid systems with stochasticperturbation [J]. Systems&Control Letters,2011,60:531-539.
    [96] Lin T C, Chen M C. Adaptive hybrid type-2intelligent sliding mode control for uncertainnonlinear multivariable dynamical systems [J]. Fuzzy Sets and Systems,2011,171(1):44-71.
    [97] Tseng M L, Chen M S. Chattering reduction of sliding mode control by low-pass filtering thecontrol signal [J]. Asian Journal of Control,2010,12(3):392-398.
    [98] Roopaei M, Zolghadri M, Meshksar S. Enhanced adaptive fuzzy sliding mode control foruncertain nonlinear systems [J]. Communications in Nonlinear Science and NumericalSimulation.2009,14(9-10):3670-3681.
    [99]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996.
    [100] Gao W B, Hung J C. Variable structure control of nonlinear systems: a new approach [J]. IEEETransactions on Industrial Electronics,1993,40(1):45-55.
    [101] Herrmann G, Spurgeon S K, Edwards C. On robust, multi-input sliding-mode based controlwith a state-dependent boundary layer [J]. Journal of Optimization Theory and Applications,2006,129(1):89-107.
    [102] Fuh C C. Variable-thickness boundary layers for sliding mode control [J]. Journal of MarineScience and Technology,2008,16(4):288-294.
    [103] Defoort M, Floquet T, Kkosy A, et al. A novel higher order sliding mode control scheme [J].Systems&Control Letters,2009,58(2):102-108.
    [104] Shtessel Y B, Kaveh P, Ashrafi A. Harmonic oscillator utilizing double-fold integral, traditionaland second-order sliding mode control [J]. Journal of the Franklin Institute,2009,346(9):872-888.
    [105] Chen W Y, Gao C C, Zhao L. Chattering-free sliding mode control for linear uncertain systemswith multiple time-delays [C].2010Second Pacific-Asia Conference on Circuits,Communications and System, Beijing,2010:39-42.
    [106] Cheng N B, Guan L W, Wang L P, et al. Chattering reduction of sliding mode control byadopting nonlinear saturation function [J]. Advanced Materials Research,2011,143-144:53-61.
    [107] Yeh H H, Nelson E, Sparks A. Nonlinear tracking control for satellite formations [J]. Journal ofGuidance, Control, and Dynamics,2002,25(2):376-386.
    [108] Ahn C, Kim Y D. Point targeting of multisatellites via a virtual structure formation flightscheme [J]. Journal of Guidance, Control, and Dynamics,2009,32(4):1330-1344.
    [109] Xu H J, Mirmirani M D, Ioannou P. Adaptive sliding mode control design for a hypersonicflight vehicle [J]. Journal of Guidance, Control, and Dynamics,2004,27(5):829-838.
    [110] Harl N, Balakrishnan S N. Reentry terminal guidance through sliding mode control [J]. Journalof Guidance, Control, and Dynamics,2010,33(1):186-199.
    [111] Levant A, Pridor A, Gitizadeh R, et al. Aircraft pitch control via second-order sliding technique[J]. Journal of Guidance, Control, and Dynamics,2000,23(4):586-594.
    [112] Shtessel Y B, Tournes C H. Integrated higher-order sliding mode guidance and autopilot fordual-control missiles [J]. Journal of Guidance, Control, and Dynamics,2009,32(1):79-94.
    [113] Hall C E, Shtessel Y B. Sliding mode disturbance observer-based control for a reusable launchvehicle [J]. Journal of Guidance, Control, and Dynamics,2006,29(6):1315-1328.
    [114] Nugroho G, Taha Z. Helicopter motion control using model-based sliding mode controller [J].Journal of Advanced Computational Intelligence and Intelligent Informatics,2008,12(4):342-347.
    [115] Shtessel Y B, Hall C E. Multiple time scale sliding mode control of reusable launch vehicles inascent and decent modes [C], Proceedings of the American Control Conference, Arlington,USA,2001:4357-4362.
    [116] Shtessel Y, Krupp D. Sliding mode control of reusable launch vehicle in launch and re-entrymodes [C]. Proceedings of the Twenty-Ninth Southeastern Symposium on System Theory,Cookeville, USA,1997:533-539.
    [117] Bahrami M, Roshanian J, Ebrahimi B. Robust integral sliding-mode control of an aerospacelaunch vehicle [J]. Journal of Aerospace Science and Theory,2006,3(3):143-149.
    [118] Richalet J. Model predictive heuristic control: applications to industrial processes [J].Automatica,1978,14(5):413-428.
    [119] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control [J]. Automatica,1987,23(2):137-160.
    [120]席裕庚.预测控制[M].北京:国防工业出版社,1993.
    [121] Geyer T. Low complexity model predictive control in power electronics and power systems[D]. Zurich, Swiss Federal Institute of Technology,2005.
    [122] Cortes P, Kazmierkowski M P, Kennel R M, et al. Predictive control in power electronics anddrives [J]. IEEE Transactions on Industrial Electronics,2008,55(12):4312-4324.
    [123] An A M, Hao X H, Su H Y. Generalized predictive control for a precise crude oil blendingprocess [C]. Proceedings of the IEEE International Conference on Automation and Logistics,Qingdao,2008:7-12.
    [124] Wills A G, Heath W P. Application of barrier function based model predictive control to anedible oil refining process [J]. Journal of Process Control,2005,15(2):183-200.
    [125] Liu Y, Gao Y C, Gao Z L, et al. Simple nonlinear predictive control strategy for chemicalprocess using sparse kernel learning with polynomial form [J]. Industrial&EngineeringChemistry Research,2010,49(17):8209-8218.
    [126] Maner B R, Doyle F J, Ogunnaike B A, et al. Nonlinear model predicitive control of asimulated multivariable polymerization reactor using second-order volterra models [J].Automatica,1996,32(9):1285-1301.
    [127] Li Y, Mao Z Z, Wang Y, Yuan P, et al. Model predictive control synthesis approach of electroderegulator system for electric arc furnace [J]. International Journal of Iron and Steel Research,2011,18(11):20-25.
    [128] Balan R, Maties V, Stan S D. Optimization of the electrode control system using on linesimulation and rule based control [C]. Proceedings of the2007IEEE International Conferenceon Mechatronics and Automation, Harbin,2007:2939-2944.
    [129] Foka A F, Trahanias P E. Predictive control of robot velocity to avoid obstacles in dynamicenvironments [C]. Proceedings of the2003IEEE/RSJ International Conference on IntelligentRobots and Systems, Las Vegas, USA,2003:370-375.
    [130] Pacheco L, Luo N S. Mobile robot local trajectory tracking with dynamic model predictivecontrol techniques [J]. International Journal of Innovative Computing, Information and Control,2011,7(6):3457-3483.
    [131] Medagoda E D B, Gibbens P W. Efficient predictive flight control [C]. InternationalConference on Control, Automation and Systems2010, Gyeonggi-do, Korea,2010:1297-1305.
    [132] Khan R, Williams P, Hill R, et al. Fault tolerant flight control system design for UAV’s usingnonlinear model predictive control [C].2011Australian Control Conference, Melbourne,Australia,2011:297-302.
    [133] Cheng L, Jiang C S, Pu M. Online-SVR-compensated nonlinear generalized predictive controlfor hypersonic vehicles [J]. Science China (Information Sciences),2011,54(3):551-562.
    [134] Slegers N, Kyle J, Costello M. Nonlinear model predictive control technique for unmanned airvehicles [J]. Journal of Guidance, Control, and Dynamics,2006,29(5):1179-1188.
    [135] Nguyen N, Ardema M. Predictive optimal control of a hyperbolic distributed model for a windtunnel [J]. Journal of Guidance, Control, and Dynamics,2006,29(3):626-633.
    [136] Slegers N, Costello M. Model predictive control of a parafoil and payload system[J]. Journalof Guidance, Control, and Dynamics,2005,28(4):816-821.
    [137] Kluever C A. Entry guidance performance for Mars precision landing [J]. Journal of Guidance,Control, and Dynamics,2008,31(6):1537-1544.
    [138] Avanzini G, Thomson D, Torasso A. Model predictive control scheme for rotorcraft inversesimulation [C]. AIAA Guidance, Navigation, and Control Conference, Portland, USA, AIAA2011-6634:1-11.
    [139] Cutler C R, Ramaker B L. Dynamic matrix control-a computer control algorithm [C].Proceedings of the Joint Automatic Control Conference. San Francisco, USA: AmericanAutomatic Control Council,1980, WP5-B.
    [140] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control [J]. Automatica,1987,23(2):137-160.
    [141] Rouhani R, Mehra R K. Model algorithmic control (MAC): basic theoretical properties.Automatica,1982,18(4):401-414.
    [142] Guilandoust M T, Morris A J, Tham M T. Adaptive inferential control [C]. IEE ProceedingsPart D: Control Theory and Applications,1987,134(3):171-179.
    [143] Gawthrop P J, Ronco E. Predictive pole-placement control with linear models [J]. Automatica,2002,38(3):421-432.
    [144] Garcia C E, Morari M. Internal model control: a unifying review and some new results [J].Industrial and Engineering Chemistry Process Design and Development,1982,21(2):308-323.
    [145] Joos A, Muller M A, Baumgartner D, et al. Nonlinear predictive control based on time-domainsimulation for automatic landing [C]. AIAA Guidance, Navigation, and Control Conference,Portland, USA, AIAA2011-6298:1-15.
    [146] Garcia G A, Keshmiri S. Nonlinear model predictive controller for navigation, guidance andcontrol of a fixed-wing UAV [C]. AIAA Guidance, Navigation, and Control Conference,Portland, USA, AIAA2011-6310:1-14.
    [147] Barlow J S, Stepanyan V, Krishnakumar K. Estimating loss-of-control: a data-based predictivecontrol approach [C]. AIAA Guidance, Navigation, and Control Conference, Portland, USA,AIAA2011-6408:1-9.
    [148] Shin J, Kim H J, Park S, et al. Model predictive flight control using adaptive support vectorregression [J]. Neurocomputing,2010,7(4-6):1031-1037.
    [149] Youssef A, Grimble M, Ordys A, et al. Robust nonlinear predictive flight control [C]. EuropeanControl Conference2003, Cambridge, England,2003:1-6.
    [150] Eklund J M, Sprinkle J, Sastry S S. Switched and symmetric pursuit/evasion games usingonline model predictive control with application to autonomous aircraft [J]. IEEE Transactionson Control Systems Technology,2012,20(3):604-620.
    [151] Shin J, Kim H J. Nonlinear model predictive formation flight [J]. IEEE Transactions onSystems, Man, and Cybernetics–Part A: Systems and Humans,2009,39(5):1116-1125.
    [152] Almeida F A, Leibling D. Fault-tolerant model predictive control with flight-test results [J].Journal of Guidance, Control, and Dynamics,2010,33(2):363-375.
    [153] Almeida F A. Reference management for fault-tolerant model predictive control [J]. Journal ofGuidance, Control, and Dynamics,2011,34(6):44-56.
    [154] Gao C, Liu H T, Zhang P. A nonlinear multi-objective receding horizon flight control design
    [C]. AIAA Guidance, Navigation, and Control Conference, Chicago US, AIAA2009-5624:1-23.
    [155] Song D L, Qi J T, Han J D, et al. Active model based predictive control for unmannedhelicopter in full flight envelope [C]. The2010IEEE/RSJ International Conference onIntelligent Robots and Systems, Taipei, Taiwan,2010:616-621.
    [156] Crassidis J L, Markley F L, Anthony T C, et al. Nonlinear predictive control of spacecraft [J].Journal of Guidance, Control, and Dynamics,1997,20(6):1096-1103.
    [157] Hyochoong B. Predictive control for the attitude maneuver of a flexible spacecraft [J].Aerospace Science and Technology,2004,8(1):443-452.
    [158] He D L, Cao X B. Predictive control for satellite formation keeping [J]. Journal of SystemsEngineering and Electronics,2008,19(1):161-166.
    [159] Yao Y, Yang B Q, Qiao Y P, et al. Attitude control of missile via Fliess expansion [J]. IEEETransactions on Control Systems Technology,2008,16(5):959-970.
    [160] Narendra K S, Driollet O A, Feiler M, et al. Adaptive control using multiple models, switchingand tuning [J]. International Journal of Adaptive Control and Signal Process,2003,17(2):87-102.
    [161] Lainiotis D G. Optimal Adaptive estimation structure and parameter adaption [J]. IEEETransactions on Automatic Control,1971,16:160-170.
    [162] Lainiotis D G, Deshpande J G, Upadhyay T N. Optimal adaptive control: a non-linearseparation theorem [J]. International Journal of Control,1972,15(5):877-888.
    [163] Lainiotis D G. Partitioning a unifying framework for adaptive system-I: estimation [J].Proceedings of IEEE,1976,64(8):1126-1143.
    [164] Athans M. The stochastic control of the f-8c aircraft a multiple model adaptive control(MMAC) method-part I: equilibrium flight [J]. IEEE Transactions on Automatic Control,1977,AC-22:768-780.
    [165] Blom H A P. An efficient filter for abruptly changing systems [C]. The23rd IEEE Conferenceon Decision and Control, Las Vegas, USA,1984:656-658.
    [166] Blom H A P. The interacting multiple model algorithm for systems with markovian switchingcoefficients [J]. IEEE Transactions on Automatic Control,1988,33(8):780-783.
    [167] Fu M Y, Barmish B R. Adaptive stabilization of linear systems via switching control [J]. IEEETransactions on Automatic Control,1986,31(12):1097-1103.
    [168] Middleton R H, Goodwin G C, Hilland D J, et al. Design issues in adptive control [J]. IEEETransactions on Automatic Control,1988,33(1):50-58.
    [169] Narendra K S, Balakrishnan J. Improving transient response of adaptive control systems usingmultiple models and switching [J], IEEE Transactions on Automatic Control,1994,39(9):1861-1866.
    [170] Narendra K S, Balakrishnan J. Intelligent control using fixed and adaptive models [C].Proceedings of the33rd IEEE Conference on Decision and Control, Lake Buena Vista, USA,1994:1680-1685.
    [171] Narendra K S, Balakrishnan J, Ciliz M K. Adaptation and learning using multiple models,switching and tuning [J]. IEEE Control Systems Magazine,1995,15(1):37-51.
    [172] Narendra K S, Balakrishnan J. Adaptive control using multiple models [J]. IEEE Transactionson Automatic Control,1997,42(2):171-187.
    [173] Narendra K S, Cheng X. Adaptive control of discrete-time systems using multiple models [J].IEEE Transactions on Automatic Control,2000,45(9):1669-1686.
    [174] Chen L, Narendra K S. Nonlinear adaptive control using neural networks and multiple models[C]. Proceedings of the2000American Control Conference, Chicago, USA,2000:4199-4203.
    [175]孙维,李晓理,王伟.基于多模型的非线性系统自适应最小方差控制[J].控制理论与应用,2002,19(4):639-643.
    [176]李晓丽,王书宁.含有界扰动系统的多模型自适应控制[J].控制理论与应用,2003,20(4):577-581.
    [177] Karimi A, Landau I D. Robust adaptive control of a flexible transmission system usingmultiple models [J]. IEEE Transactions on Control Systems Technology,2000,8(2):321-331.
    [178] Al-Olimat K S, Ghandakly A A. Multiple model reference adaptive control algorithm usingon-line fuzzy logic adjustment and its application to robotic manipulators [J]. Electronicsletters,2002,38(23):1463-1466.
    [179] Aufderheide B, Prasad V, Bequette B W. A comparison of fundamental model-based andmultiple model predictive control [C]. Proceedings of the40th IEEE Conference on Decisionand Control, Orlando, USA,2001:4863-4868.
    [180] Aufderheide B, Bequette B W. A variably tuned multiple model predictive controller based onminimal process knowledge [C]. Proceedings of the2001American Control Conference,Arlington, USA,2001:3490-3495.
    [181] Aufderheide B, Bequette B W. Extension of dynamic matrix control to multiple models [J].Computer and Chemical Engineering,2003,(27):1079-1096.
    [182] Palma F D, Magni L. A multi-model structure for model predictive control [J]. AnnualReviews in Control,2004,(280):47-52.
    [183] Aufderheide B, Rao R R, Bequette B W. Multiple model predictive control of caninehemodynamic variables [C]. Proceedings of the Biomedical Engineering Society andEngineers in Medicine and Biology Conference, Atlanta, USA,1999:256-257.
    [184] zkan L, Kothare M V. Stability analysis of a multi-model predictive control algorithm withapplication to control of chemical reactors [J]. Journal of Process Control,2006,(16):81-90.
    [185] Porfírio C R, Neto E A, Odloak D. Multi-model predictive control of an industrial C3/C4splitter [J]. Control Engineering Practice,2003,(11):765-779.
    [186] Daeipour E, Bar-Shalom Y. An interacting multiple model approach for target tracking withglint noise[J]. IEEE Transaction on Aerospace and Electronic Systems,1995,31(2):706-715.
    [187] Mazor E, Averbuch A, Bar-Shalom Y, et al. Interacting multiple model methods in targettracking: a survey [J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):103-122.
    [188] Bar-Shalom Y, Li X R. Estimation and tracking: principles, techniques, and software [M].Boston: Artech House,1993.
    [189] Blom H A P, Bar-Shalom Y. The interacting multiple model algorithm for systems withMarkovian switching coefficients [J]. IEEE Transactions on Automatic Control,1998,33(8):780-783.
    [190] Li X R, Bar-Shalom Y. Design of an interacting multiple model algorithm for air traffic controltracking [J]. IEEE Transactions on Control Systems Technology,1993,1(1):186~194.
    [191] Choi D, Ahn B, Ko H. Neural net based variable structure multiple model reducing mode setjump delay [J]. IEEE Transactions on Signal Processing,2001,49(12):142-145.
    [192] Choi D, Samal M, Ahn B. On neural-net based variable structure multiple model method:neural-net design [J]. Journal of Systemics, Cybernetics and Informatics,2003,1(4):32-37.
    [193] Hashimoto M, Kawashima H, Oba F. A multi-model based fault detection and diagnosis ofinternal sensor for mobile robot [C]. Proceedings of the2003IEEE/RSJ InternationalConference on Intelligent Robots and Systems, Las Vegas, USA,2003:3787-3792.
    [194] Ho T J, Chen B S. Novel extended viterbi based multiple-model algorithms for state estimationof discrete time systems with Markov jump parameters [J]. IEEE Transactions on SignalProcessing,2006,52(2):393-404.
    [195] Ijaz U Z, Kim J H, Khambampati A K, et al. Concentration distribution estimation of fluidthrough electrical impedance tomography based on interacting multiple model scheme [J].Flow Measurement and Instrumentation,2007,(18):47-56.
    [196]钱承山,吴庆宪,姜长生,等.基于局部T-S模型的非线性系统多模型切换控制[J].应用科学学报,2007,25(4):382-386.
    [197]王凤芹,任廷友,吴忠强.基于遗传算法的多模型模糊控制[J].自动化技术与应用,2006,24(1):6-17.
    [198]翟军勇,费树岷,达飞鹏.基于神经网络多模型自适应切换控制研究[J].中国电机工程学报,2005,25(24):61-66.
    [199]邓志翔,李传锋,刘磊,等.基于神经网络的多模型跟踪保性能切换控制[J].华中科技大学学报(自然科学版),2010,38(1):92-95.
    [200] Rugh N J. Analytical framework for gain scheduling [J]. IEEE Control Systems Magzine,1991,11(l):79-84.
    [201] Shamma J S, Athans M. Guaranteed properties of gain scheduled control for linearparameter-varying plants [J]. Automatica,1991,27(3):559-564.
    [202] Gustafson J A, Maybeck P S. Control of a large flexible space structure with moving-bankmultiple model adaptive algorithms [C]. Proceedings of the IEEE31st Conference on Decisionand Control, Tucson, USA,1992:1273-1278.
    [203] Gustafson J A, Maybeck P S. Flexible space structure control via moving-bank multiple modelalgorithms [J]. IEEE Transactions on Aerospace and Electronic Systems,1994,30(3):750-757.
    [204]钱承山,吴庆宪,姜长生.基于在线学习优化动态模型库的多模型自适应控制[J].吉林大学学报(理学版),2007,45(4):601-606.
    [205]邵雷,雷虎民,刘代军,等.基于动态模型库的多模自适应预测控制[J].电光与控制,2008,15(9):10-13
    [206]曾静,薛定宇,袁德成.非线性系统的多模型预测控制方法[J].东北大学学报(自然科学版),2009,30(1):26-29.
    [207]薛振框,李少远.基于模型有效匹配的多模型切换控制[J].上海交通大学学报,2005,39(3):353-356.
    [208] Narendra K S, George K. Adaptive control of simple nonlinear systems using multiple models[C]. Proceedings of the2002American Control Conference, Anchorage, USA,2002:1779-1784.
    [209]贾之勇,李安贵.一类多模型自适应控制系统的稳定性证明[J].北京工商大学学报(自然科学版),2005,23(5):56-59.
    [210]都延丽.近空间飞行器姿态与轨迹的非线性自适应控制研究[D].南京:南京航空航天大学,2010.
    [211] Mirmirani M, Kuipers M, Levin J, et al. Flight dynamic characteristics of a scramjet-poweredgeneric hypersonic vehicle [C].2009American Control Conference, Hyatt Regency Riverfront,USA,2009:2525-2532.
    [212] Sigthorsson D O, Jankovsky P, Serrani A, et al. Robust linear output feedback control of anairbreathing hypersonic vehicle [J]. Journal of Guidance, Control and Dynamics,2008,31(4):1052-1066.
    [213] Bolender M A, Doman D B. Nonlinear longitudinal dynamical model of an air-breathinghypersonic vehicle [J]. Journal of Spacecraft and Rockets,2007,44(2):374-387.
    [214] Shaughnessy J D, Pinckney S Z, McMinn J D, et al. Hypersonic vehicle simulation model:winged-cone configuration [R]. NASA TM-102610,1990:1-140.
    [215] Keshmiri S, Mirmirani M, Colgren R. Six-DOF modeling and simulation of a generichypersonic vehicle for conceptual design studies [C]. AIAA Modeling and SimulationTechnologies Conference and Exhibit, Providence, USA, AIAA2004-4805:1-11.
    [216] Clogren R, Keshmiri S, Mirmirani M. Nonlinear ten-degree-of-freedom dynamics model of ageneric hypersonic vehicle [J]. Journal of Aircraft,2009,46(3):800-813.
    [217]肖业伦.航空航天器运动的建模—飞行动力学的理论基础[M].北京:北京航空航天大学出版社,2003.
    [218]鲁道夫·布鲁克豪斯.飞行控制[M].北京:国防工业出版社,1997.
    [219]吴森堂,费玉华.飞行控制系统[M].北京:北京航空航天大学出版社,2005.
    [220]张军.近空间飞行器非线性不确定飞行运动的鲁棒自适应控制[D].南京:南京航空航天大学,2009.
    [221]张军,姜长生,方炜.变结构近空间飞行器大飞行包络控制特性研究[J].宇航学报,2009,30(2):543-549.
    [222]朱亮,姜长生,方炜.空天飞行器六自由度数学建模研究[J].航天控制,2006,24(4):39-44.
    [223] NOAA, NASA, USAF. U S standard atmosphere,1976[M]. Washington, D C: U SGovernment Printing Office,1976.
    [224] Boyd S, Ghaoui L E, Feron E, et al. Linear matrix inequalities in systems and control theory[M]. Philadelphia: Society for Industrial and Applied Mathematics,1994,15:7-9.
    [225] Sun J, Chen J, Liu G P, et al. On robust stability of uncertain neutral systems with discrete anddistributed delays [C].2009American Control Conference, MO, USA,2009:5469-5473.
    [226] Ddong J X, Wand Y Y, Yang G H. Control synthesis of continuous-time T-S fuzzy systems withlocal nonlinear models [J]. IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics,2009,39(5):1245-1258.
    [227] Tseng C S. Model reference output feedback fuzzy tracking control design for nonlineardiscrete-time systems with time-delay [J]. IEEE Transactions on Fuzzy Systems,2006,14(1):58-70.
    [228] Dong J X, Yang G H. Dynamic output feedback control synthesis for continuous-time T-Sfuzzy systems via a switched fuzzy control scheme [J]. IEEE Transactions on Systems, Manand Cybernetics–Part B: Cybernetics,2008,38(4):1166-1175.
    [229] Guan X P, Chen C L. Delay-dependent guaranteed cost control for T-S fuzzy systems with timedelays [J]. IEEE Transactions on Fuzzy Systems,2004,12(2):236-249.
    [230] Wu H N, Cai K Y. H2guaranteed cost fuzzy control design for discrete-time nonlinear systemswith parameter uncertainty [J]. Automatica,2006,42(7):1183-1188.
    [231] Lin C, Wang Q G, Lee T H. Fuzzy descri ptor systems and nonlinear model following control[J]. IEEE Transactions on Fuzzy Systems,2006,14(4):542-551.
    [232] Wang Y H, Wu Q X, Jiang C S, et al. Feedforward plus feedback fuzzy robust tracking controlfor a class of uncertain nonlinear systems [J]. International Journal of Innovative Computing,Information and Control,2008,4(8):2069-2078.
    [233] Tseng C S, Chen B S, Uang H J. Fuzzy tracking control design for nonlinear dynamic systemsvia T–S fuzzy model [J]. IEEE Transactions on Fuzzy Systems,2001,9(3):381-392.
    [234]胡跃冰,张庆灵,张艳.非线性系统广义模糊跟踪控制[J].自动化学报,2007,33(12):1341-1344.
    [235] Khalil H K. Nonlinear systems [M]. New Jersey: Prentice-Hall,2002.
    [236]张春雨,方炜,姜长生.基于T-S模糊系统的空天飞行器鲁棒自适应轨迹线性化控制[J].航空学报,2007,28(5):1153-1161.
    [237]李洪兴.从模糊控制的数学本质看模糊逻辑的成功[J].模糊系统与数学,1995,9(4):1-14.
    [238]李洪兴,苗志宏,王加银.非线性系统的变论域稳定自适应模糊控制[J].中国科学(E辑),2002,32(2):211-223.
    [239]龙祖强.变论域模糊控制器的若干重要问题研究[D].长沙:中南大学,2011.
    [240] Kim E. A fuzzy disturbance observer and its application to control [J]. IEEE Transactions onFuzzy Systems,2002,10(1):77-84.
    [241] Ji D H, Jeong S C, Park J H, et al. Robust adaptive backstepping synchronization for a class ofuncertain chatic systems using fuzzy disturbance observer [J]. Nonlinear Dynamics,2012,69(3):1125-1136.
    [242] Kim E. A discrete-time fuzzy disturbance observer and its application to control [J]. IEEETransactions on Fuzzy Systems,2003,11(3):399-410.
    [243] Yoo W, Ji D, Won S. Synchronization of two different non-autonomous chaotic systems usingfuzzy disturbance observer [J]. Physics Letters A,2010,374(11-12):1354-1361.
    [244] Kim E, Lee S. Output feedback tracking control of MIMO systems using a fuzzy disturbanceobserver and its application to the speed control of a PM synchronous motor [J]. IEEETransactions on Fuzzy Systems,2005,13(6):725-741.
    [245] Wang W, Wen C. Adaptive actuator failure compensation control of uncertain nonlinearsystems with guaranteed transient performance [J]. Automatica,2010,46(12):2082-2091.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700