皮卫星星箭分离机构设计分析方法及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皮卫星是基于MEMS微机电系统技术的一种全新概念的微小卫星,它具有研发周期短、制造发射成本低、功能针对性强、载荷接口灵活等常规卫星无法比拟的优点。而星箭分离机构作为皮卫星项目中的重要组成部分,直接决定着皮卫星发射任务的成败。论文结合“十一五”预研项目“皮卫星技术*****”,采用理论分析、计算机模拟和实验研究相结合的方法,系统、深入地开展了皮卫星星箭分离机构基础理论和关键技术的研究,设计并研制了皮卫星星箭分离机构,2010年9月22日,“皮星一号A”卫星的成功发射验证了星箭分离机构适用性、有效性和可靠性。
     论文首先阐述了课题的研究背景与意义,详细论述了皮卫星星箭分离机构国内外研究现状,明确了星箭分离机构设计分析的关键技术。在此基础上,提出了论文的主要研究内容。
     针对皮卫星对星箭连接分离的技术指标要求和功能需要,设计并研制了皮卫星星箭分离机构。为实现星箭无干涉分离,论文分别对动力系统、防干涉系统等关键部件进行了理论计算和数值分析。
     星箭分离机构主要由薄壁件组成,在振动环境中容易引起刚柔耦合振动,对薄弱部件产生破坏作用。为保证星箭分离机构在复杂振动环境中的连接可靠性,必须分析其振动特性。皮卫星和星箭分离机构整体模型很复杂,求解难度大,根据边界连接关系将整体系统分解为皮卫星、舱门、框架、后板四个子结构,分别对各子结构进行了理论建模分析,然后通过坐标转换和方程联立,实现皮卫星及其星箭分离机构整体求解。通过对皮卫星和星箭分离机构组合体的模态和静力学分析,得到了组合体整体力学性能。
     发射过程中,除了复杂力学环境外,还需考虑热真空环境影响,卫星朝阳面和背阴面产生的截面温差将导致结构的热变形,影响到皮卫星的正常分离。为了解皮卫星在发射过程中的热变形情况,以皮卫星及其星箭分离机构组合体为研究对象,根据卫星发射轨道参数,计算皮卫星及其星箭分离机构在卫星发射过程中所受到的内外热流,并以其所受到的内外热流为输入条件,采用有限元软件对其进行热-结构模拟,分析了卫星发射过程中皮卫星外壳与导轨面的温度场和热变形,以达到合理设计皮卫星与导轨面间配合间隙的目的。
     皮卫星能源有限、姿控能力差等特点决定了其对星箭分离初始姿态要求较高,为合理设计星箭分离机构,确保星箭成功分离,在对皮卫星分离过程中所受外力和外力矩进行分析的基础上,建立了皮卫星星箭分离动力学仿真模型,并通过地面分离试验对模型进行了修订,并对卫星入轨初始姿态进行了预测。
     最后,通过对星箭分离机构的系列化试验研究,验证了理论分析与数值模拟的正确性和可行性。在试验中,对皮卫星及其星箭分离机构组合体进行了力学环境试验和分离试验研究,并将试验结果与理论分析、仿真计算结果进行比较,达到对星箭分离机构动态设计模型进行校核的目的。
Pico-satellite is a new concept of micro-satellite based on MEMS technology. Compared with conventional satellite, it owns the advantages of shorter development cycle, lower manufacturing and launching cost, stronger functional targeted and load interface flexibility. As an important part of the Pico-satellite project, the separation mechanism directly determines the success or failure of the pico-satellite mission. Supported by the'Eleventh Five-Year'pre-research project 'pico-satellite technology*****', a pico-satellite separation mechanism is developed. The research work of this dissertation is carried out through the methods of theoretical analysis, computer simulation and experimental verification. On September22,2010,'ZDPS-1A' satellite was successfully launched, and download pictures of the earth taken by built-in camera. Downlink data show that the pico-satellite work properly.
     Paper first discusses the background and significance of the research. The current research situations of the pico-satellite separation mechanism, key technologies of design and analysis theory are expatiated. And then, the research contents of this paper are proposed.
     According to the technical requirements and functional needs, the proposed separation mechanism is designed and developed. In order to fulfill the task of no-interference separation, key components such as guidance system, power system, and anti-interference system are theoretically calculated and analyzed with simulation softwares.
     The pico-satellite separation mechanism is mainly composed of thin-walled parts, which are subject to rigid-flexible coupling vibration. Such vibration can cause damages to weak parts. In order to ensure the reliability of the connection between the satellite and the rocket, it is necessary to analyze the vibration characteristics. As the model is too complex to solve as a whole, it is decomposed into four sub-system, namely the pico-satellite, the hatch door, the frame, and the back plate. Each sub-system is theoretically modeled and analyzed respectively. Then coordinates transformation and equations are employed to realize an integrated solution.
     In addition to complex mechanical environment, thermal vacuum environment is also needed to pay attention to in the process of launch. Temperature difference between sunshine side and shady side will cause thermal deformation, which will affect normal separation of the pico-satellite. Based on the consideration of geometry relations of the satellite, the earth, and the sun in the process of launch, the internal and external heat flow absorbed by the 'ZDPS-1A' satellite and its separation mechanism is analyzed. Temperature field and thermal deformation are got by finite element analysis. The clearance fit value between the satellite and guide rail is rationally designed based on above analyses.
     Pico-satellite energy is limited, and pico-satellite attitude control ability is poor, so pico-satellite attitude control system make high claims on orbit injection initial attitude. In order to design the separation mechanism rationally, ensure successful separation between the satellite and the rocket, the pico-satellite separation dynamic model is established based on the analysis of external forces and external moments acting on the pico-satellite. The virtual prototyping model is modified by comparing the results of ground tests and simulation results. After that, the initial attitude was predicted.
     Finally, experiments are used to verify the correctness of the theoretical analysis and feasibility. The pico-satellite and its separation mechanism is used to carry out mechanical environment tests and separation tests. The dynamic design model of the separation mechanism is verified through comparisons between test results and results of theoretical analysis as well as numerical simulation.
引文
1. 徐福祥,卫星工程2002:中国宇航出版社.
    2. 詹亚锋,马正新,曹志刚,现代微小卫星技术及发展趋势.电子学报,2000(07):p.102-106.
    3. 税世鹏,新世纪初军用卫星技术及市场发展评析.国际太空,2000.5(4):p.9.
    4. 石卫平,潘坚,微小卫星的发展.国际太空,2001.9:p.1-3.
    5. 邓明泉,尤政,张晓敏,皮型卫星的发展与MEMS卫星设计.中国航天,2003(07):p.33-37.
    6. 魏晨曦,焦雯,国外军用小卫星的发展及测控技术.上海航天,2004(05):p.48-52.
    7. 余文革,钟先信,李晓毅,刘积学,皮卫星发展展望.压电与声光,2004(04):p.289-292.
    8. 谭雪峰,阎绍泽,包带式星箭连接结构的动力学模拟及故障分析.清华大学学报(自然科学版),2010(08):p.1205-1209.
    9. Kitts C.A., Twiggs R.J., Low cost space missions for education and technology research, in Proceedings of the 21st International Symposium on Space Technology and Science1998:Omiya, Japan. p. 2126-2131.
    10. Martin M., Schlossberg H., Mitola J., David W., Andrew P., Richard B., Mark C, Christopher H., Elaine H., Stephen H., Christopher K., Frank R., Helen R., Harlan S., Robert T., University nanosatellite program, in Proceedings of the 2nd International Conference on Integrated Micro-Nanotechnology for Space Applications:Enabling Technologies for New Space Systems1999:Pasadena, CA. p.19-21.
    11. 黄本诚,马有礼,航天器空间环境试验技术2002,背景:国防工业出版社.
    12. 童靖宇,航天器可靠性与空间特殊环境试验.航天器环境工程,2005(1).
    13. Nason I., Puig-Suari J., Twiggs R. Development of a family of picosatellite deployers based on the CubeSat standard. in Aerospace Conference Proceedings,2002. IEEE.2002.
    14. 白志富,果琳丽,陈岱松,新型非火工星箭连接分离技术.导弹与航天运载技术,2009(01):p.31-37.
    15. Qin Z.-Y., Yan S.-Z., Chu F.-L., Dynamic characteristics of launch vehicle and spacecraft connected by clamp band. Journal of Sound and Vibration,2011.330(10):p.2161-2173.
    16. Qin Z., Yan S., Chu F., Dynamic analysis of clamp band joint system subjected to axial vibration. Journal of Sound and Vibration,2010.329(21):p.4486-4500.
    17. Puig-Suari J., Turner C., Ahlgren W., Ieee, Development of the standard CubeSat deployer and a CubeSat class PicoSatellite, in 2001 Ieee Aerospace Conference Proceedings, Vols 1-72001. p.347-353.
    18. Heidt H., Puig-Suari J., Moore A., Nakasuka S., Twiggs R., CubeSat:A new generation of picosatellite for education and industry low-cost space experimentation.2000.
    19. Puig-Suari J., Turner C., Ahlgren W. Development of the standard CubeSat deployer and a CubeSat class PicoSatellite. in Aerospace Conference,2001, IEEE Proceedings.2001. IEEE.
    20. Puig-Suari J., Turner C., Twiggs R., CubeSat:The development and launch support infrastructure for eighteen different satellite customers on one launch.2001.
    21. Nugent R., Munakata R., Chin A., Coelho R., Puig-Suari J., The cubesat:The picosatellite standard for research and education. Aerospace Engineering,2008.805:p.756-5087.
    22. Lan W., Poly picosatellite orbital deployer Mk Ⅲ. California Polytechnic University,2007 p.1-16.
    23. Simon L., Armen T., Nash C., Jordi P.S., Bob T., Cal Poly Coordination of Multiple CubeSats on the DNEPR Launch Vehicle, in 18th Annual AIAA/USU Conference on Small Satellites2004:Logan, Utah. p.9-12.
    24. Single Pico-Satellite Launcher-SPL, http://www.astrofein.com/astro-und-feinwerktechnik-adlershof/produkte/raumfahrt-eng/21/spl-dpl/.
    25. Bob B., RAFT and MARScomm Pico-satellites. Orbital Debris Mitigation Plan. US Naval Academy Satellite Lab,2006.
    26. Ashida H., Fujihashi K., Inagawa S., Miura Y., Omagari K., Miyashita N., Matunaga S., Toizumi T., Kataoka J., Kawai N., Design of Tokyo Tech nano-satellite Cute-1.7+APD Ⅱ and its operation. Acta Astronautica,2010.66(9-10):p.1412-1424.
    27. Fujiwara K., Omagari K., Iljic T., Masumoto S., Konda Y., Yamanaka T., Tanaka Y, Maeno M., Ueno T., Ashida H., Nishida J., Ikeda T., Matunaga S. Tokyo tech nano-satellite cute-1.7+ APD flight operation results and the succeeding satellite, in 17th IFAC Symposium on Automatic Control in Aerospace, ACA' 2007, June 25,2007-June 29,2007.2007. Toulouse, France:IFAC Secretariat.
    28. Kotoku J.i., Kataoka J., Kuramoto Y, Yatsu Y., Ikagawa T., Saito T., Kawai N., Miyashita N., Iai M., Omagari K., Fujiwara K., Funaki Y, Yabe H., Matunaga S., Shima T. Design and development of Tokyo Tech pico-satellite Cute-1.7. in UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XTV, August 1,2005-August 3,2005.2005. San Diego, CA, United states:SPIE.
    29. Miyashita N., Iai M., Omagari K., Imai K., Yabe H., Miyamoto K., Iljic T., Usuda T., Fujiwara K., Masumoto S., Konda Y, Sugita S., Yamanaka T., Konoue K., Matunaga S. Development of nano-satellite cute-1.7+APD and its current status, in International Astronautical Federation-56th International Astronautical Congress 2005, October 17,2005-October 21,2005.2005. Fukuoka, Japan: International Astronautical Federation, IAF.
    30. 邱吉宝,王建民,谭志勇,黄卫瑜,航天器结构动态优化设计仿真技术.强度与环境,2003(02):p.6-16.
    31. Gu Y, Kang Z., Guan Z., Jia Z., Dynamic sensitivity analysis and optimum design of aerospace structures. Structural Engineering and Mechanics,1998.6(1):p.31-40.
    32. 朱安文,曲广吉,高耀南,航天器结构模型修正方法的工程应用研究.航天器工程,2003(02):p.35-40.
    33. 朱安文,曲广吉,高耀南,航天器结构模型修正方法综述.航天器工程,2001(04):p.1-9.
    34. 张铁亮,卫星夹层结构分析与结构设计研究.南京航空航天大学博士,2012.
    35. 郭志全,基于有限元分析的机械产品结构动态设计及其工程应用.2006.
    36. 曲广吉,航天器动力学工程2000,北京:中国科学技术出版社.
    37. 张令弥,振动模态试验与分析的发展——伽利略号航天器对比试验.振动与冲击,1986(01):p.80-83.
    38. Moshrefi-Torbati M., Keane A.J., Elliott S.J., Brennan M.J., Rogers E., Passive vibration control of a satellite boom structure by geometric optimization using genetic algorithm. Journal of Sound and Vibration,2003.267(4):p.879-892.
    39. 朱安文,曲广吉,高耀南,航天器结构模型优化修正方法的研究.宇航学报,2003(01):p.107-110.
    40. 侯悦民,季林红,金德闻,结构局部刚度变化对小卫星动特性影响.宇航学报,2003(06):p.588-593.
    41. 陈坤艳,袁家军,黄海,基于MSC.PATRAN/NASTRAN的结构优化程序系统.宇航学报,2005(04):p.514-518.
    42. 袁家军,陈珅艳,黄海,基于Patran/Nastran的结构优化系统的工程应用.北京航空航天大学学报,2006(02):p.125-129.
    43. 阎彬,结构—热耦合问题及结构疲劳的可靠性分析方法研究.西安电子科技大学博士,2013.
    44. Boley B.A., Weiner J.H., Theory of thermal stresses2012:Courier Dover Publications.
    45. Boleyt B.A., Thermally induced vibrations of beams. An Experimental Investigation of Flow About Simple Blunt Bodies at a Nominal Mach Number of 5.8,1956:p.179.
    46. Boley B.A., Approximate analyses of thermally induced vibrations of beams and plates. Journal of Applied Mechanics,1972.39(1):p.212-216.
    47. Thornton E.A., Paul D.B., Thermal-structural analysis of large space structures-An assessment of recent advances. Journal of Spacecraft and Rockets,1985.22(4):p.385-393.
    48. Thornton E.A., Thermal structures for aerospace applications1996:AIAA.
    49. Palm G.D.,谭宗愚,高精度卫星分离系统的分析与模拟试验.国外导弹与航天运载器,1991(9):p.43-52.
    50. Jeyakumar D., Rao B.N., Dynamics of satellite separation system. Journal of Sound and Vibration,2006. 297(1-2):p.444-455.
    51.李中郢,崔乃刚,载人飞船与运载火箭分离过程的仿真研究.哈尔滨工业大学学报,1999(01):p.120-123.
    52. 付碧红,杜光华,搭载星与运载火箭分离的动力学研究.飞行力学,2006(01):p.55-58.
    53. 蒋超,王兆魁,范丽,张育林,卫星筒式偏心在轨分离动力学分析.飞行力学,2010(01):p.76-79.
    54. 王秋梅,孟宪红,小卫星二次分离的动力学仿真.力学与实践,2009(03):p.23-26.
    55. 沈晓凤,肖余之,康志宇,小卫星偏心分离动力学仿真模型的建立与验证.飞行力学,2012(03):p.258-262.
    56. 王功波,郗晓宁,刘磊,小卫星编队在轨释放方案优化设计.宇航学报,2008(02):p.440--443.
    57. 袁家军,卫星结构设计与分析2004,北京:中国宇航出版社.
    58. 刘方军,李路明,李双寿,微小卫星结构材料选取初探.航天制造技术,2003(04):p.44-48.
    59. 杨晓辉,简明机械实用手册2006,北京:科学出版社.
    60. 曾正明,材料学,机械工程材料手册:金属材料2003:机械工业出版社.
    61. 成大先,机械设计手册.Vol.4.2010,北京:化学工业出版社.
    62. 汪曾祥,弹簧设计手册1986,上海:上海科学技术出版社.
    63. 温淑花,张学良,武美先,文晓光,王鹏云,结合面法向接触刚度分形模型建立与仿真.农业机械学报,2009(11):p.197-202.
    64. 尤晋闽,陈天宁,基于分形接触理论的结合面法向接触参数预估.上海交通大学学报,2011(09):p.1275-1280.
    65. 张学良,黄玉美,韩颖,基于接触分形理论的机械结合面法向接触刚度模型.中国机械工程,2000(07):p.15-17+3.
    66. 贺林,朱均,粗糙表面接触分形模型的提出与发展.摩擦学学报,1996(04):p.88-97.
    67. 张学良,温淑花,徐格宁,倪润堂,结合部切向接触刚度分形模型研究.应用力学学报,2003(01):p.70-72+162.
    68. 邱宣怀,机械设计1997,北京:高等教育出版社.
    69. 孙小炎,杨林,航天紧固件实用手册,2006,北京:国防工业出版社.
    70. 刚宪约,曳引电梯系统动态理论及动力学参数优化方法研究.浙江大学博士,2005.
    71. 赵振,面向电磁—机械耦合的异构仿真系统瞬态场分析技术及应用.浙江大学博士,2012.
    72. 倪振华,振动力学1982,西安:西安交通大学出版社.
    73. 刘延柱,振动力学1998,北京:高等教育出版社.
    74. 边宇虹,受集中弯矩矩形板的位移和边界值.燕山大学学报,2001(01):p.33-35.
    75. 陈英杰,付宝连,受简谐集中力矩的四边简支矩形板的受迫振动.东北重型机械学院学报,1995(02):p.168-173.
    76. 付宝连,弯曲薄板功德互等新理论2003,北京:科学出版社.
    77. 王克林,平板的弯曲、振动和屈曲2006,北京:冶金工业出版社.
    78. 黄本诚,空间环境工程学1993:宇航出版社.
    79. 韩旭,马军,王忠素,韩冬,黄涛,测绘相机在轨空间交会角变化的计算.光学精密工程,2011.19(12):p.2862-2869.
    80. 吴小霞,王鸣浩,明名,王富国,大口径SiC轻量化主镜热变形的定标.光学精密工程,2012.20(6):p.1243-1249.
    81. 许杰,蒋山平,杨林华,肖大舟,张景川,卫星结构件常压热变形的数字摄影测量.光学精密工程,2012.20(12):p.2667.
    82. Ishimura K., Higuchi K., Coupling between structural deformation and attitude motion of large planar space structures suspended by multi-tethers. Acta Astronautica,2007.60(8):p.691-710.
    83. 胡其正,杨芳,宇航概论2010,北京:中国科学技术出版社.
    84. 徐向华,程雪涛,梁新刚,圆形太阳同步轨道卫星的空间热环境分析.宇航学报,2012.33(3):p.399--404.
    85. 闵桂荣,卫星热控制技术1991,北京:宇航出版社.
    86. Yan W., Komvopoulos K., Contact analysis of elastic-plastic fractal surfaces. Journal of Applied Physics, 1998.84(7):p.3617-3624.
    87. Jiang S., Zheng Y., An analytical model of thermal contact resistance based on the Weierstrass-Mandelbrot fractal function. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2010.224(4):p.959-967.
    88. Majumdar A., Tien C.L., Fractal network model for contact conductance. Journal Name:Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States); Journal Volume:113:3,1991:p. Medium:X; Size:Pages:516-525.
    89. 赵兰萍,徐烈,低温真空下固体界面间接触导热的实验研究.中国空间科学技术,2003.23(1):p.51-55.
    90. 张涛,徐烈,接触热阻研究中理论模型的比较与分析.低温与超导,1998.26(2):p.58-64.
    91. 刘莉,王竞男,旋转弹两级分离动力学模型建立与仿真.北京理工大学学报,2005(02):p.108-111+120.
    92. 张英会,刘辉航,王德成,弹簧手册2008,北京:机械工业出版社.
    93. 黄本诚,马有礼,2002,北京:国防工业出版社.
    94. 黄本诚,童靖宇,空间环境工程学2010,北京:中国科学技术出版社.
    95. 陈志峰,付碧红,杨根庆,微小卫星振动试验技术.噪声与振动控制,2005(05):p.56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700