轻型挡土墙系统参数识别及损伤诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
支挡结构是岩土工程中的一个重要组成部分,具有极其重要的地位。如果能够及时有效地对支挡结构进行健康监测,就可以对支挡结构的整体稳定性进行评估,进而可以避免人民群众的生命财产及国家的巨额基础设施蒙受巨大的损失。因此如何对支挡结构进行健康诊断,以确定支挡结构是否存在损伤,进而判别损伤位置、损伤程度和损伤变化趋势,是岩土支挡结构健康监测与安全评估系统的最主要问题。为此,本文在国家自然基金科学仪器基础研究项目“岩土支挡结构健康诊断仪的研制”(项目批准号:51027004)、教育部长江学者和创新团队发展计划项目“山区岩土工程”(项目批准号:IRT1045)的资助下对轻型挡土墙系统健康诊断问题展开了相关研究。基于理论分析、数值模拟和现场试验,对挡土墙系统的土体附加参数识别、动力指纹损伤识别法、人工智能损伤识别法和整体稳定性评价等问题进行了全面深入的研究,论文的主要研究工作如下:
     ①建立了轻型挡土墙系统动力响应的三维有限元数值模型,运用整体正交多项式法和特征系统实现法对挡土墙系统的模态特性进行研究。为了研究损伤对挡土墙系统模态特性的影响规律,详细分析了土体、挡墙的损伤程度、损伤面积和损伤位置对挡土墙系统的模态特性和幅值谱曲线的影响。
     ②提出了悬臂挡土墙系统的简化动测模型,对土体附加参数的识别方法进行探讨。在模态参数识别的基础上,采用有限元优化设计方法识别土体的附加参数,对不同的组合优化方法、不同的目标函数的识别结果进行评价。并分析了土体附加阻尼对挡土墙系统简化动测模型的模态特性和动力响应的影响。
     ③引入微分几何中的平均曲率概念,推导了适用于轻型挡土墙结构的损伤识别新指标:模态平均曲率差MMCD和柔度差平均曲率FDMC。以悬臂挡土墙为算例,通过与其他三种损伤识别指标(频率变化率RF、振型变化率RD、高斯曲率模态差MGCD)进行对比分析,验证新指标对损伤的敏感性和有效性。损伤识别新指标能够准确的识别出挡土墙的损伤位置,继而评估挡土墙的损伤程度。
     ④采用改进多种群遗传算法,结合挡土墙系统损伤时的特征方程,构造了能有效地同时识别出挡土墙系统损伤位置和损伤程度的方法:整体损伤识别法和分区损伤识别法。通过悬臂挡土墙不同损伤工况的识别结果,对两种识别方法的适用性、识别精度、计算效率和有效性进行了探讨。
     ⑤对挡土墙系统整体稳定性“实时”评价方法进行研究,将挡土墙整体稳定性分为3个等级:稳定、基本稳定和不稳定。在挡土墙系统模态分析基础上,将土体等效成一系列弹簧来模拟,土压力统一表示为静止土压力和土压力增量之和,并假定土压力增量等于土体的地基反力系数和墙体位移的乘积,结合墙土共同变形,进行迭代计算得到土压力的分布形式。通过对库伦土压力理论、静止土压力理论和试验结果进行对比分析,验证所提出的土压力计算方法的可行性,从而进一步确定挡土墙系统的整体稳定性。
Retaining structure is an important part in geotechnical engineering, has theextremely important status. If the health diagnosis of retaining structure is conducted ina timely and effective, can evaluate the overall safety of retaining structure, which willavoid the people's life and property and the infrastructure suffered huge losses.Therefore the health diagnosis of the retaining structure is the most major problem inthe health monitoring and safety assessment system of retaining structure, in order todetermine whether the retaining structure is damage, damage location, damage degreeand trends of damage. In this paper, the research of health diagnosis is carried out on thelight retaining wall, based on the project of “development of health diagnosis instrumentfor geotechnical retaining structure”(No.51027004) for the national natural sciencefoundation instruments basic research project and the program of “Mountainousgeotechnical engineering”(No.IRT1045) for the changjiang scholar and innovativeresearch team, the added parameters identification, identification method of dynamicsignature, damage identification method of artificial intelligence and global stabilityevaluation of retaining wall system was studied. In this dissertation, the main originalwork includes:
     ①In order to study modal characteristics and dynamic response of retaining wallsystem, the three-dimensional numerical model is established using finite elementmethod. The characteristics of retaining wall system modal were studied by integralorthogonal polynomial method and eigensystem realization algorithm.The influence ofsoil damage or retaining wall damage is researched on the modal characteristics and theamplitude spectrum curve of retaining wall system.
     ②The dynamic-detection model is established to the health diagnosis of cantileverretaining wall system. At the same time, the added parameters of the soil are discussedin detail. Based on modal parameter identification, optimization design by finiteelement is proposed to identify added parameters of the soil. The identification resultsof added parameter were evaluated, which is calculated by different combinatorialoptimization methods and the different objective function. And the influence of themodal characteristics and dynamic response are analyzed on added damping of soil.
     ③The modal mean curvature difference (MMCD) and flexibility-difference meancurvature (FDMC) is proposed. By a numerical simulation of cantilever retaining wall, comparative analysis with frequency rate (RF), the variation rates (RD), Gaussiancurvature mode difference (MGCD), to verify the sensitivity and effectiveness of thenew damage index.
     ④Overall damage identification method and partition damage identificationmethod was proposed based on improved multiple population genetic algorithm anddamage characteristic equation of retaining wall system. The method can identify thedamage location and damage degree of retaining wall system effectively. Theapplicability, recognition accuracy, computational efficiency and validity of the twomethods are discussed by a numerical simulation of cantilever retaining wall.
     ⑤The real-time evaluation method of global stability was studied on retainingwall system. The global stability is divided into three grades: stable, basically stable andunstable. A new method was proposed based on modal test and parameter identification.The soil is equivalent to a set of springs, and the earth pressure is expressed as the sumof the static earth pressure and the increment of earth pressure. The increment of earthpressure is assumed to the coefficient of subgrade reaction by the wall displacement.Combined with common degeneration theory, the earth pressure distribution form isobtained by iterative calculation. By comparing the calculation results with thecoulomb's earth pressure theory, static earth pressure and the experimental ones, thefeasibility of the proposed method is validated. To further determine the global stabilityof the retaining wall system.
引文
[1]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(I):系统设计[J].土木工程学报,2006,39(4):39-44.
    [2]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(Ⅱ):系统实现[J].土木工程学报,2006,39(4):45-53.
    [3]李国强,李杰.工程结构动力检测理论与应用[M].北京:科学出版社,2002.
    [4]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [5]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [6]张令弥.结构动力学中传递函数与模态参数识别[J].固体力学学报,1982,1:43-52.
    [7] Seykert A. F.. Estimation of damping from response spectra [J]. Journal of Sound and Vibration,1981,75(2):199-206.
    [8] Richardson M., Formenti D. L.. Parameter estimation from frequency response functionmeasurement using rational fraction polynomials [C]. Proc. of the1stInternational Testing ModalAnalysis Conferene,1982:199-206.
    [9]杨毅青,刘强, Munoa Jokin.基于正交多项式和稳定图的密集模态参数辨识[J].振动、测试与诊断,2010,30(4):429-433.
    [10]周传荣,赵淳生.机械振动参数识别及其应用[M].北京:科学出版社,1989.
    [11]秦仙蓉,张令弥.对模态参数识别的整体正交多项式算法的评述[J].强度与环境,2000,4:30-38.
    [12]赵相松,徐燕申,彭泽民.基于过渡矩阵的振动模态参数整体识别正交多项式算法[J].机械工程学报,1999,6:78-84.
    [13]焦群英,陈奎孚.整体正交多项式法识别模态参数的改进[J].中国农业大学学报,2003,8(2):1-6.
    [14] Bart P., Partick G., Herman V. D., et al. Automotive and aerospace applications of the PolyMAXmodal parameter estimation method [C]. Proc. of International Modal Analysis Conferene(XXII),Dearborne: Michigan,2004:1-11.
    [15] Bart P., Herman V. D., Partick G., et al. The PolyMAX frequency-domain method: a new standardfor modal parameter estimation [J]. Shock and Vibration,2004,11:395-409.
    [16] Ibrahim S. R., Mikulclic E. C.. The experimental determination of vibration parameters from timeresponses [J]. The Shock and Vibration Bullet,1977,46(5):183-198.
    [17] Ibrahim S. R.. Double least squares approach for use instructural modal identification [J]. AIAAJournal,1986,24(3):499-503.
    [18] Ibrahim S. R.. An upper Hessenberg sparse matrix algorithm for modal identification onminicomputers [J]. Journal of Sound and Vibration,1987,113(1):45-57.
    [19] Mergeay M.. Least squares complex exponential method and global system parameter estimationused by modal analysis [C]. Proc. of the5thInternational Seminar on Modal Analysis,1983:58-69.
    [20]李德葆,陆秋海.工程振动试验分析[M].北京:清华大学出版社,2004.
    [21]孟庆丰,何正嘉.随机减量技术中周期激励的影响及消除方法[J].振动与冲击,2003,22(1):100-102.
    [22]黄方林,何旭辉,陈政清,等.随机减量法在斜拉桥拉索模态参数识别中的应用[J].机械强度,2002,24(3):331-334.
    [23]刘齐茂.用随机减量技术及ITD法识别工作模态参数[J].广西工学院学报,2002,13(4):23-26.
    [24] Ibrahim S. R.. Efficient random decrement computation for identification of ambient response [C].Proc. of19thIMAC, Florida, USA,2001:1-6.
    [25] Van Overschee P., De Moor B.. Subspace identification for linear systems: theory, implementationand application [M]. Dordrecht: Kluwer Academic Publishers,1996.
    [26] Peeter B., De Roeck G.. Reference-based stochastic subspace identification for output-only modalanalysis [J]. Mechanical Systems and Signal Processing,1999,13(6):855-878.
    [27] Yu Bai, Thomas Keller. Modal parameter identification for a GFRP pedestrian bridge [J].Composite Structure,2008,11(4):855-878.
    [28]常军.随机子空间方法在桥梁模态参数识别中的应用研究[D].同济大学博士学位论文,2006.
    [29]徐良,江见鲸,过静珺.随机子空间识别在悬索桥实验模态分析中的应用[J].工程力学,2002,19(4):46-49.
    [30]常军,张启伟,孙利民.随机子空间方法在桥塔模态参数识别中的应用[J].地震工程与工程振动,2006,26(10):183-187.
    [31]许福友,陈艾荣,朱绍锋.桥梁风洞试验模态参数识别的随机子空间方法[J].土木工程学报,2007,40(10):67-73.
    [32] Juang J. N., Pappa R. S.. An eigensystem realization algorithm for modal parameter identificationand model reduction [J]. J. Guidance,1985,8(5):620-627.
    [33] Juang J. N.. Mathematical correlation of modal parameter identification methods via systemrealization theory [J]. The International Journal of Analytical and Experimental Modal Analysis,1987,2(1):1-18.
    [34]刘福强,张令弥.一种改进的特征系统实现算法及在智能结构中的应用[J].振动工程学报,1999,12(3):316-322.
    [35]秦仙蓉,王彤,张令弥.模态参数识别的特征系统实现算法:研究与比较[J].航空学报,2001,22(4):340-342.
    [36]李蕾红,陆秋海,任革学.特征系统实现算法的识别特性研究及算法的推广[J].工程力学,2002,19(1):109-113.
    [37]林贵斌,陆秋海,郭铁能.特征系统实现算法的小波去噪方法研究[J].工程力学,2004,21(6):91-96.
    [38]祁泉泉,辛克贵,崔定宇.扩展特征系统实现算法在结构模态参数识别中的应用[J].工程力学,2011,28(3):29-34.
    [39] Huang N. E., Shen Z.. The empirical mode decomposition and the Hilbert spectrum for nonlinearand non-stationary time series analysis [C]. Proceeding of Royal Society, London,1998:930-995.
    [40] Huang N. E.,Shen Z., Steven R.L.. A new view of nonlinear water waves: The Hilbert spectrum [J].Annual Review Fluid Mechanics,1999,31:417-457.
    [41] Yang J. N., Lei Y., Lin S., et al. Hilbert-Huang based approach for structural damage detection [J].Journal of Engineering Mechanics,2004,130(1):85-95.
    [42] Yang J. N., Lei Y., Lin S., et al. System identification of linear structures based on Hilbert-Huangspectral analysis.Part1: normal modes [J]. Earthquake Engineering and Structural Dynamics,2003,32:1443-1467.
    [43] Yang J. N., Lei Y., Lin S., et al. System identification of linear structures based on Hilbert-Huangspectral analysis.Part1: complex modes [J]. Earthquake Engineering and Structural Dynamics,2003,32:1533-1554.
    [44]任宜春.基于小波分析的结构参数识别方法研究[D].湖南大学博士学位论文,2007.
    [45]林大超,施惠基,白春华.基于小波变换的爆破振动时频特征分析[J].岩石力学与工程学报,2004,23(1):101-106.
    [46]罗光坤,张令弥.基于Morlet小波变换的模态参数识别研究[J].振动与冲击,2006,26(7):135-138.
    [47]何启源,汤宝平,程发斌.小波变换在模态参数识别中的应用[J].振动、测试与诊断,2006,26(9):153-156.
    [48]姜增国,瞿伟廉.基于小波包分析的结构损伤定位方法[J].武汉理工大学学报,2006,28(11):94-97.
    [49] Hoshiya M., Saito E.. Struetural identification by extended kalmanfilter [J]. Journal of EngineeringMechanics,1984,110(12):1757-1770.
    [50] Hoshiya M., Maruyama O.. Identification of running load and beam system [J]. Journal ofEngineering Mechanics,1987,113(6):813-824.
    [51] Hoshiya M., Sutoh A.. Kalman filter-finite element method in identification [J]. Journal ofEngineering Mechanics,1993,119(2):197-210.
    [52] Loh C. H., Tsaur Y. H.. Time domain estimation of structural parameters [J]. EngineeringStructures,1988,10(4):95-105.
    [53]宝志雯,史文月.基于推广卡尔曼滤波算法的结构模型的参数识别[J].振动与冲击,1990,1:11-20.
    [54]尚久铨.卡尔曼滤波法在结构动态参数估计中的应用[J].地震工程与工程震动,1991,11(2):62-72.
    [55] Ghanem R., Shinozuka M.. Structural system identification I: theory [J]. Journal of EngineeringMechanics,1995,121(2):255-264.
    [56] Ghanem R., Shinozuka M.. Structural system identification II: experimental verification [J].Journal of Engineering Mechanics,1995,121(2):265-273.
    [57]李杰.基于微分算子变换的广义卡尔曼滤波估计方法[J].计算结构力学及其应用,1995,12(4):394-400
    [58]赵昕,李杰.一类加权全局迭代参数卡尔曼滤波算法[J].计算力学学报,2002,19(4):403-408.
    [59]吴子燕,丁兰,刘书奎.基于广义卡尔曼滤波的桥梁结构物理参数识别的子结构法[J].西北工业大学学报,2010,128(3):425-428.
    [60]樊素英,李忠献,刘书奎.基于广义卡尔曼滤波的桥梁结构物理参数识别[J].计算力学学报,2007,24(4):472-476.
    [61]任宜春,易伟建.结构物理参数识别的多尺度参数卡尔曼滤波方法[J].工程力学,2008,25(5):1-5.
    [62] Yang J. N., Lin S. L., Huang H. W.. An adaptive extended kalman filter for structural damageidentification [J]. Journal of Structural Control and Health Monitoring,2006,13:849~867.
    [63]李杰,陈隽.输入未知条件下结构物理参数识别方法研究[J].计算力学学报,1997,16(1):32-40.
    [64]李杰,陈隽.结构参数未知条件下的地震动反演研究[J].地震工程与工程振动,1997,17(3):27-35.
    [65]李杰,陈隽.子结构物理参数识别与输入地震动的复合反演研究[J].振动与冲击,1998,17(1):58-62.
    [66]陈隽,李杰.部分输入未知条件下的结构系统识别研究[J].地震工程与工程振动,1998,18(4):40-47.
    [67]李杰,陈隽.部分输入未知时求解动力复合反演问题的补偿算法[J].计算力学学报,2002,19(3):310-314.
    [68]冯新,周晶,陈健云.一种结构参数识别的二阶段法[J].计算力学学报,2002,19(2):222-225.
    [69]赵昕,李杰.转角信息未知条件下的结构参数识别方法研究[J].工程力学,2003,20(4):55-59.
    [70]赵昕,李杰.未知集中荷载和风荷载共同作用下的结构识别问题研究[J].计算力学学报,2004,21(2):202-208.
    [71]陈健云,王建有.部分输入未知条件下结构参数识别法研究[J].计算力学学报,2005,22(2):149-154.
    [72]陈健云,王建有.输入未知条件下结构复合反演的两步法[J].防灾减灾工程学报,2005,25(2):195-198.
    [73]陈健云,王建有.地下结构动力响应的复合参数识别研究[J].岩石力学与工程学报,2005,24(24):4514-2518.
    [74]陈健云,王建有,林皋.未知输入下的复合反演研究[J].工程力学,2006,23(1):6-16.
    [75]陈健云,王建有.有限测点下结构复合反演的混合法[J].振动工程学报,2006,19(1):104-108.
    [76]王建有,陈健云,林皋.非比例阻尼结构参数识别算法的研究[J].振动与冲击,2005,24(3):1-3.
    [77]王建有,陈健云,李宗坤,等.输入未知下非比例阻尼结构参数识别方法的研究[J].振动与冲击,2007,26(4):119-122.
    [78]王建有,黄景忠,陈健云,等.输入信息不完备情况下的混和修正识别法[J].振动与冲击,2007,26(5):123-129.
    [79]王建有,陈健云.基于复模态的非比例阻尼结构参数识别研究[J].哈尔滨工业大学学报,2005,37(12):1647-1649.
    [80]谢献忠,易伟建.基于周期统计平均的结构动力复合反演研究[J].振动与冲击,2004,23(3):46-49.
    [81]谢献忠,易伟建.全量补偿复合反演算法的改进及其应用[J].工程力学,2005,22(1):28-32.
    [82]谢献忠,易伟建,刘锡军.部分输入未知条件下结构动力复合反演的分解算法[J].计算力学学报,2005,22(6):745-749.
    [83] Levin R. I., Lieven N. A. J.. Dynamic finite element model updating using simulated annealingand genetic algorithm [J]. Mechanical System and Signal Processing,1998,12(1):91-120.
    [84]周云,易伟建.基于遗传退火混合算法的弹性地基上框架结构参数识别研究[J].计算力学学报,2009,26(1):94-100.
    [85] Franco G., Betti R. Lus H.. Identification of structural systems using an evolutionary strategy [J].Journal of Engineering Mechanics,2004,130(10):1125-1139.
    [86] Marco Savoia, Loris Vincenzi. Differential evolution algorithm for dynamic structuralidentification [J]. Journal of Earthquake Engineering,2008,12(5):800-821.
    [87] Sara Casciati. Stiffness identification and damage localization via differential evolution algorithms[J]. Structural Control and Health Monitoring,2008,15(3):436-449.
    [88]王延伟,卢亮,温瑞智,等.基于多目标差分进化算法的结构物理参数辨识[J].地震工程与工程振动,2011,10(5):121-126.
    [89] Carlin R. A, Garcia E. Parameter optimization of a genetic algorithm for structural damagedetection [C]. Proceedings of14thInternational Modal Analysis Conference,Dearborn,1996:1292-1298.
    [90]谢献忠,易伟建.混合遗传算法在结构动力反演中的应用研究[J].工程力学,2005,22(3):21-25.
    [91] Koh C. G., Chen Y.F., Liaw C.Y.. A hybrid computational strategy for identification of structuralparameters [J]. Computers and Structures,2003,81(2):107-117.
    [92] Karamanos S. A., Papadimitriou C.. Multi-objective framework for model updating withapplication to a four-span concrete bridge[C]. The First European Workshopon Structural HealthMonitoring, Munich, German,2004:145-163.
    [93] Perera R., Fang S. E., Ruiz A.. Application of particle swarm optimization and genetic algorithmsto multi objective damag eidentification inverse problems with modelling errors [J]. MechanicalSystems and Signal Processing,2010,45(5):723-734.
    [94] Perera R., Fang S. E.. Multi-objective damage identification using Particle Swarm Optimizationtechniques [J]. Multi-Objective Swarm Intelligent Systems Studies in Computational Intelligence,2010,261:179-207.
    [95]于繁华.基于计算智能技术的桥梁结构损伤识别研究[D].长春:吉林大学博士,2008.
    [96]杜修力,曾迪.基于演化-单纯形算法和结构模态参数反演结构物理参数的方法[J].北京工业大学学报,2004,30(2):166-170.
    [97]杜修力,曾迪.一种高效的全局数值优化方法:演化-单纯形算法[J].土木工程学报,2003,36(5):46-51.
    [98]杜修力,曾迪.基于演化-单纯形算法和结构物理响应反演结构物理参数的方法[J].土木工程学报,2004,37(6):23-29.
    [99] Du Xiuli, Zeng di. Structural physical parameter identification based on evolutionary-simplexalgorithm and structural dynamic response [J]. Earthquake Engineering and Engineering Vibration,2003,2(2):225-236.
    [100]姜丽萍,杜修力.基于经验遗传-单纯形算法和结构模态参数识别结构物理参数的方法[J].地震工程与工程振动,2007,27(4):116-121.
    [101] Rytte A.. Vibration based inspection of civil engineering struetures [D]. Denmark: AalborgUniversity,1993.
    [102] Adams R. D., Cawley P., Pye C. J., et al. A vibration technique for nondestructively assessing theintegrity of structures [J]. Journal of Mechanical Engineering Science,1978,20:93-100.
    [103] Cawley P., Adams R. D.. The location of detects in structures from measurements of naturalfrequencies [J]. Journal of Strain Analysis,1979.14:49-57.
    [104] Stubbs N., Broome T. H., Osegueda R.. Nondestructive construction error detection in large spacestructures [J]. AIAA Journal,1990,28(1):146-152.
    [105] George H., Rene B. T.Modal analysis for damage detection in structures [J]. Journal of StructuralEngineering,1991,117(10):3042-3061.
    [106] Penny J. E. T., Wilson D. A. L., Friswell M. I. Damage location instructures using vibrationdata[C]. Proceedings of the11thInternational Modal Analysis conference,1993:861-867.
    [107] Friswell M. I,, Penny J. E. T., Wilson D. A. L.. Using vibration data and statistical measures tolocate damage in structures [J]. The International Journal of Analytical and Experimental ModalAnalysis,1994,9(4):239-254.
    [108] Narkis Y.. Identification of crack location in vibrating simply supported beams [J]. Journal ofSound and Vibration,1994,172(4):549-558.
    [109] Morassi A., Rovere N.. Localizing a notch in a steel frame form frequency measurements [J].Journal of Structural Engineering, ASCE,1997,123(5):422-432.
    [110] Contursi T., Messina A., Silliams E. J.. A multiple-damage location assurance criterion based onnatural frequency change [J]. Journal of Vibration and Control,1998,4(5):619-633.
    [111] Fabricio V., Davila C. C.. Damage detection in structures based on frequently measurements [J].Journal of Engineering Mechanics,2000,7,14:72-85.
    [112] Salawu O. S.. Deetection of structural damage through changes in frequeney: a review [J].Engineering Structures,1997,19(9):718-723.
    [113]郑栋梁,李中付,华宏星.结构早期损伤识别技术的现状和发展趋势[J].振动与冲击,2002,21(2): l-10.
    [114] West W. M.. Illustration of the use of modal assurance criterion to detect structural changes in anorbiter test specimen [C]. Proceedings of Air Force Conference on Aircraft Structural Integrity,1984:1-6.
    [115] Yuen M. M. F.. A numerical study of eigenparameters of a damaged cantilever [J]. Journal ofSound and Vibration,1985,103:301-310.
    [116] Pandey A. K., Biswas M., Samman M. M.. Damage detection from changes in curvature modeshapes [J]. Journal of Sound and Vibration,1991,145(2):321-332.
    [117] Salawu O. S., Willimas C.. Damage location using vibration model shapes [C]. Proeeedings of the12thinternational Modal Analysis Conefrence,1994:933-939.
    [118]刘义伦,时圣鹏,廖伟.利用曲率模态识别桥梁损伤的研究[J].振动与冲击,2011,30(8):77-81.
    [119]彭华,游春华,孟勇.模态曲率差法对梁结构的损伤诊断[J].工程力学,2006,23(7):49-53.
    [120]于菲,刁延松,佟显能,等.基于振型差值曲率与神经网络的海洋平台结构损伤识别研究[J].振动与冲击,2011,30(10):183-187.
    [121]孙增寿,韩建刚,任伟新.基于曲率模态和小波变换的结构损伤识别方法[J].振动、测试与诊断,2005,25(4):263-267.
    [122]叶梅新,黄琼.高速铁路钢—混凝土组合梁的损伤识别[J].中南大学学报(自然科学版),2005,36(4):704-709.
    [123]李德葆,陆秋海,秦权.承弯构件的曲率模态分析[J].清华大学学报(自然科学版),2002,42(2):224-227.
    [124]李兆,唐雪松,陈星烨.基于曲率模态和神经网络的分步损伤识别法及其在桥梁结构中的应用[J].长沙理工大学学报(自然科学版),2008,5(2):32-37.
    [125]李国强,梁远森.振型曲率在板类结构动力检测中的应用[J].振动、测试与诊断,2004,24(2):111-116.
    [126]游春华,彭华,罗玉龙.弹性薄板的损伤检测[J].武汉大学学报(工学版),2008,41(3):105-108.
    [127]何钦象,杨智春,姜峰,等.薄板损伤检测的高斯曲率模态差方法[J].振动与冲击,2010,29(7):112-115.
    [128]张波,王宗元,王赟,等.利用模态曲率差法进行弹性薄板的损伤检测[J].地下空间与工程学报,2011,7(1):144-148.
    [129]张波,王赟,姜峰.基于曲率模态差的四边固支薄板的损伤检测[J].河北工程大学学报(自然科学版),2009,26(3):31-36.
    [130] Raghavendrachar M., Aktan A. E.. Flexibility by multi-reference impact testing for bridgediagnostics [J]. Journal of Structural Engineering,1992,118(8):2186-2203.
    [131] Pandey A. K., Biswas M.. Damage detection in structures using changes in flexibility [J]. Journalof Sound and Vibration,1994,169(1):3-17.
    [132] Ko J. M., Sun Z. J., Ni Y. Q.. Multi-stage identification scheme for detecting damage incable-stayed Kap Shui Mun Bridge [J]. Engineering Structures,2002,24:857-868.
    [133]杨华.基于柔度矩阵法的结构损伤识别[J].吉林大学学报(理学版),2008,46(2):242-244.
    [134]姚京川,杨宜谦,王澜.基于模态柔度曲率改变率的桥梁结构损伤识别方法[J].中国铁道科学,2008,29(5):52-57.
    [135]曹晖,张新亮,李英民.利用模态柔度曲率差识别框架的损伤[J].振动与冲击,2007,26(6):116-120.
    [136]曹晖, Michael I. Friswell.基于模态柔度曲率的损伤检测方法[J].工程力学,2006,23(4):33-38.
    [137]李永梅,周锡元,高向宇.基于柔度差曲率矩阵的结构损伤识别方法[J].工程力学,2009,26(2):188-195.
    [138]李永梅,周锡元,高向宇.基于柔度曲率矩阵的结构损伤识别方法[J].北京工业大学学报,2008,34(10):1066-1071.
    [139]李胡生,宋子收,周奎,等.基于模态柔度差曲率的梁结构损伤识别[J].江南大学学报(自然科学版),2010,9(1):75-80.
    [140]肖调生,阳勇.结构损伤识别的柔度差值曲率法[J].吉首大学学报(自然科学版),2006,27(2):74-76.
    [141] Mares C., Surace C.. An application of genetic structures to identify damage in elastic [J]. Journalof sound and vibration,1996,195(2):195-215.
    [142]袁颖,林皋,闫东明,等.基于残余力向量法和改进遗传算法的结构损伤识别研究[J].计算力学学报,2007,24(2):224-230.
    [143]袁颖,林皋,闫东明,等.基于改进遗传算法的桥梁结构损伤识别应用研究[J].应用力学学报,2007,24(2):186-190.
    [144] Chiang D. Y., Lai W. Y. Structural damage detection using the evolution method [J]. AIAAJournal,1999,37(10):1331-1333.
    [145] Chou J. H., Ghaboussi J.. Genetic algorithm in structural damage detection [J]. Computers andStructures,2001,79:1335-1353.
    [146] Perera R., Torres R.. Structural Damage Detection via Modal Data with Genetic Algorithms [J].Journal of Structural Engineering,2006,132(9):1491-1501.
    [147] Titurus B., Friswell M. I., Starek L.. Damage detection using generic elements: Part I: Modelupdating [J]. Computers and Structures,2003,(81):2273-2286.
    [148] Titurus B., Friswell M. I., Starek L.. Damage detection using generic elements: Part II: Damagedetection [J]. Computers and Structures,2003,(81):2287-2299.
    [149] Koh B. H., Dyke S. J.. Structural health monitoring for flexible bridge structures using correlationand sensitivity of modal data [J]. Computers and Structures,2007,85:117–130.
    [150] Meruane V., Heylen W.. A hybrid real genetic algorithm to detect structural damage using modalproperties [J]. Mechanical Systems and Signal Processing,2011,25:1559-1573.
    [151] Nobahari M., Seyedpoor S. M.. Structural damage detection using an efficient correlation-basedindex and a modified genetic algorithm [J]. Mathematical and Computer Modelling,2011,53:1798-1809.
    [152] Liu H., Xin K. G., Qi Q. Q.. Study of Structural Damage Detection with Multi-objective FunctionGenetic Algorithms [J]. Procedia Engineering,2011,12:80–86.
    [153]尹涛,朱宏平,余岭.运用改进的遗传算法进行框架结构损伤检测[J].振动工程学报,2006,19(4):525-531.
    [154]陈存恩,李文雄.结合灵敏度修正的遗传算法的结构损伤诊断[J].地震工程与工程振动,2006,26(5):172-176.
    [155] He X., Kawatani M., Hayashikawa T., et al. A Bridge Damage Detection Approach usingTrain-Bridge Interaction Analysis and GA Optimization [J]. Procedia Engineering,2011,14:769–776.
    [156]尹强,周丽.基于遗传优化最小二乘算法的结构损伤识别[J].振动与冲击,2010,29(8):155-159.
    [157]李小平,郑世杰.基于遗传算法和拓扑优化的结构多孔洞损伤识别[J].振动与冲击,2011,30(7):201-204.
    [158]黄天立,楼梦麟,任伟新.基于CMDLAC指标和遗传算法的结构损伤定位研究[J].计算力学学报,2009,26(4):529-534.
    [159]易伟建,刘霞.基于遗传算法的结构损伤诊断研究[J].工程力学,2001,18(2):64-71.
    [160]郭惠勇,张陵,蒋建.基于遗传算法的二阶段结构损伤探测方法[J].西安交通大学学报,2005,39(5):485-489.
    [161]张吾渝,李宁波.非极限状态下土压力计算方法研究[J].青海大学学报(自然科学版),1999,17(4):8-11.
    [162]徐日庆.考虑位移和时间的土压力计算方法[J].浙江大学学报(工学版),2000,34(4):370-375.
    [163]梅国雄,宰金珉.考虑位移影响的土压力近似计算方法[J].岩土力学,2001,22(4):83-85.
    [164]梅国雄,宰金珉.现场监测实时分析中的土压力计算公式[J].土木工程学报,2001,33(5):79-82.
    [165]梅国雄,宰金珉.考虑变形的朗肯土压力模型[J].岩石力学与工程学报,2001,20(6):851-854.
    [166]宋林辉,梅国雄,宰金珉.考虑变形影响的挡土结构受力分析方法及应用[J].工业建筑,2007,37(7):53-57.
    [167]宰金珉,梅国雄.考虑位移与时间效应的土压力计算方法研究[J].南京建筑工程学院学报,2002,1:1-5.
    [168]赵建平,余闯,陈国兴,等.考虑变形的土压力有限元计算及参数分析[J].南京工业大学学报,2005,27(6):16-20.
    [169]赵建平,余闯,陈国兴,等.考虑位移影响的Rankine土压力模型及有限元计算分析[J].工程勘察,2006,10:13-16.
    [170]赵建平,余闯,陈国兴,等.受位移影响的土压力模型在工程实例模拟分析中的应用[J].岩土力学,2006,27(增刊):108-112.
    [171]陈页开,徐日庆,杨晓军,等.基坑工程柔性挡土墙土压力计算方法[J].工业建筑,2001,31(3):1-4.
    [172]王照宇.位移土压力模型及其在基坑工程中的应用[J].西部探矿工程,2003,5:23-24.
    [173]王照宇.位移土压力模型及其在基坑工程中的应用[J].四川建筑科学研究,2004,30(1):83-84.
    [174]邓子胜,邹银生,王贻荪.考虑位移非线性影响的挡土墙土压力计算模型研究[J].中国公路学报,2004,17(2):24-27.
    [175]夏唐代,徐肖华,孙苗苗,等.基坑工程中双曲线土压力模型研究[J].地下空间与工程学报,2009,5(5):893-896.
    [176]姜志强,孙树林,李磊.基坑开挖中土压力计算模型探讨[J].河海大学学报(自然科学版),2003,31(3):303-306.
    [177]张文慧,田军,王保田,等.基坑围护结构上的土压力与土体位移关系分析[J].河海大学学报(自然科学版),2005,33(5):575-579.
    [178]彭述权,刘爱华,樊玲.不同位移模式刚性挡土墙主动土压力研究[J].岩土工程学报,2009,31(1):32-35.
    [179]卢坤林,杨扬.考虑位移影响的主动土压力近似计算方法[J].岩土力学,2009,30(2):573-557.
    [180]张春会,郭海燕,于广明.考虑挡土墙位移非线性影响的土压力计算模型[J].岩土力学,2006,27(Sp1):171-174.
    [181]卢国胜.考虑位移的土压力计算方法[J].岩土力学,2004,25(4):586-589.
    [182]杨泰华,贺怀建.考虑位移效应的土压力计算理论[J].岩土力学,2010,31(11):3635-3639.
    [183]冯美果,陈善雄,许锡昌,等.几种考虑变形的土压力模型比较[J].地下空间与工程学报,2007,3(5):898-902.
    [184]张永兴,刘世安,陈建功.土体对悬臂挡土墙模态的影响与应用[J].土木建筑与环境工程,2009,31(3):72-77.
    [185]陈林靖,戴自航.基坑悬臂支护桩双参数弹性地基杆系有限元法[J].岩土力学,2007,28(2):415-419.
    [186] Lanzonil L., Radi E., Tralli A.. On the seismic response of a flexible wall retaining a viscousporoelastic soil [J]. Soil Dynamics and Earthquake Engineering,2007,27:818-842.
    [187] Younan A. H., Veletsos A. S.. Dynamic response of flexible retaining wall [J]. EarthquakeEngineering and Structural Dynamics,2000,28:1815-1844.
    [188]杜正国,赵雷.弹性地基板的动态刚度矩阵迭代法[J].西南交通大学学报,1993,5:24-29.
    [189]雷英杰,张善文,李续武,等. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [190]刘晶波,李彬.三维黏弹性静-动力统一人工边界[J].中国科学E辑,2005,35(9):966-980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700