爆破荷载下隧道围岩的损伤分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为隧道工程的关键—围岩稳定性的分析评价是隧道工程设计、施工及后期安全有效运营的基础,围岩爆破损伤是影响隧道围岩稳定性的重要因素。爆破对围岩稳定性的影响主要体现在两个方面:一是使岩石的力学性能劣化,使岩石的强度和弹性模量降低;二是在岩体内产生裂纹或使岩体原有裂纹扩展等,从而影响岩石的完整性。按照岩石的破坏特征,爆破影响区域分成3个部分。爆破过程中形成的爆破近区(压碎区)、爆破中区(破裂区)、爆破远区(震动区)。爆破近区,围岩粉碎性破坏,可认为其损伤因子D=1;爆破中区,围岩损伤,裂纹发展,可认为其损伤因子0     本文采用爆破理论分析和数值模拟相结合的方法对寸滩隧道的实际情况进行相关的计算,结果表明:
     ①根据岩石的破坏特征,在不考虑岩石初始损伤的情况下,采用理论方法计算得到寸滩隧道由于光面爆破而引起周边围岩的损伤范围约为炮孔半径的7~10倍。
     ②根据现场监测结果,进行回归分析分别得到了爆破远区和爆源近区的质点峰值速度衰减公式,同时计算了在不考虑群孔影响系数的条件下,寸滩隧道光面爆破振动引起的损伤范围约为炮孔半径的6~8倍。
     ③应用ANSYS/LS-DYNA非线性有限元程序对由于周边孔爆破对围岩和相邻隧道初期支护的损伤程度进行分析,估算得到寸滩隧道由于光面爆破引起围岩损伤范围基本为炮孔半径的5~9倍,与根据现场监测结果进行回归分析得到的损伤范围相比较误差均在15%以内。
     本文研究结果对合理选择爆破参数、围岩的稳定和保证邻近隧道已施作初期支护的安全起到了重要作用。
Stability analysis and evaluation of the surrounding rock, as the key of the Tunnel Engineering, is the base of tunnel design, construction and its safe and effective operation. Rock blasting damage is the important factor that affects surrounding rock stability in the tunnel. Blasting influence on the stability of surrounding rock is reflected in the following two aspects. One is to deteriorate the mechanical properties of rock and reduce its strength and elastic modulus. The other is to produce cracks in the rock or expand its original cracks so that the rock integrity can be influenced. Blasting affected areas are divided into 3 parts according to the failure characteristics of the rock: blasting neighboring region (crush region), (fracture region) and blasting remote region (stretch region) during the blasting stage, and the difference of the damage is unlike. At the neighboring region, the value of the damage D can be considered as 1, and at the blasting midst region, the value of the damage D must be 0     ①According to damage failure characteristics of rock, apart form its original damage, the damage zone by smooth blasting is about 7~10 times bigger than the diameter of explosive hole.
     ②The results of monitoring and regression analysis indicate the attenuation formula of peak velocity of particles in different areas of blasting and the damage zone caused by the vibration of smooth blasting in Cuntan Tunnel is, without the consideration of affected coefficient of group-holes, 6~8 times bigger than the diameter of explosive hole.
     ③After the analysis of damage extent caused by smooth blasting to surrounding rock and adjoining primary support with the help of ANSYS/LS-DYNA non-linear finite element program, the damage zone of smooth blasting is about 5~9 times bigger than the diameter of explosive hole. Deviation of damage zone is within 15 percent compared with that by the results of monitoring and regression analysis.
     The results of this study play an important role in reasonably choosing the blasting
     parameters, maintaining the stability of surrounding rock, ensuring the safety of adjoining primary support.
引文
[1] Taylor L.M., Chen E.P. and Kusmaul J.s. Microcrack_Induced Accumulation in brittle Rock under Dynamic Loading[J]. Computer Method in applied mechanics and engineering,1986,55:301-320.
    [2] Grady D.E. and Kipp M.L. Continuum Modeling of Explosive Fracture in Oil Shale[J]. Int.J.Rock Mesh.Sci&Geomech.Abstr,1987,17:147-157.
    [3] Ahrens TJ. and Rubin A.M. Impact-induced Tension Failure in Rock[J]. J.Geophys.Res,1993,98:1185-1203.
    [4] He H.L. and Ahren T.J. Mechanical Properities of Shock Damaged Rock[J]. Int.J.Rock Mech.Min.Sci.,1994,31(5):525-533.
    [5] Bazant Z.P. and Prat P.C. Fracture Characteristics and Micromechanical Theory of Rock as a Quasibrittlr Material[C]. in 5nd Int.Sympom Rock Fragment by blasting,1996:3-12.
    [6] Chong K.P. and Borest A.P. Strain Rate Dependent Mechanical Properities of New Albany Reference[J]. Int.J.Rock Mech.Min.Sci.,1990,27(3):199-205.
    [7] Kuszmaul J.s. New Constitution Model for Fragmentation of Rock under Dynamic Loading[C]. in 2nd Int.Sympom Rock Fragment by blasting,1987:412-423.
    [8] Throne B.J. Experimental and Computational Investigation of the fundamental Mechanics of Cratering[C]. in 3nd Int.Sympom Rock Fragment by blasting,1990:117-124.
    [9] Preece D.S and Throne B.J. A Study of Detonation Time and Fragmentation Using 3-DFinite Element Techniques and a Damage Constitutive Model[C]. in 5nd Int.Sympom Rock Fragment by blasting,1996:147-156.
    [10] Yang R,et al. A New Constitutive Model for Blast Damage[J]. Int.J.Rock Mech.Min.Sci.,1996,33(3):245.254.
    [11] Liu Liqing and Katsabanis P.D. Development of a Continuum Damage Model for Blasting Analysis[J]. Int.J.Rock Mech.Min.Sci.,1997,34(2):217-231.
    [12]杨小林.岩石爆破损伤细观机理及力学特性研究[D].北京:中国矿业大学博士论文,1992.
    [13]刘小明,李悼芬.脆性岩石损伤力学与岩爆损伤能量指数[J].岩石力学与工程学报,1997,16(2):140-147.
    [14]周维垣等.岩体弹塑性本构模型及工程应用[J].岩土工程学报,1998, 20:54-57.
    [15]刘殿书.岩石爆破破碎的数值模拟[D].北京:中国矿业大学博士论文,1992.
    [16]杨军.岩石爆破分形损伤模型研究[D].北京:中国矿业大学博士论文,1994.
    [17]金乾坤.岩石爆破破碎三维逾渗损伤模型的非线形的数值模拟[D].北京:中国矿业大学博士论文,1992.
    [18] Langerfors U.岩石爆破现代技术[M].北京:冶金上业出版社,1983.
    [19] Kutter H.K.and Fairhurst C.F. On the Fracture Process in Blasting[J]. Int.J.Rock Mech.Min.Sci.,1971,8:181-202.
    [20] Brinkman J.R. Separating Shock Waves and Gas Expansion Breakage[C]. in 2nd Int.Sympom Rock Fragment by blasting,1987:6-15.
    [21] Brinkman J.R. An Experiment Study of the Effects of Shock and Gas Penetration in Blasting[C]. in 3nd Int.Sympom Rock Fragment by blasting,1990:55-56.
    [22] Huang Lixing.岩石材料爆破断裂机理的实验研究[C].第四届国际岩石爆破破碎学术论文集,冶金上业出版社,1995:504-508.
    [23]余水强,邱贤德等.层状复合岩体爆破损伤断裂机理分析[J].煤炭学报,2004,29(4): 409-412.
    [24] Daehnke A.,et al. Blast-induced Dynamic Fracture Propagation[C]. in 5nd Int.Sympom Rock Fragment by blasting,1996:13-18.
    [25] NIlson R.H.,et al. Gas-Driven Fractures Propagation[J]. J.APP.Mech,1981,48:757-762
    [26] NIlson R.H.,et al. Modeling of Gas-Driven Fractures Induced by Propellant Combustion Within a borehole[J]. Int.J.Rock Mech.Min.Sci.,1985,22(1):3-19.
    [27] Paine A.S. and Please C.P. An Improved Model of Fracture Propagation by Gas During Rock Blasting-Some Analytical Results[J]. Int.J.Rock Mech.Min.Sci.,1994,31(.6):669-706.
    [28] Valko P. and Economides M.J. Propagation of Hydraulically Induced Fractures Acontinuum Damage Mechanics Approach[J]. Int.J.Rock Mech.Min.Sci.,1994,31(3):221-229.
    [29] Minchinton A. and Lynch P.M. Fragmentation and Heave Modeling Using a Coupled Element Gas Flow Code[C]. in 5nd Int.Sympom Rock Fragment by blasting,1996:71-80.
    [30]卢文波,陶振宇.爆生气体驱动裂纹扩展速度研究[J].爆炸与冲击,1994,14(3):264-268.
    [31]王家来,徐颖.应变波对岩体的损伤作用和爆生裂纹传播[J].爆炸与冲击,1997,15(3):212-216.
    [32]陈建平.爆破工程地质学[M].北京:科学出版社,2005.
    [33]戴俊.爆破工程[M].北京:机械工业出版社,2005.
    [34]王文龙.钻眼爆破[M].北京:煤炭工业出版社,1989.
    [35]张志呈.定向断裂控制爆破[M].重庆:重庆出版社,2000.
    [36]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002.
    [37]戴俊,杨永琦.损伤岩石周边控制爆破分析[J].中国矿业大学学报,2000,29(5), 496-499.
    [38]戴俊,杨永琦,罗艾民.周边控制爆破对围岩损伤的分形研究[J].煤炭学报,2001,26(3),265.269.
    [39]卢文波,Hustrulid W.质点峰值振动速度衰减公式的改进[J].工程爆破,2002,8(3):1-4.
    [40]张文煊,卢文波.龙滩水电站地下厂房开挖爆破损伤范围评价[J].工程爆破,2008,14(2),1-7.
    [41] Bauer A,Calder P N. Open pit and blast seminar[Z]. Course No.63221,1978.Mining Engineering Depart—ment,Queens University,Kingston,Ontario,Canada.
    [42] Mojitabai N,Beatti S G.1996. Empirical approach to prediction of damage in bench blasting[Z]. Trans,Iflst,Min,and Mctall,Sect,A 105:A75.A80.
    [43] Savely J P. Designing a final blast to improve stability[Z]. PreprintNo.86-50,Presented at the SME Annual Meeting,1986,Mar 2-6,New Orleans,Louisiana,U.S.A.ppl9.
    [44]鞠杨,环小丰,宋振铎等.损伤围岩中爆炸应力波动的数值模拟[J].爆炸与冲击,2007,27(2):136-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700