采动卸荷下连续开采诱导放顶动力响应模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下岩体的开挖引起原岩应力场扰动并使之重新分布,是一个典型的卸荷力学过程。对这一类问题,传统的加载分析方法由于忽略了卸荷效应的影响,导致分析结果与工程实际不相吻合。基于连续采矿的顶板诱导崩落技术具有创新高效的特点,而作为其工程对象的诱导岩体表现出典型的卸荷特征。因此,对诱导岩体进行卸荷分析,探讨岩体系统的稳定性、扰动力学响应以及岩体质量劣化规律,可更好地保障诱导崩落采矿技术的安全实施。以华锡集团铜坑矿92#矿体连续采矿顶板诱导崩落试验采场为研究对象,基于卸荷分析方法,针对地下采矿岩体工程的诱导效应问题进行了研究。主要研究内容包括:
     研究了采动卸荷岩体力学参数的劣化规律,基于影响区域理论对诱导岩体的卸荷带进行了划分,探讨了卸荷分析的方法和流程。
     构建了铜坑矿92#矿体连续开采的有限元模型,采用岩体动态力学参数开展了卸荷分析。结果显示:卸荷分析的顶板最大拉应力、下沉位移以及等效塑性应变分别达到1.5Mpa、20cm和1.5e10-2,较常规分析的1.0Mpa、13cm和0.9e10-2要大,与实际情况更为接近;连续采矿开采的最大步距为48m,表明在开采两个步距后,应当对顶板进行诱导处理。
     根据铜坑矿92“矿体连续开采顶板诱导崩落方案,运用ANSYS/LS-DYNA隐显式序列分析方法,探讨了在初始地应力场和扰动应力场条件下,爆破动载荷对卸荷岩体及其应力场的力学响应规律。
     基于岩石动力强度和破坏准则,以H-J-C损伤模型为蓝本,自定义了考虑岩体拉剪破坏的动力损伤材料模型;构建了卸荷岩体的单孔计算模型,研究了诱导岩体受爆破动载荷的损伤及其裂纹的扩展规律;构建了预裂缝的计算模型,模拟了预裂缝的形成过程,并结合现场电视钻孔试验分析了预裂缝形成过程中的力学效应。
The excavation of the underground rock mass is a typical unloading mechanical process that brings redistribution of initial rock stress field. For this kind of problem, the traditional method of load analysis ignored the influence of unloading, which leads to the inconsistency between theoretical analysis and engineering practice. The technology of blast-induced caving roof which based on continuous mining is an innovative and efficient method. But the inducted rock mass, as engineering object which shows typical unloading features. Therefore, to better assure safety in practice of this technology, unloading analysis should be taken in the inducted rock mass, and the stability of the rock mass system, the deterioration laws of rock mass quality and disturbance mechanics effect of rock mass should be clearer understood. Took the No.92 ore body which adopted the blast-induced caving roof technology based on continuous mining in Tongkeng Mine as the experimental subject, by using the guidance of unloading rock mechanics theory, discussed the question of e induction effect of the rock mass engineering of underground mine. The main research contents as follows:
     The mechanics parameters deterioration laws of rock mass were studied, the unloading region of inducted rock mass was divided by the affect region theory, the method and flow of unloading mechanical analysis was analyzed.
     The continuous mining FE model of No.92 ore-body in Tongkeng mine was established, unloading effect was simulated using dynamic mechanical parameters. The result shows:the maximum tensile stress, subsidence displacement and equivalent plastic strain of roof rock mass were 1.5Mpa,20cm and 1.5el0-2 in the unloading analysis, and 1.OMpa, 13cm and 0.9e10-2 in conventional analysis; The values of unloading analysis are greater than conventional analysis, but closer to the actual situation; the maximum step in continuous mining is 48m which shows the roof should be inducted after 2 mining steps.
     Based on the continuous mining-induced caving roof option of the No.92 ore body in Tongkeng mine, by using Implicit-Explicit sequence calculation of ANSYS/LS-DYNA software, the mechanics responding law of inducted rock mass and its stress field was studied under the blasting loading on the condition of coupling effect by perturbation stress field and initial earth stress field.
     On the basis study of rock dynamic strength and failure criterion, the material constitutive model based on H-J-C damage model and dynamic damage of rock mass were established; The calculation model of single-hole was established, and blasting damage and fracture development of inducted rock mass was studied. The calculation model of pre-splitting crack was established, too. The forming process of pre-splitting crack and mechanic effect were analyzed, and the numerical result is verified by the experiment result of the borehole camera system.
引文
[1]中华人民共和国2009年国民经济和社会发展统计公报.中华人民共和国国家统计局http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20100225_40295.htm. 2010.2.25
    [2]钱鸣高,刘听成.矿山压力与岩层控制.北京:煤炭工业出版社,1984
    [3]刘长武,翟才旺.地层空间应力场的开采扰动与模拟.郑州:黄河水利出版社,2005
    [4]李建林.卸荷岩体力学.北京:中国水利水电出版社,2003
    [5]高峰.顶板诱导崩落机理及次生灾变链式效应控制研究:[博士学位论文].长沙:中南大学,2009.5
    [6]赵二平.卸荷岩体屈服准则研究及其工程应用:[硕士学位论文].宜昌:三峡大学,2008.5
    [7]陈旦熹,戴冠一.三向应力状态下大理岩压缩变形试验研究[J].岩土力学,1982,3(1):27-44
    [8]吴玉山,李纪鼎.大理岩卸载力学特性研究[J].岩土力学,1984,5(1):29-36
    [9]Ling Jianming. Appl. of Compute Meth. in Rock Mech. Shanxi Science and Technology Press,1993:727-732
    [10]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327
    [11]吴刚.岩体在加、卸荷条件下破坏效应的对比分析[J].岩土力学,1997,18(2):13-16
    [12]尤明庆,华安增.岩石试样的三轴卸围压试验[J].岩石力学与工程学报,1998,17(1):24-29
    [13]周小平.峰前围压卸荷条件下岩石的应力-应变全过程分析和变形局部化研究[J].岩石力学与工程学报,2005,24(18):3236-3245
    [14]周火明,盛谦,李维树,等.三峡船闸边坡卸荷扰动区范围及岩体力学性质弱化程度研究[J].岩石力学与工程学报,2004,23(7):1078-1081
    [15]黄润秋,黄达.卸荷条件下岩石变形特征及本构模型研究[J].地球科学进展,2008,23(5):441-447
    [16]黄润秋,黄达.卸荷条件下花岗岩力学特性试验研究[J].岩石力学与工程学报,2008,27(11):2205-2213
    [17]黄达,黄润秋.荷条件下裂隙岩体变形破坏及裂纹扩展演化的物理模型试验 [J].岩石力学与工程学报,2010,29(3):502-512
    [18]李宏哲,夏才初,闫子舰等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10):2104-2109
    [19]夏才初,李宏哲,刘胜.含节理岩石试件的卸荷变形特性研究[J].岩石力学与工程学报,2010,29(4):697-704
    [20]刘保县,李东凯,赵宝云.煤岩卸荷变形损伤及声发射特性[J].土木建筑与环境工程,2009,31(2):57-61
    [21]李建林,孟庆义.卸荷岩体的各向异性研究[J].岩石力学与工程学报,2001,20(3):338-341
    [22]吕颖慧,刘泉声,胡云华.基于花岗岩卸荷试验的损伤变形特征及其强度准则[J].岩石力学与工程学报,2009,28(10):2096-2103
    [23]裴建良,刘建锋,徐进.层状大理岩卸荷力学特性试验研究[J].岩石力学与工程学报,2009,28(12):2496-2502
    [24]付艳斌,朱合华,杨骏.软土卸荷时效性及其孔隙水压力变化试验研究[J].岩石力学与工程学报,2009,28(S1):3244-3249
    [25]哈秋聆,李建林,张永兴,等.节理岩体卸荷非线性岩体力学[M].北京:中国建筑出版社,1998
    [26]周小平,张永兴.卸荷岩体本构关系[M].北京:科学出版社,2007
    [27]赵明阶,许锡宾,徐蓉.岩石在三轴加卸荷过程中的一种本构模型研究[J].岩石力学与工程学报,2002,21(5):626-631
    [28]夏才初,闫子舰,王晓东,等.大理岩卸荷条件下弹黏塑性本构关系研究[J].岩石力学与工程学报,2009,28(3):459-466
    [29]李宏哲.岩石和节理卸荷力学特性研究:[博士学位论文].上海:同济大学2009.
    [30]周火明,熊诗湖,刘周红.三峡船闸边坡岩体拉剪试验及强度准则研究[J].岩石力学与工程学报,2005,24(24):4418-4421
    [31]杨强,陈新,周维垣.基于二阶损伤张量的节理岩体各向异性屈服准则[J].岩石力学与工程学报,2005,24(8):1275-1282
    [32]陈星,李建林Hoek-Brown准则在卸荷岩体中的应用探析[J].水电能源科学,2010,28(1):44-46
    [33]伍法权,刘彤,汤献良,等.坝基岩体开挖卸荷与分带研究——以小湾水电站坝基岩体开挖为例[J].岩石力学与工程学报,2009,28(6):1091-1098
    [34]沈军辉,张进林,徐进,等.斜坡应力分带性测试及其在卸荷分带中的应用[J].岩土工程学报,2007,29(9):1423-1427
    [35]周华,王国进,傅少君,等.小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J].岩土力学,2009,30(4):1175-1180
    [36]陈祥,孙进忠,张杰坤,等.岩块卸荷效应与工程岩体质量评价[J].土木建筑与环境工程,2009,31(6):53-59
    [37]徐平.高边坡岩体开挖卸荷效应流变数值分析[J].岩石力学与工程学报,2000,19(4):481-485
    [38]哈秋舲.岩体工程与岩体力学仿真分析——各向异性开挖卸荷岩体力学研究[J].岩土工程学报,2001,23(6):664-668
    [39]艾万民.岩体卸荷应力场-渗流场耦合试验研究及数值分析:[硕士学位论文].重庆:重庆大学,2005.
    [40]周济芳,李建林.用ADINA反演卸荷岩体的宏观力学参数[A].第十三届全国结构工程学术会议论文集[C].2004:511-515
    [41]徐卫亚,谢守益,徐瑞春,等.水布垭坝区岸坡卸荷带特性及数值仿真研究[J].三峡大学学报(自然科学版),2002,24(2):101-106
    [42]李东海,刘军,牛晓凯,等.开挖卸荷对下卧初支隧道的纵向变形的影响研究[J].岩土力学,2009,30(2):563-571
    [43]董志宏,丁秀丽,卢波,等.大型地下洞室考虑开挖卸荷效应的位移反分析[J].岩土力学,2008,29(6):1562-1568
    [44]冷先伦,盛谦,朱泽奇等.不同TBM掘进速率下洞室围岩开挖扰动区研究[J].岩石力学与工程学报,2009,28(S2):3692-3698
    [45]周济芳,李建林,邓华锋,等.岩体卸荷力学特性的数值仿真研究[J].岩土力学,2008,29(S1):524-528
    [46]黄生文,司铁汉,冯建伟,等.卸荷效应下牛湖山隧道围岩应力分析[J].地下空间与工程学报,2009,5(1):79-84
    [47]王瑞红,李建林,刘杰,等.考虑岩体开挖卸荷动态变化水电站坝肩高边坡三维稳定性分析[J].岩石力学与工程学报,2007,26(S1):3515-3521
    [48]袁建新.岩体损伤问题[J].岩土力学,1993:14(1):1-31
    [49]凌建明.节理裂隙岩体损伤力学研究中的若干问题[J].力学进展,1994,25(2):257-264
    [50]王明洋,戚承志,钱七虎.岩体中爆炸与冲击下的破坏研究[J].辽宁工程技术大学学报(自然科学版),2001,20(4):385-389.
    [51]杨小林,王树仁.岩石爆破损伤模型及评述[J].工程爆破,1999,5(3):71-75
    [52]Thome B.J. Hommer P.J. Brown B. Experimental and computational investigation of the fundamental mechanisms of cratering[A].3rd International Symposium on Rock Fragmentation by Blasting. Brisbane. Australia. August.1996,26-31.
    [53]Yang R. Bawden W.F. Katsabanis P.D. A New constitutive model for blast damage[J]. International Journal of Rock Mechanics and Mining Science.1996, 33(2):245-254
    [54]Liu Li Qing. Katsabanis P.D. Development of a continuum damage model for blasting analysis[J]. International Journal of Rock Mechanics and Mining Science.1997,34(2):217-231
    [55]刘殿书.岩石爆破破碎的数值模拟:[博士学位论文].北京:中国矿业大学,1992
    [56]杨军.岩石爆破分形损伤模型:[博士学位论文].北京:中国矿业大学,1994
    [57]金乾坤.岩石爆破破碎三维边渗损伤模型的非线性数值模拟:[博士学位论文].北京:中国矿业大学,1996
    [58]He Hongliang, Ahrens T J. Mechanical properties of shock-damaged rocks[J]. Int.J.Rock Mech. Min. Sci. and Geomech. Abstr,1994,31(5):525-533.
    [59]贺红亮.冲击载荷下岩石的损伤特性分析[J].爆炸与冲击,1995,15(3):241-245
    [60]Thomas J.A, Allan M.R. Impact-induced tensional failure in rock[J]. J. of Geo. Res.,1994,98(E1):1185-1203.
    [61]Liu C, Thomas J.A. A stress wave attenuation in shock-damaged rock[J].J. of Geo. Res.,1997,102(B3):5243-5250.
    [62]杨军,高文学,金乾坤.岩石动态损伤特性实验及爆破模型[J].岩石力学与工程学报,2001,20(3):320-323
    [63]龚敏,黎剑华.延长药包不同位置起爆时的应力场[J].北京科技大学学报.2002,24(3):248-253.
    [64]周科平,高峰,胡建华,等.顶板诱导崩落预裂钻孔裂隙发育监测与分析[J].岩石力学与工程学报,2007,26(5):1034-1040
    [65]高峰,周科平,胡建华.顶板诱导致裂的数字探测及其分形特征研究[J].岩土工程学报,2008,30(12):1894-1899
    [66]胡建华,燕喜军,周科平等.顶板诱导致裂裂隙数字探测分析[J].矿冶工程,2008,28(2):27-30
    [67]Hao H., Wu C.Q., Zhou Y.X.. Numerical Analysis of Blast-Induced Stress Waves in a Rock Mass with An-isotropic Continuum Damage Models. Part I: Equivalent Material Property Approach[J]. Rock mechanics and Rock Engineering.2002,35(2):7994
    [68]Zhang YongQinag, Hao Hong, Lu Yong. Anisotropic dynamic damage and fragmentation of rock materials under explosive loading[J]. Intenrational Jounral of Engineering Science.2003,41:917-929
    [69]Cai M., Kaiser P.K., Taskaa Y., Maejima T. etc. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences. 2004,41:833-847
    [70]Huang Chengyi, Ghatu Subhash, Stnaley J.V.. A dynamic damage growth model for uniaxial compressive response of rock aggregates[J]. Mechanics of Materials.2002,34:267-277
    [71]Shao J.F., Rudnicki J.W.. A microcrack-based continuous damage model of brittle geomaterials[J]. Mechanics of Materials.2000,32:607-619.
    [72]Z.L. Wang, H.Konietzky. Modelling of blast-induced fractures in jointed rock masses[J]. Engineering Fracture Mechanics.2009,76:1945-1955.
    [73]Wang Z.L., Li Y.C., Shen R.F.. Numerical simulation of tensile damage and blast crater in brittle rock due to underground explosion[J]. International Journal of Rock Mechanics and Mining Sciences.2007,44:730-738.
    [74]Wang Z.L., Li Y.C., Wang J.G. Numerical analysis of blast-induced wave propagation and spalling damage in a rock plate[J]. International Journal of Rock Mechanics and Mining Sciences.2008,45:600-608
    [75]Wang Z.L., Konietzky H, Shen R.F.. Coupled finite element and discrete element method for underground blast in faulted rock masses[J]. Soil Dynam Earthq Eng.2009,29:939-945
    [76]X.Y.Wei, Z.Y.Zhao, J.Gu. Numerical simulations of rock mass damage induced by underground explosion[J].International Journal of Rock Mechanics and Mining Sciences.2009,46:672-681
    [77]刘礼标.爆破荷载下隧道围岩的损伤分析:[博士学位论文].重庆:重庆大学,2009
    [78]王志亮,郑明新.基于TCK损伤本构的岩石爆破效应数值模拟[J].岩土力学,2008,29(1):230-234
    [79]王庆国.隧道岩石爆破理论研究与数值模拟:[博士学位论文].成都:西南交通大学,2008
    [80]胡海浪.岩质边坡稳定参数敏感性分析及其开挖卸荷岩体力学参数研究: [硕士学位论文].宜昌:三峡大学,2008
    [81]杨学堂,哈秋舲,张永兴等.裂隙岩体力学参数数值仿真模拟研究[J].水力发电,2004,30(70):14-16
    [82]J.A.Hudson, J.P.Harrison著,冯夏庭,李小春,焦玉勇,等译.工程岩石力学上卷:原理导论[M].北京2009
    [83]朱继良.大型岩石高边坡开挖的地质-力学响应及其评价预测——以小湾水电站工程高边坡为例:[博士学位论文].成都:成都理工大学,2006
    [84]非重叠区T112-T115试验单元连续采矿顶板诱导崩落后续工艺研究[R].中南大学,华锡集团铜坑锡矿:2008
    [85]李裕春ANSYS11.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2007
    [86]白金泽LS-DYNA3D理论基础与实例分析[M].北京科学出版社,2005
    [87]Livermore Software Technology Corporation. LS-DYNA Theoretical Manual [M]. Livermore Software Technology Corporation,1998
    [88]KORICHI T, BACHIR B. Design of a model blasting system to measure peak P-wave stress[J].Soil Dynamics and Earthquake Engineering,2003,23(4):513-519
    [89]钱七虎、王明洋.岩土中的冲击爆炸效应[M].北京:国防工业出版社,2010
    [90]Hoek E, Strength of rock and rock masses, ISRM News Journal,2(2):4-16, 1994
    [91]钮强.岩石爆破机理[M].沈阳:东北工学院,1990
    [92]钱七虎,戚承志. 岩石、岩体的动力强度和动力破坏准则[J].同济大学学报(自然科学版),2008,36(12):1599-1605
    [93]戚承志,钱七虎.材料变形及损伤演化的微观物理机制[J].固体力学学报,2002,23(3):312-314
    [94]戚承志,钱七虎.岩石等脆性材料动力强度依赖应变率的物理机制[J]. 岩石力学与工程学报,2003,21(2):176-179
    [95]戚承志,钱七虎,王明洋.岩体的构造层次粘性与动力强度[J]. 岩石力学与工程学报,2005,24(S 1):4678-4680.
    [96]Plaine A.S, Please C.. An improved model fracture propagation by gas during rock blastingsomc analytical results [J] International Journal of Rock Mechanics and Mining Science. Geomech Abstr.1994.31:699-706
    [97]Donze F.V, Bouchez J, Magnier S A. Modeling Fracture in rock Blasting[J]. International Journal of Rock Mechanics and Mining Science.1997.34(8): 1152-1163
    [98]Z.L.Wang, H.Konietzky, R.Y.Huang. Elastic-plastic-hydrodynamic analysis of crater blasting in steel fiber reinforced concrete. Theoretical and Applied Fracture Mechanics.52(2009):111-116
    [99]李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994
    [100]单仁亮.岩石冲击破坏力学模型及其随机性研究[M].北京:中国矿业大学北京校区,1997
    [101]曹吉星,陈虬,张吉萍.混凝土SHPB实验的数值模拟及应力均匀性[J].西南交通大学学报,2008,43(1):67-70.
    [102]焦楚杰,孙伟,高培正.钢纤维超高强混凝土动态力学性能[J].工程力学,2006,23(8):86-89.
    [103]高科.岩石SHPB实验技术数值模拟分析:[硕士学位论文].长沙:中南大学,2009
    [104]戴俊.柱状装药爆破的岩石压碎圈和裂隙圈计算[J].辽宁工程技术大学(自然科学版).2001,20(20):144-147
    [105]夏祥.爆破载荷作用下岩体损伤特征及安全阈值研究:[博士学位论文].武汉:中国科学院武汉岩土力学研究所,2006
    [106]唐海.岩石预裂爆破成缝分析及爆破参数确定的智能研究:[硕士学位论文].武汉:武汉理工大学,2004
    [107]庙延纲,张汉兴.预裂爆破的微观分析[J].爆破,1999,16(2):12-18
    [108]李庆芬主编.断裂力学及其工程应用[M].哈尔滨:哈尔滨工业大学出版社,1998
    [109]杨小林,王树仁.岩石爆破损伤断裂的细观机理[J].爆炸与冲击,2000,20(3):247-252
    [110]LI Y P, CHEN L Z, WANG Y H. Experimental research on pre-cracked marble under compression[J]. International Journal of Solids and Structures,2005, 42(9/10):2505-2516
    [111]张世超,周科平,胡建华,等.顶板诱导崩落技术及其在大厂铜坑92号矿体的应用[J].中南大学学报(自然科学版)2008,39(3):429-435
    [112]中国国家标准化管理委员会.GB6722-2003,爆破安全规程[S].北京:中国标准出版社,2003
    [113]胡建华,周科平,罗先伟,等.顶板诱导崩落爆破效果的全景探测与评价[J].岩土力学,2010,31(5):1529-1533

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700