河川径流时间序列的分形特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河川径流是一种非线性时间序列,对其进行合理正确描述和规律探索直接关系到水资源高效开发利用。本文针对径流演变特征,基于分形等非线性理论,对河川径流演变的若干非线性特征进行了提取、比较、分析,以及建模、计算等工作,主要研究成果有:
     (1)河川径流时间序列基本统计特征研究。引入柯尔莫哥罗夫-斯米尔诺夫(Kolmogorov-Smirnov)对径流波动进行了随机正态性检验,结果表明其分布的形状与对称形式与正态分布型的偏离程度均存在显著差异;同时,通过其频数分布说明研究对象具有“尖峰厚尾”的分形分布特征。
     (2)河川径流非线性识别。利用双谱分析对河川径流时间序列数据进行了定性分析,分析结果说明黄河、长江干流径流时间序列数据结构具有非线性特征。对于非对称系统,双谱完全可表征系统的非线性特性。所以总体来看,用高阶累积量研究系统的非线性是一个极为精确和有效的方法。
     (3)河川径流的长期相关性及维数研究。在对时间序列长期相关性评述的基础上,提出了一种基于不对称周期模型的非趋势波动分析方法,识别了黄河、长江干流主要水文站月径流序列进行相关性分析以及标度不变性分析。所得结论为:黄河及长江干流的月径流序列存在明显的长程相关性,标度指数均大于0.5,且黄河干流相关性程度高于长江干流。各站月径流序列在年内周期普遍存在上升慢、下降快的趋势特点,而且随着集水面积的增大,序列相关性增强,表现出明显的累积效应,揭示越大尺度的水文系统,越趋于稳定。根据标度指数,计算了流域分形维数,进一步验证了河川径流所具有的自相似性与标度不变性。
     (4)径流演变的长记忆性分析。分析与了解径流结构、判断径流演变趋势以及长记忆性对水文系统与未来变化的影响等方面具有重要的作用,基于此,本文提出一种基于Liu变换的径流序列分解方法,运用修正R/S分析对分解前后的序列进行长记忆性检验。结果表明:径流波动突变的原因与降水、气候变化有着不可分割的关系。同时,只包含长记忆的序列,有效证实了径流序列波动长记忆性的存在,而且其产生原因可以由结构转换的持续性作出合理解释,进一步说明在实证之前进行序列分解是非常有必要的。
     (5)河川径流多重分形研究。与单分形相比,多标度分形更能刻画径流系统演变过程中的不均匀性。本文采用多重分形消除趋势波动分析法(简称MF-DFA)对径流的多重分形性进行分析,并探讨多重分形形成的原因。所得到的结论为:黄河、长江干流径流序列均呈现出明显的多重分形,且多重分形是由其内在的长期相关性和厚尾分布共同作用的结果,这为深化水系发育演化规律的定量研究开辟了一条新途径。
     (6)河川径流预测。针对径流非线性特征,建立了最近邻域混沌预测模型,对黄河、长江干流径流过程进行了预测,得到了满足精度要求的预测结果,并利用该模型能够有效跟踪径流系统中相空间里的吸引子、充分扑捉历史数据中所隐含的有用信息这一特点,进一步通过增加邻近点数来发现预测均方误差的变化,对预测效果进行了检验,结果证实这一方法真实地反映了河川径流变化的总体趋势,这同时为判断时间序列数据的非线性提供了一种新方法。
Stream flows are sorts of nonlinear time series, description and exploration exactly about which have straight relations with water resources exploitation and utilization efficiently. Based on fractal and other nonlinear theories, aimed at the characteristics of stream flow evolvement, some works have be done such as distilling, comparing, analyzing, modeling and computing on certain nonlinear characteristics about stream flow evolvement. The main results of this paper are as follows:
     (1) Basis statistic characteristics of the stream flow time series are analyzed. Kolmogorov-Smirnov is introduced to test random normal nature of the stream flow fluctuation. The results indicate that the distributing forms have distinct difference with the departure degree about normal school. Through frequency distributing, stream flows are proved having the fractal distributing characteristic of“pinnacle and large trail”.
     (2) Stream flow nonlinearity is identified through Bispectrum analysis. The results shows that the stream flow time series of the Yellow River and the Yangtse River are nonlinearity. For non-symetry systems, Bispectrum can token nonlinear characteristics completely. So high steps accumulated measures are kinds of exact and effective method to study systemetic nonlinearity.
     (3) Long-range relativity and dimensions about the stream flows are analyzed. Based on time series long relativities, detrended fluctuation analysis based on certain non-symmetry cycle models is advanced to identify the relativity and index fixity of the months flow time series in the Yellow River and the Yangtse River main streams. The results indicate that the two main streams have long-range relativities and the indexes are larger than 0.5 and even the degree in the Yellow River is higher than the Yangtse River. Months flow time series of every hydrological station has the characteristic of slow raise, quick fall in annual cycle. Larger the catchment areas are, stranger the relativity is. So the long-range relativity shows clear cumulated domino offect. Larger the scales of the hydrology system are, higher stability it is. Then according to the index, the fractal dimensions of the object are calculated and the results validate the stream flow is of comparability and index fixty.
     (4) Long memory about the stream flows evolution is researched. To analyze, understand flow structure, and estimate the trend and the long memory has important effects on hydrology system and its future movement. So a kind of flow decomposes analysis based on Liu switch has been put forward and then R/S is used to test the long memory of the fore-and-aft decomposed time series. The results indicate that the change of the stream flow has large relations with precipitation and climate changes. At the same time, long memory series have been proved the long memory is being in the stream flow fluctuation, which can be explained through the durative of structure switches in reason and deeply makes clear that it is very important to structure decomposing before series analysis.
     (5) Multi-fractal characteristics of the stream flow are analyzed. Compared to single fractal, multi-fractal is better to depict asymmetry in the process of the stream flow evolution. MF-DFA is used to analyze the multi-fractal characteristics in the stream flow and the formation is discussed. The conclusion shows that the flow time series in the Yellow River and the Yangtse River main streams present obvious multi-fractal characteristics, which is the outcomes of long relativities and the large trails. It breaks a new path for quantitive analysis on deepen water system evolution rules.
     (6) Aimed at the stream flow nonlinearity, the nearest adjacent chaos forecast model has been established to analyze the flow process in the Yellow River and the Yangtse River main streams and the satisfied precision is received. Then based on the model tracking the attracted dot in phase-spaces efficiently and catching useful information in the original dates well, the average square errors change is found through adding adjacent dots deeply to test the forecast effects. The results indicate that the method can reflects the general trend of the stream flow truly, which provides a new method to estimate the nonlinearity of time series.
引文
[1] 魏诺,非线性科学基础与应用[M].北京:科学出版社,2004.
    [2] 陈予恕.非线性动力学中现代分析方法[M].北京:科学出版社,1992.
    [3] 刘式达,刘式适.非线性动力学和复杂现象[M].北京:气象出版社,1989.
    [4] Robert.Roy. On fractal interpretation of the main-stream length-drainage area relationship [J]. Water Resources,1990,26(9): 839-842.
    [5] Rodriguez-Iturbe.RinaldoA.Fractal river basins-Change and self-organization [M]. Cambridge: CambridgeUniversityPress,1997:99-190.
    [6] 李后强,艾南山.分形地貌学及地貌发育的分形模型[J].自然杂志,1992(7):516-519.
    [7] 冯平,冯炎.河流形态特征的分维计算方法[J].地理学报,1993,5(4):324-330.
    [8] Rina.do,Rodriguez.IturbeI,Rigon,etal. Self-organized fractal river network [J]. Phys RevLett,1992,70 (1): 822-826.
    [9] 刘昌明.21世纪水文学研究展望[C],第六次全国水文学术会议论文集.北京:科学出版社,1997.
    [10]Makridakis S.21世纪的预测研究,1992,11(1):4-7.
    [11]王振龙主编.时间序列分析.北京:中国统计出版社,2000.
    [12]安鸿志,陈敏.非线性时间序列分析.上海:上海科学技术出版社,1998.
    [13]洪时中.非线性时间序列分析的最新进展及其在地球科学中的应用前景[J].地球科学进展,14(6), 1999:559-565.
    [14]丁晶,邓育仁.随机水文学.成都:成都科技大学出版社,1988.
    [15]叶守泽,夏军.水文科学研究的世纪回眸与展望[J].水科学进展,2002,13(1):93-104.
    [16]张继国,刘新仁.水文水资源中不确定性的信息嫡分析方法综述[J].河海大学学报,2000,28(6):32- 37.
    [17]丁晶,邓育仁.水文水资源中不确定性分折与计算的耦合途径[J].水文,1996(1):19-21.
    [18]程天文,陈洪经.随机水文学一周文德教授来华讲学主要内容[J].水文,1981,(2):30-33;(3): 37-43.
    [19]陈守煜.模糊水文学[J].大连理工大学学报,1981,1:93-97.
    [20]B.M.Ayyub.Uncertainty Modeling and Analysis. Prooecdings of ISUMA. University of Maryland [J].Colkge Park, Maryland USA, December 3一5,1990.
    [21]陈守煜等.水利水文水资源与环境模糊集分析[M].大连:大连工学院出版社,1987.
    [22]冯宛平等.利用月平均量构造郑州地区月降水量预测[J].全国第一次灰色系统与农业学术会,1984.
    [23]杨叔子等.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1991.
    [24]袁嘉祖.灰色系统理论及其应用[M].北京:科学出版社,1991.
    [25]夏军.水文水资源管理中的统计理论及不确定性的研究与展望[J].水资源研究,1992, 13(1): 23-28.
    [26]刘光吉等.模糊灰色马氏过程在水库洪水顶报中的应用[J].水电能源科学,1989,7(2):56-48.
    [27]陈守煜.中长期水文预报综合分析理论模式与方法[J].水利学报,1997(8):15-21.
    [28]Eilbert R FChristensen R A. Performance of the entropy hydrological forecasts forCalifornia water year 1949-1977.) of Calimate and Applied Meteorology[J],1983 (22) :1645-1357.
    [29]Burg J P Maximumentropy spectral analysis[A].37th Ann.Intern[C].Meeting Soc. Explor Geophys, Oklahoma City, Oklahoma,1967.
    [30]黄忠恕.波谱分析方法在水文上的应用[J].水文,1983(3):13-20.
    [31]Rao A R, Padmanahan q Kashyap R L. Comparison of recently developed methodsof spectral analysis [A].Proceedings,Third International Symposiumon StochasticHydaulics,Tokyo, 1980,165-175.
    [32] Huang Qiang, Chang Jianxia, Wang Yimin, Peng Shaoming. Synergy Methodology for Multi-objective Reservoir Operation Control in Yellow River Basin[J]. China Science E. 2004(47):212~223.
    [33]Krstanovic P F, Singh V P. An univariate model for long- term streamflow forecasting: I. Development [J]. Stoch Hydrol Hydraul, 1991,5:173-188.
    [34]Krstanovic P F, Singh V P. An univariate model for long- term streamflow forecasting: II. Development [J].Stoch Hydrol Hydraul, 1991,5:189-205.
    [35]Krstanovic P F, Singh V P A real-time flood forecasting model based on maximum entrop spectral analysis: I .Development[J].Water Resources Management, 1993,7: 109-129.
    [36]Krstanovic P F, Singh V P A real-time flood forecasting model based on maximum entrop spectral analysis:II. Development[J].Water Resources Management, 1993,7: 131-151.
    [37]Padmanahan Q Rao A R. Maximum entrop spectral analysis of hydrologic data[J]. Water Resources Research, 1988,24(9):1519-1533.
    [38]Padmanahan q Rao A R. Maximum entrop spectral of some railfall and river flowtime series from southern and central India[J].Theory Appl Climatology ,1986, 37:63-73.
    [39]Dalezios N R, Tyraskis P A. Maximum entrop for regional precipitation analysis and forecasting[J].J of hydrology, 1989,109:25-42.
    [40]冯国章,李佩成.论水文系统混沌特征的研究方向[J].西北农业大学学报,1997,25(4):97-101.
    [41]郑泽权,谢平等.小波变换在非平稳水文时间序列分析中的初步应用[J].水电能源科学,2001,19(3):49-51.
    [42]李荣,李义天.基于神经网络理论的河道水情预报模型[J].水科学进展,2000,11(5):427-431.
    [43]马炼等.神经网络技术在水文系列中长期预报中的应用[J].水利水电技术,2002(2).
    [44]胡江林等.神经网络模型预报湖北汛期降水量的应用研究[J].气象学报,2001(6).
    [45]蔡煌东等.径流长期预报的神经网络方法[J].水科学进展.1995(l).
    [46]钟登华,王仁超等.水文预报时间序列神经网络模型[J].水利学报,1995(2):69-75.
    [47]K Y Lee, Y T Cha and J H Park. Short一term load forecasting usingan artificial neural net-works. IEEE Transactions on Power System, 7(1),1992: 124-132.
    [48]Shozo;Tokinaga, et al. Forecasting of time series with fractal geometry by usingscale transformations and parameters estimation obtained by the wavelet transform, electronics and communication in Japan[J]. Parts3, 1997,80(8):20-30.
    [49]Cao Liangyue,et al. predicting chaotic time series with wavelet network[J].PhysicalD, 1995,85:225-238.
    [50] 赵 永 龙 等 . 混 沌 小 波 网 络 模 型 及 其 在 水 文 中 长 期 预 测 中 的 应 用 [J]. 水 科 学 进展,1998,9(3):252-287.
    [51]尤卫红等.小波变换在短期气候预测模型研究中的应用[J].高原气象,1999,18(1):39-46.
    [52]李贤彬,丁晶等.基于子波变换序列的人工神经网络组合预测[J].水利学报,1999(2):1-4.
    [53]金龙等.多步预测的小波神经网络预报模型[J].大气科学,2000,24(1):71-86.
    [54]赵永龙,丁晶等.相空间小波网络模型及其在水文中长期预测中的应用[J].水科学进展,1998,9(3):252-257.
    [55]刘俊萍,田峰巍,黄强等.基于小波分析的黄河河川径流变化规律研究[J].自然科学进展.2003,13(4):383-387.
    [56] 薛 小 杰 , 蒋 晓 辉 , 黄 强 等 . 小 波 分 析 在 水 文 序 列 趋 势 分 析 中 的 应 用 [J]. 应 用 科 学 学报.2002(4):99-101.
    [57]丁晶等.洪水混沌分析[J].水资源研究,1992,13(3):14-18.
    [58]Jayawardena A W, Lai F. Analysis and prediction of chaos in rainfall and stream flow time series[J]. J Hydrol, 1994, 153:23- 52.
    [59]Jayaw ardena A W et al. Analysis and prediction of chaos in rainfall and stream flow time series[J]. Journal of Hydrology. 1994, 75(3):23-52.
    [60]Breadford P W et al. Searching for chaotic dynamics in snow melt runoff[J]. Water Resources Research. 1991,27(6):1005-1010.
    [61]Taiye B S,et al. Nonlinear dynamics of the Great Salt Lake dimension estimation[J]. Water Resources Research. 1996,32(l):149-159.
    [62] 王 德 智 , 夏 军 等 . 东 北 地 区 月 降 雨 时 间 序 列 的 混 沌 特 性 研 究 [J]. 水 电 能 源 科 学 , 2002,20(3):32-34.
    [63]权先璋,温权等.混沌预测技术在径流预报中的应用[J].华中理工大学学报,1999,27(12):41-43.
    [64]蒋传文,权先璋等.径流序列的混沌神经网络预测方法[J].水电能源科学,1999,17(2):39-41.
    [65]王东生,曹磊.混沌、分形及其应用[M].北京:中国科学技术出版社,1995.
    [66]敖力布,林鸿溢.分形学导论[M].呼和浩特:内蒙古人民出版社,1996.
    [67]曾文曲等.分形理论与分形的计算机模拟[M].沈阳:东北大学出版社,1993:5-20.
    [68]Gupta, V K., and E. Waymire, Multiscaling properties of spatial rainfall and river flow distributions. J. Geophys. Res., 1990,3(95):1999-2009.
    [69]Schertzer, and S. Lovejoy, Physical modeling and analysis of rain and clouds by anisotropic scalingmultiplicative processes, J. Geophys. Res., 1987(92):9693-9714.
    [70]Book review: Scale dependence and scale invariance in hydrology. Hydrological Sciences-Journal-des Sciences Hydrologiques, vol. 45, No. 1, pp.164, 2000.
    [71]Rodriguez-Iturbe, A. Rinaldo, Fractal river basins 一 Change and self-organization, Cambridge University Press, 1997.
    [72]李后强.关于多分形的Kohmotove熵函数.熵、信息与交叉学科[M].昆明:云南大学出版社,1994.
    [73]D. Dietler and Y Zhang, Fractal aspects of the Swiss landscape[J], Physica A, 191, pp.213-219. 1992.
    [74]L. barbers and R,Rosso, On fractal geometry of river networks[J].Water Resour. Res., Vol. 2}. No. 4, pp. 735-741,1989.
    [75]Tarboton, D.G., Bras, R. L., and I. Rodriguez-Iturbe, The fractal nature of river networks[J].Water Resour. Res., Vol. 24, No. 8, pp.1317-1322, 1989.
    [76]Mckerhar, A.L, Ibbitt, R.P., Brown, S.L.R., and Duncan, M.J., Data for Ashley river to test channel network and river basin heterogeneity concepts[J].Water Resour. Res.,1998,Vol. 34, No. 1,pp. 139-142.
    [77]I. Rodriguez-Iturbe, M. Marani, R. Rigon and A. Rinaldo, Self-organi river basin landscapes: fractal and multifractal characteristics[J].,Water Resour. Res., 1994Vol. 30, No. 12, pp. 3531-3539.
    [78]罗文锋,李后强,丁晶,艾南山.Horton定律及分枝网络结构的分形描述.水科学进展.1998, 9(2):118-123.
    [79]Robert, A., and Roy, A. G., On the fractal interpretation of the main-stream length-drainagearea relationship[J]. Water Resour. Res., Vol. 26, No. 9, pp. 839-842, 1990.
    [80]金德生,陈浩,郭庆伍.河道纵剖面分形一非线性形态特征[J].地理学报.1993,52(2):154-161.
    [81]王协康,方铎,姚令侃.非均匀沙床面粗糙度的分形特征[J].水利学报.1999,7:70-74.
    [82]Nikora, V., Fractal structures of river plan forms[J].Water Resour. Res., 1991,27(6):1327-1333.
    [83]Nikora, V. L, Sapozhnikov, V B., Noever, D. A., Fractal geometry of individual river channels and its computer simulation[J].Water Resour.Res., 1993,29(10):3561-3568. .
    [84]Nikora,V.L, Sapozhnikov, VB., River network fractal geometry and its computer simulation[J].Water Resour. Res., 1993,29(10)3569-3575.
    [85]Sapozhnikov, V B., and E. Fou印ula-Georgou, Self-affnity in braided rivers[J], Water Resour. Res., 1996,32(S):1429-1439.
    [86]E.Foufpula-Georgou, and Sapozhnikov,VB.,Anisotropic scaling in braided rivers,an integrated theoretical framework and results from application to an experimental river[J], Water Resour. Res., Vol. 34, No.4, pp. 863-867, 1998.
    [87]S. Lovejoy, D. Schertzer and Tsonis, A. A., Functional box-counting and multiple elliptical dimensions in rain[J], Science, Vol. 235, pp. 1036-1038, 1987.
    [88]J. Olsson, J. Niemczynowics and R. Berndtsson, Fractal analysis of high-resolution rainfall timeserials, J[J]. Geophys. Res., Vo1.98, No.D12, pp.23265-23274, 1993.
    [89]C. Svensson, J. Olsson and R. Berndtsson, Multifractal properties of daily rainfall in two different climates[J], Water Resour. Res., Vol. 32, No.B, pp.2463-2472, 1996.
    [90]E. Waymire, Scaling iimits and self-similarity in precipitation fields, Water Resour. Res., Vol.21, No.B, pp.1272-1281, 1985.
    [91]E. Foufpula-Georgou, Y Gupta, V K., and E. Waymire, Scaling considerations in themodeling of temporal rainfall, Water Resour. Res., Vol. 20, No.l I, pp.1611一1619, 1984.
    [92] 常 福 宣 , 丁 晶 , 姚 健 . 降 雨 随 历 时 变 化 标 度 性 质 的 探 讨 [J]. 长 江 流 域 资 源 与 环境,2002,11(1):79-83.
    [93]常福宣,丁晶.关于大流域洪量历时关系的探讨[J].水利水电技术,2001,32(6):4-7.
    [94]常福宣.分形理论在水文水资源研究中的应用[D].成都:四川大学,2001.40-45.
    [95]丁晶,刘国东.日径流过程分维估计[J].四川水力发电,1999,18(4):74-76.
    [96]刘德平.分形理论在水文过程形态特征分析中的应用[J].水利学报,1998(2):20-25.
    [97]傅军,丁晶,邓育仁.嘉陵江流域形态及流量过程分维研究[J].成都科技大学学报,1995(1):74-79.
    [98]刘兴坡,周玉文,甘一萍.日污水流量序列的分形特征研究.中国给水排水[J].2004,20(12).
    [99]侯玉,吴伯贤,邓国权.分形理论用于洪水分期的初步探讨[J].水科学进展,1999,10(2):140-143.
    [100]MesaOJ, PovedaG. The Hurst effect: the scale of fluctuation approach [J].Water Resources,1998,29(12):3995-4002.
    [101]AndersonPL, MeerschaertMM. Modeling river flows with heavy tails [J].Water Resources,1998,34(9):2271-2280.
    [102]TokinagaS, MoriyasuH, MiyazakiA, etal. Forecasting of time series with fractal geometry byusing scale transformation sand parameter estimations obtained by the wavelet transform [J]. Electronic sand Communications in Japan , Part3 , 2002 ,80(9):2054-2062.
    [103]Kenneth J. Falconer. Fractal geometry – Mathematical foundations and applications.
    [104]吴敏金. 关于分形的定义与分维的计算[J].华东师范大学学报(自然科学版),1992,(3):27-37.
    [105]董连科,吕国浩,王克钢等.标度理论及其分形几何[J].高压物理报,1990,4(3):187.
    [106]曾文曲,刘世耀,戴连贵等译.分形几何—数学基础及其应用[M].沈阳:东北大学出版社,1991.
    [107]吴彤.分形方法及其意义.内蒙古大学学报1999,3(4):80-86.
    [108] 赵晓鹏,罗春荣,张奎兰.拉普拉斯方程与分形集[J].黑龙江大学自然科学学报,1994,11(4):85.
    [109]文志英,井竹君.分形几何和分维数简介[J].数学的实践与认识,1995,(4):20
    [110]吴振森,郭立新.一维随机分形曲线的分维估计[J].计算物理,1992,9(4):687-692.
    [111] Deng Guantie. Dimension of the Fractal Curve in Plane and Its Derivative of the Fractional Order[J]. Northeast. Math. J. 1995,11(2):236-240
    [112]胡迪鹤,刘禄勤,肖益民等.随机分形[J].数学进展,1995,24(3):193.
    [113]陆夷.位势理论在计算豪斯道夫维数中的应用[J].广东机械学院学报,1995,13(2):28.
    [114]Babadagli, Tayfun .Fractal analysis of 2-D fracture networks of geothermal reservoirs in south-western Turkey.Journal of Volcanology and GeothermalResearch Volume: 112, Issue: 1-4, December, 2001, pp. 83-103
    [115]Schuller, D.J.; Rao, A.R.; Jeong, G.D.Fractal characteristics of dense stream networks.Journal of Hydrology Volume: 243, Issue: 1-2, March 1, 2001, pp. 1-16.
    [116]Puente, Carlos E.; Castillo, Pablo A.On the fractal structure of networks and dividers within a watershed .Journal of Hydrology Volume: 187, Issue: 1-2, December, 1996, pp. 173-181.
    [117]Tarboton, David G.Fractal river networks, Horton's laws and Tokunaga cyclicity.Journal of Hydrology Volume: 187, Issue: 1-2, December, 1996,74:105-117
    [118]Moussa, Roger; Bocquillon, Claude.Fractal analyses of tree-like channel networks from digital elevation model data .Journal of Hydrology Volume: 187, Issue: 1-2, December, 1996, pp. 157-172.
    [119]Ayedemir, M.; Bottomley, L.; Coffin, M.; Jeffries, C.; Kiessler, P.; Kumar, K.; Ligon, W.; Marin, J.; et. al.Two tools for network traffic analysis .Computer Networks Volume: 36, Issue: 2-3, July, 2001, pp. 169-179.
    [120]Crave, A.; Davy, P.Scaling relationships of channel networks at large scales: Examples from two large-magnitude watersheds in Brittany, France Tectonophysics Volume: 269, Issue: 1-2, January 30, 1997, pp. 91-111
    [121]Veltri, M. Veltri, P. Maiolo, M. On the fractal description of natural channel networks.Journal of Hydrology Volume: 187, Issue: 1-2, December, 1996, 137-144.
    [122]肖克东,曾斌. 分形分维[J]. 现代物理知识,1995,7(3):26.
    [123]Kenneth J. Falconer,K. J. Falconer. Techniques in Fractal Geometry[M]. Wiley, John & Sons, Incorporated, 1997.
    [124]Niemann, Jeffrey D.; Bras, Rafael L.; Veneziano, Daniele; Rinaldo, Andrea.Impacts of surface elevation on the growth and scaling properties of simulated river networks .Geomorphology Volume: 40, Issue: 1-2, September, 2001, pp. 37-55
    [125]Troutman, Brent M.; Over, Thomas M.River flow mass exponents with fractal channel networks and rainfall .Advances in Water Resources Volume: 24, Issue: 9-10, November - December, 2001, pp. 967-989
    [126]龙超云,李后强.关于分形维数计算的两种方法[J].自然杂志,1995,17(6):365.
    [127]郑兆苾,张军.分形维数计算结果的可靠性[J].地球物理学进展,1995,10(3):106.
    [128]黄大富.自仿射分形的维数(I).江西师范大学学报,1995,19(4):34.
    [129]陈彦光,刘继生.水系结构分形和分维——Horton 水系定律的模型重建及其参数确定.地球科学进展,2001,16(2):118-123.
    [130]李华晔,黄志全,姜彤.河流水系分形的初步研究.华北水力水电学院学报,1998,14(4):12-16
    [131]汪富泉,曹叔尤,丁晶.河流网络的分形与自组织及其物理机制.水科学进展,2002,12(3):368-376.
    [132]Marple SL.A new autoregressive spectrum analysis algorithm. IEEET rans.On ASSP,1980,28:441-454.
    [133]Mendel ML.Tutorial evaluation on higher order statistic(spectra)in signal processing and system theory: Theoretical results and some applications.Proceedings of The IEEE,1991,79(3):278-305.
    [134]Nikias CL, Raghuveer MR.Bispectrum estimation: a digital signal processing framework. Proceedings of the IEEE,1989,75(7):869-891.
    [135]NikiasCL.Higher-order spectra analysis: an onlinear signal process in framework. PTRP rentice Hall,Eaglewood Cliff,New Jersey,1993,107-120.
    [136]LeeJ M, KinDJ, KimI Y, etal. Detrended Fluctuation Analysis of EEG in Sleep Apnea Using MIT/BIH Polysomn ography data. Computers in Biology and Medicine. 2002(32):37-47.
    [137]Weron R. Estimating long-range dependence: finite sample properties and confidence intervals. Physica.2002,3(2): 285-299.
    [138]Jan W K,Eva KB ,Henio H A ,et al . Detecting long-range correlations with detrended fluctuation analysis[J ] . Physica A ,200,295 :441-454.
    [139]Admati,A., and P.Paleiderer: “A Theory of Intraday Patterns: Volume and Prices Variability,” Reviews of Financial Studies, 1988,1:3-40.
    [140]Andrew W.Lo: “long-term Memory In Stock Market Prices:” Working papers, National Buerau of Economic Ressearch 1050 Massachusetts Avenue Cambridge, MA 02138.
    [141]Backus,D.K and S.E.Zin: “Long-memory Inflation Uncertainty: Evidence from the Term Structure of Interest Rates ,”Journal of Money, Credit and Banking, 1993,25(3),681-700.
    [142]Cai,J.(1994): “A Markov Model of Switching-regime Arch,”Journal of Business and Economic Statistics,12(3),309-316.
    [143]Engle,R.F. and S.Koziciki(1993):“Testing for Common Features,”Journal of Business and Economic Statistics,11,369-380.
    [144]Engle,R.F. and V.K.Ng(1993): “Measuring and Testing the Impact of News on Volatility,” The Journal of Finance,58,1749-1778.
    [145]Mandelbrot,B.B. and J.W.Van Ness(1968): “Fractional Brownian Motions, ractional Poises and Applications”,SIAM Review 10,422-37.
    [146]李英英编译.周顺泰校.厄尔尼诺和南方涛动.气象教育与科技,1986,(2):54-56.
    [147]巢纪平.厄尔尼诺现象与气候异常.人民日报,1998-03-25(7).
    [148]钱步东.我国汛期降水与 ENSO 不同位相的联系.地理科学,1996,16(1):3-9.
    [149]彭岳建.多重分形测度及其密度性质[J].湖南大学学报,1995,23(3):11.
    [150]林振权,杜德骥. 多标度分形的维数和熵的研究[J]. 温州师范学院学报,1996,(3):28.
    [151]蔡小秋. 多重分形参量的统计性质[J]. 漳州师院学报,1997,(2):109-113.
    [152]A. Davis, A, Marshak, W. Wiscombe and R. Cahalan, Multifractal characterizations of nonstationarity and intennittency in geophysical fields: observed, or simulated, J. Geophys. Res., Vo1.99, No.D4, pp.8055-8072, 1994.
    [153]R. Deidda, R. Benzi, F. Siccardi, Multifractal modeling of anomalous scaling laws in rainfall, Water Resour. Res., Vol. 35, No.6, pp. 1853-1867, 1999.
    [154]M. Menabde, D. Harris, A. Seed, G. Austin, D. Stow, Multiscaling properties of rainfall and bounded random cascades, Water Resow. Res., Vol. 33, No.12, pp. 2823-2830, 1997.
    [155]P. Kumar, and E. Foufpula-Georgou, A Multicomponent decomposition of spatial rainfall fields 1·Segration of large- and small-scale features using wavelet transforms, Water Resour. Res., Vol. 29, No.B, pp. 2515-2532, 1993.
    [156]P. Kumar, and E. Fou印ula-Georgou, A Multicomponent decomposition of spatial rainfall fields. Self-similarity in fluctuations, Water Resour. Res., Vol. 29, No.8, pp. 2533-2544, 1993.
    [157]Kidachi,H.On a model approach to forecasting of chaotic time series[J].Progress of Theoretical Physics,2000,103(3):497-518.
    [158]Farmer,J.D.,J.J.Sidorowich.Predicting chaotic time series[J].Physical Review Letters,1987,59 (8): 845~848.
    [159]郭刚,史忠科,戴冠中.基于混沌理论进行股票市场的多步预测[J].信息与控制,2000,29(2):177~181.
    [160]Kocak,K.,L.Saylan,O.Sen.Nonlinear time series prediction of concentration in Istanbul[J].Atmospheric Environment, 2000,34:1267-1271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700