用户名: 密码: 验证码:
以生殖细胞为外源基因载体建立异种移植转基因供体动物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建立转基因动物是异种移植研究中极为重要的工作基础。我们采用以生殖细胞(卵细胞和精子细胞)为外源基因载体的新型转基因技术建立转基因动物,以简化操作、降低成本、提高外源基因整合和表达的效率。
     第一部分卵巢注射法建立hCD59、hCD55、HT单基因转移小鼠的研究
     目的探讨卵巢注射法建立异种移植用转基因动物的可行性。方法采用注射法将hC955、HT、hCD59基因重组质粒分别导入雌鼠卵巢内,交配后产下原代(G_0代)小鼠。提取G_0代小鼠基因组DNA,采用PCR方法对目的基因整合进行初筛。对PCR出现特异条带的小鼠基因组DNA进行Southern印迹杂交,进一步证实目的基因整合。抽取目的基因整合阳性小鼠的外周血,用逆转录-聚合酶链反应(RT-PCR)和流式细胞术(FCM)检测目的基因表达。对FCM表达阳性的转基因小鼠肝脏和肾脏进行免疫组织化学染色,观察目的基因在器官中的表达分布情况。对表达目的基因的G_0代小鼠进行交配生产F1代小鼠,同法检测F1代目的基因的整合与表达。分离3种转基因小鼠的脾脏淋巴细胞,进行人血清溶破实验。结果对15只雌性小鼠进行卵巢注射,共产生G_0代鼠130只。其中,注射HT基因重组质粒的小鼠产仔62只,注射hCD59基因重组质粒的小鼠产仔42只,注射hCD55基因重组质粒的小鼠产仔26只。经PCR初筛后,Southern印迹杂交证实染色体中整合HT、hCD55、hCD59基因的小鼠分别有21只、4只、9只,总整合率为26.2%,高于受精卵显微注射法的整合率。经RT-PCR检测共20只G_0代小鼠阳性,包括3只hCD55小鼠、14只HT小鼠、3只hCD59小鼠。FCM检测发现外周血单核细胞表达人H抗原、hCD55、hCD59的小鼠分别有9只、2只、2只,蛋白表达的效率为10.0%,高于受精卵显微注射法的表达率。免疫组化检测显示,在转基因小鼠的肝脏、肾脏等组织中均有相应外源基因的表达。G_0代小鼠交配后产下F1代小鼠37只,PCR检测hCD55、HT、hCD59基因整合的小鼠分别为7只、6只、3只,FCM检测表达的分别为0只、1只、1只。与对照组比较,三种转基因小鼠的脾脏淋巴细胞耐受人血清溶破的能力均有所增强。结论采用卵巢注射法可以使针对异种移植的基因在小鼠体内整合,并可实现RNA水平和蛋白质水平的表达,其整合与表达的效率要高于受精卵显微注射法。三种转基因构件均可遗传给后代(F1代),并在蛋白质水平表达。人血清溶破实验证实,通过卵巢注射法制备的三种转基因动物可以发挥抗异种排斥的作用。
     第二部分卵巢内共注射建立hCD59/HT双基因和hCD55/hCD59/HT三基因转移小鼠的初步研究
     目的探讨卵巢内多基因共注射建立多基因转移动物的可行性。方法采用hCD59/HT双基因重组质粒和hCD59/hCD55/HT三基因重组质粒共同注射卵巢的方法,得到原代小鼠。PCR和Southern印迹杂交法检测原代小鼠目的基因整合,FCM检测目的基因表达。结果双基因重组质粒共同注射4只雌鼠,获得G_0代鼠31只。Southern印迹杂交证实仅出现hCD59/HT双基因阳性鼠2只,无单基因整合鼠,仅1只鼠出现hCD59/HT共表达阳性,另1只鼠表达阴性。三基因重组质粒共同注射5只雌鼠,3胎共产生G_0代鼠137只,Southern印迹杂交证实仅出现hCD59/HT双基因阳性鼠2只,无其它整合情况,表达均为阴性。结论多基因共注射卵巢法可以得到相应的转基因动物,该方法确实可靠且周期较短。但多基因共注射后,基因之间会互相影响,整合与表达的效率比单基因注射者明显降低,提示其中有更复杂的机制参与,需要深入研究。
     第三部分PAMAM-D对hCD55基因转染猪精子细胞介导作用的研究
     目的探讨新型纳米材料PAMAM-D对hCD55基因转染猪精子细胞的介导作用。方法将新型纳米材料PAMAM-D(G_5)和线状hCD55 DNA按照不同氮磷比(电荷比)制备PAMAM-D/hCD55复合物。取部分复合物酶切电泳。将复合物与处理后的1×10~6猪精子细胞共孵育2h,原位杂交法检测hCD55对猪精子细胞的转染效率,经精子质量检测工作站检测孵育后的精子活力和精子畸形率。结果对PAMAM-D/DNA复合物进行酶切消化后,其中的DNA分子不被限制性内切酶降解。经原位杂交法检测,加入PAMAM-D后可以明显提高各组猪精子细胞的转染效率,且基本上随着氮磷比的增加转染效率也随之增高。最高者(400ng,氮磷比20:1)可达对照组的167%(47.5%±3.5%vs 28.5%±1.5%)。经精子质量检测工作站检测PAMAM-D对精子细胞活力和精子细胞畸形率没有明显影响(p>0.05)。结论PAMAM-D作为载体可以提高目的基因对猪精子细胞的转染效率,其对猪精子细胞无明显毒性,增强了精子载体法的实用性,为生产异种移植用转基因猪提供一种可供参考的方法。
The establishment of transgenic animals is an extremelyimportant foundation for future work in Xenotransplantation. Weused new methods of gene transfer by germ cells (eggs and spermcells) as exogenous gene vector to establish transgenie animals. Wehope the methods can simplify operations, reduce costs and improvethe efficiency of integration and expression securely.
     SECTIONⅠReasch on establishing single-transgenic mice carrying humanCD59 or human CD55 or HT gene by ovary injection
     Objective To investigate the feasibility of establishingtransgenic animals by ovary injection for xenotransplantation.Methods The hCD55, HT, hCD59 recombinant plasmid was injected intothe ovary of female mice respectively. Then the female mice gavebirth to the original generation mice(G_0) after mating. Genomic DNAwas extracted from all of liveborn G_0 mice. Initially screening ofgene integration was used by polymerase chain reaction, subsequ-ently Southern blot analysis of mice genomic DNA which specificPCR bands appeared, further confirmed integration of those targetgenes. Expression of the target genes on peripheral bloodmononuclear cells (PBMCs) of transgenic mice were detected bytranscriptase-polymerase chain reaction (RT-PCR) and flowcytometry (FCM). For those FCM positive expression mice,immunohistochemieal staining was performed to examine thedistribution of target genes in the liver and kidney tissues fromthe transgenic mice. The gene expression mice were bred with commonmice to generate F1 mice. Screening was performed as described above. After Separation of three transgenic mouse spleenlymphocytes, the human serum-mediated cytolysis experiment wasconducted. Results There were 15 female mice by injectionovary, and then the mice produced 130 G_0 generation. Among them,these mice included 62 pregnant mice by injected HT recombinantplasmid, 42 pregnant mice by injected human CD59 recombinantplasmid and only 26 pregnant mice by injected human CD55recombinant plasmid. After screening by PCR, Southern blotconfirmed chromosome integration of HT, hCD55, hCD59 gene in micewere 21,4,9. The total integration rate was 26.2%, higher than thegene integration rate through microinjection. There were 20positive mice by RT-PCR detection, including three hCD55 mice, 14HT mice, three hCD59 mice. FCM detected in peripheral bloodmononuclear cells expressing human H antigen, hCD55, hCD59 micewere 9, 2, 2. The efficiency of protein expression was 10.0%,higher than the expression rate of micro-injection. Immunohist-ochemical detection showed that the transgenic mice liver andkidney tissues were corresponding exogenousgeneexpression. Among37 F1 generation mice, the hCD55, HT, hCD59 gene integrated micewere seven, six, three by PCR, and FCM detection of the three geneexpression was 0, 1, 1. Compared with the control group, the threetransgenic mouse spleen lymphocytes in human serum have higersurvival rate. Conclusion The method of ovary injection canintegrate target genes for xenotransplantation in mice genome, andlead to the expression of RNA and protein levels. The efficiencyof gene integration and expression were higher than that ofmicroinjection. Three transgenic components can be transmitted tosubsequent generations (F1), and caused protein expression. Humanserum-mediated cytolysis experiment confirmed that the threetransgenic animals by ovary injection can play the role inanti-xenograft rejection.
     SECTIONⅡPreliminary study on stablishing multi-transgenic mice carryinghCD59 /HT genes & hCD59/hCD55/HT genes by ovary injection
     Objective To investigate the feasibility of establishingmulti-gene transfer animals by ovary injection. Methods The HTtransgene construct mixed with the human CD59 transgene contructwere coinjected into mouse ovaries. And so were the above threetransgene contructs. PCR and Southern blot analysis were operatedto confirm chromosome integration of G_0 generation mice.Expression of the target genes was detected by FCM. ResultsThere were 4 female mice by ovary co-injected hCD59/HT genes, andthen these female mice produced 31 G_0 generation mice. Southernblot analysis confirmed that there were only two hCD59/HT doublegenes positive mice, not any single gene integration mouse. Boththem one expressed hCD59 and HT double genes, and the otherexpressed neither hCD59 gene nor HT gene. The three gene constructswere coinjeoted into five female mouse ovaries, and they produced137 offsprings in three broods. Southern blot analysis confirmedthat there were only two hCD59/HT double genes positive mice, noother integration mouse. Both expressed negative. ConclusionTransgenic mice have been cultured successfully by multi-genecoinjected ovary, which was authoritative and shorter. But aftermore genes injection, gene between them will affect each other.Efficiency of integration and expression of multi-gene coinjec-tion were less than that of the single gene injection, whichsuggested that we need study in depth because of a more complexsystem in participation.
     SECTIONⅢ Research on polyamidoamine dendrimers mediated hCD55 genetransfected pig sperm cells
     Objective To investigate effect of the new nanomaterialspolyamidoamine dendrimers(PAMAM-D) mediated hCD55 genetransfectedpig sperm cells. Methods Polyamidoamine dendrimersG_5 and linear hCD55 DNA were incubated in different N/P ratio, andthey formed the PAMAM-D/hCD55 compounds. The compounds weredigested by restriction enzymes. At the same time, the compoundswere incubated with 1×10~6 washed pig sperm cells for 2 hours. Thentransfection efficiency was detected by in situ hybridization andthe effects on sperm motility and deformity were evaluated by spermtesting workstation. Results After digested the compounds byrestriction enzymes, those DNAs in the compounds can not bedegraded. Detected by in situ hybridization, PAMAM-D can improvetransfection efficiency of pig sperm cells markedly. With theincrease of the N/P ratio transfection efficiency basically havealso been increased. Among them the maximum (400ng, N/P=20:1) wasup to 167% compared with control group (47.5%±3.5% vs 28.5%±1.5%). PAMAM-D had no impact on sperm motility and deformity(p>0.05). Conclusion Polyamidoamine dendrimers as a vector canimprove the gene transfection efficiency and have no cytotoxi-city, so it increase the. practicality of SMGT. The approach mayprovid a available method for the production of transgenic pigsfor xenotransplantation.
引文
[1] Atkinson JP, Og]esby TJ,White D, et al. Separation of self from non-self in the complement system:a role form embrane co-factor protein and decay accelerating factor[J].Clin Exp Immunol, 1991,86 (Suppl 1):27-30.
    [2] McCurry KR, Kooyman DL, Diamond LE, et al. Transgenic expression of human complement regulatory proteins in mice results in diminished complement sition during organ xenoperfusion[J]. Transplantatidn, 1995,59 (8):1177-1182.
    [3] Ghanekar A, Lajoie G, Luo Y, et al. Improvement in rejection of human decay accelerating factor transgenic pig-to-primate renal xenografts with administration of rabbit antithymocyte serum[J]. Transplantation, 2002,74(1):28-35.
    [4] Niemann H, Verhoeyen E, Wonigeit K, et al. Cytomegalovirus early promoter induced expression of hCD59 in porcine organs provides protection against hyperacute rejection[J].Transplantation, 2001,72(12):1898-1906.
    [5] Diamond LE, Quinn CM, Martin MJ, et al. A human CD46 transgenic pig model system for the study of discordant xenotransplantation [J].Transplantation, 2001,71(1):132-142.
    [6] Brenner P, Schmoeckel M, Wimmer C, et al. Combination of hDAFtransgenic pig hearts and immunoadsorption in heterotopic xenotransplantation of immunosuppressed baboons[J].Transplant Proc, 2005,37(1):483-486.
    [7] Brenner P, Schmoeckel M, Wimmer C, et al. Mean xenograft survival of 14.6 days in a small group of hDAF-transgenic pig hearts transplanted orthotopically into baboons[J].Transplant Proc, 2005,37(1):472-476.
    [8] Garcia B, Sun HT, Yang HJ, et al. Xenotransplantation of human decay accelerating factor transgenic porcine kidney to non-human primates: 4 years experience at a Canadian center[J].Transplant Proc, 2004,36(6):1714-1716.
    [9] McGregor CG, TeotiaSS, Byrne GW, et al. Cardiac xenotransplantation: progress toward the clinic[J].Transplantation, 2004, 78(11): 1569-1575.
    [10] Plelps CJ, Koike C, Vaught TD, et al. Production of alpha-1,3—galactosyltransferase-deficient pigs[J].Science, 2003, 299 (5605):411-414.
    [11] Costa C,Zhao L, Burton WV, et al. Expression of the human alphal, 2—fucosyltransferase in transgenic pigs modifies the cell surface carbohydrate phenotype and confers resistance to human serum-mediated cytolysis[J].FASEB J,1999,13(13):1762-1773.
    [12] 李涛,李幼平,杨志明.猪到人异种移植抗原与移植免疫研究[J].中国修复重建外科杂志,1998,12(1):42-47.
    [13] Lawson JH, Platt JL. Molecu]ar barriers to xenotransplantation [J].Transplantation, 1996,62(S):303-310.
    [14] Steele DJ, Auchincloss HJ. Xenotransplantation[J].Annu Rew Med, 1995,46:345-360.
    [15] Hochi SI, Ninomiya T, Honma M, etal. Successful production of transgenic rats[J].Anim Biotech, 1990, 1(2):175-184.
    [16] Berm G.Gene transfer in farm animal[A].In:Houdebine LM. Transgenic animal, generation and use[M].Amsterdam:Harwood Academic Press, 1997:147-164.
    [17] Plmiter RD, Wilkie TM, Chen HY, et al. Transmissiondistortion and mosaicism in an unusual transgenic pedgree[J].Cell, 1984, 36(4):869-877.
    [18] Wall RJ, Hawk HW, Nel N, et al. Making transgenic livestock: genetic engineering on a large scale[J].J Cell Biochem, 1992, 49(2):113-120.
    [19] Nagel RL. Lessons from transgenic mouse lines expressing sickle hemoglobin[J].Proc Soc Exp Bio Med, 1994, 205 (4):274-281.
    [20] 张志宏,马腾骧,王广有,等.建立血管内皮细胞组织特异性表达人衰变加速因子的转基因小鼠[J].中华器官移植杂志,2005,26(6):356-359.
    [21] 李胜芝,刘秉乾,马志方,等.转人α-1,2岩藻糖苷转移酶基因在异种移植中的研究[J].中华实验外科杂志,2005,22(8):1001-1002.
    [22] 张志宏,马腾骧,王广有,等.异种移植血管内皮细胞组织特异性表达人CD59转基因小鼠的建立[J].中华实验外科杂志,2005,22(12):1578-1580.
    [23] 刘薇,卢光.转基因动物技术的研究进展[J].遗传,2001,23(3):289-291.
    [24] Kreiss P, Cameron B, Rangara R, et al. Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency[J].Nucleic Acids Res, 1999,27(19): 3792-3798.
    [25] Soubrier F, Cameron B,Manse. B, et al. pCOR: a new design of plasmid vectors for nonviral gene therapy[J].Gene Ther, 1999,6(8): 1482-1488.
    [26] Cowan PJ, Shinkel TA, Fisicaro N, etal.Targeting gene expression to endothelium in transgenic animals:a comparison of the human ICAM-2, PECAM-1 and endoglin promoters[J].Xenotranslpantation, 2003,10 (3):223-231.
    [27] Auchincloss HJ, Sachs DH. Xenogeneic Transplantation[J].Annu Rev Immunol, 1998,16:433-470.
    [28] Diamond LE, McCurry KR, Martin MJ, et al. Characterization of transgenic pigs expressing functionally active human CD59 on cardiac endothelium[J].Transplantation, 1996,61(8):1241-1249.
    [29] Cowan PJ, Somerville Ci, Shinkel TA, etal. High-level endothelial expression of human CD59 prolongs heart function in an ex vivo model of xenograft rejection[J].Transplantation, 1998,65 (6): 826-831.
    [30] Choi T, Huang M, Gorman C,et al.A generic intron increases gene expression in transgenic mice[J].Mol Cell Biol,1991,11(6): 3070-3074.
    [31] Michael A, Finola G, Jacky H, et al. Efficient 3'-end formation of human β—globinmRNA in vivo requires sequences within the last intron but occurs independently of the splicing reaction[J]. Nucleic Acids Research, 1998,26(3):721-729.
    [32] Rikki RB, Cecelia DT, Peter P, et al. LCR-regulated transgene expression levels depend on the Oct-1 site in the AT-rich region of beta—globin intron-2[J].B]ood, 2003,101(4):1603-1610.
    [33] Jaenisch R, Mintz B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA[J].PNAS, 1974,71(4):1250-1254.
    [34] Jaenisch R. Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus[J].PNAS, 1976,73(4): 1260-1264.
    [35] Gordon JW, Scangos GA, Plotkin DJ, et al. Genetic transformation of mouse embryos by microinjection of purified DNA[J].PNAS, 1980, 77(12): 7380-7384.
    [36] Palmiter RD, Brinster RL, Hammer RE, et at. Dramatic growth of mice that develop from eggs microinjected with metallothioneingrowth hormone fusion genes[J].Nature, 1982,300(5893):611-615.
    [37] Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells[J].Ce11,1987,51(3): 503-512.
    [38] Gu H, Zou YR, Rajewskey K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-Zediated gene targetting[J].Cell, 1993,73(6): 1155-1164.
    [39] Wakayama T, Rodriguez I, Perry AC, et al.Mice cloned from embryonic stem cells[J].PNAS,1999,96 (26):14984-14989.
    [40] Shuman RM,Shoffner RN. Gene transfer by avian retroviruses [J].Poultry Sci,1986,65:1437-1444.
    [41] 张清健,黄天华,谢庆东,等.HBV DNA重组质粒转染小鼠卵母细胞的研究[J].癌变.畸变.突变,2004,16(6):324-327.
    [42] Kopchick JJ,Mills E, Rosenblum C, et al. Methods for the introduction of recombinant DNA into chicken embryos[J]. Biotechnology, 1991,16:275-293.
    [43] 卢一凡,邓继先.乳腺直接注射质粒DNA的转基因暂时性表达研究进展[J].国外医学遗传学分册,1998,21(6):310-312.
    [44] 金岩.基因转移技术、转基因小鼠与基因敲除[A].见:金岩.小鼠发育生物学与胚胎实验方法[M].北京:人民卫生出版社,2005:300-329.
    [45] 郭勇,倪和民,朱裕鼎.显微注射法培育转基因哺乳动物的研究进展[J].生物工程进展,1997,17(1):42-47.
    [46] Powell DJ,Galli C, Moor RM. The fate of DNA injected into mammalian oocytes and zygotes at different stages of the cell cycle [J].J Reprod Fertil, 1992, 95 211-220.
    [47] Wilkie TM, Palmiter RD. Analysis of the integrant in Myk-103 transgenic mice in which males fail to transmit the integrant[J]. Mol Cell Biol,1987,7(5):1646-1655.
    [48] 卢一凡,田毂,邓继先.转基因动物鉴定技术的研究进展[J].生物工程进展,2000,20(3):60-61.
    [49] Kroczek RA. Southern and northern analysis[]].] Chromatogr, 1993,618(1-2):133-145.
    [50] 王书奎.流式细胞检测方法与原理[A].见:王书奎,周振英.实用流式细胞术彩色图谱[M].上海:第二军医大学出版社,2004:35-66.
    [51] Matzke M, Matzke AJM, Kooter JM. RNA:Guiding gene silencing[J]. Science, 2001,293(5532):1080-1083.
    [52] Marx J.Interfering with gene expression[J].Science, 2000, 288 (5470):1370-1371.
    [53] Serman A, Vlahovic M,Serman L, et al.DNA methylation as a regulatory mechanism for gene expression in mammals[J].Coll Antropol, 2006,30(3):665-671.
    [54] Ghoshal K, Li X, Datta J, et al.A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats[J].J Nutr, 2006,136(6):1522-1527.
    [55] Brenner C, Fuks F. DNA methyltransferases:facts, clues, mysteries[J].Curr Top Microbiol Immunol, 2006, 301:45-66.
    [56] Bottomley MJ.Structures of protein domains that create or recognize histone modifications[J].EMBO Rep, 2004,5(5):464-469.
    [57] Wassenegger M, Heimes S,Riedel L, et al. RNA-directed de novo methylation of genomic sequences in plants[J].Cell, 1994, 76(3): 567-576.
    [58] Westphal T, Reuter G. Recombinogenic effects of suppressors of Position-effect variegation in Drosophila[J].Genetics, 2002, 160 (2): 609-621.
    [59] Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible cosuppression of homologous genes in trans[J].Plant Cell, 1990, 2(4):279-289.
    [60] Sado T, Okano M, Li E, et al. De novo DNA methylation is dispelnsable for the initiation and propagation of X chromosome[J]. Oevelopment, 2004,131(5):975-982.
    [61] Bishop JO, Smith P. Mechanism of chromosomal integration of microinjected DNA[J].Mol Biol Med, 1989,6(4):283-298.
    [62] Palmiter RD, Brinster RL. Transgenic mice[J].Cell, 1985,41(2): 343-345.
    [63] 张靖溥,劳为德,张旭晨,等.外源基因在转基因小鼠中遗传和表达的稳定性[J].遗传学报,1999,26(2):135-141.
    [64] Ranier S, Feinberg AP. Genomic imprinting, DNA methylation, and cancer[J].J Natl Cancer Inst, 1994,86 (10):753-759.
    [65] 张永彪,褚嘉祜.表观遗传学与人类疾病[J].遗传,2005,27(3):466-472.
    [66] 矫文捷,陈玉平,李文,等.猪-人异种移植超急性排斥反应中IL-1质量浓度的变化[J].首都医科大学学报,2004,25(3):370-373.
    [67] Kennedy SP, Rollins SA, Burton WV, et al. Protection of porcine aortic endothelial cells from complement-mediated cell lysis and activation by recombinant human CD59[J].Transplantation, 1994,57 (7):1494-1498,
    [68] Costa C, Zhao L, Decesare S, et al. Comparative analysis of three genetic modifications designed to inhibit human serum-mediated cytolysis[J].Xenotransplantation, 1999,6(1):6-16.
    [69] Fodor WL, Williams BL, Matis LA, et al. Expressionof a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection[J].PNAS, 1994,91:11153-11162.
    [70] 贾延军,程萱,任会明,等.人α-半乳糖苷酶转导克服异种移植HAR的小鼠实验研究[J].中国生物化学与分子生物学报,2003,19(3):332-337.
    [71] 矫文捷,陈玉平,李文,等.猪血管内皮细胞与人血清反应早期PGI2和TXA2的变化[J].中华器官移植杂志,2000,21(4):210-212.
    [72] Brenner P, Schmoeckel M, Wimmer C, et al. Combination of hDAFtransgenic pig heart and immunoadsorption in heterotopic xenotransplantation of immunosuppressed baboons[J].Transplant Proc, 2005,37(1):483-486.
    [73] Pawel K, John HA, Niloo ME, et at. High-level porcinre endothelial cell expression of alphal, 2-fucosyltransferase reduce human monocyte adhesion and activation[J].Transplantation, 1999,67(2): 219-226.
    [74] Huang J, Gou D, Zhen C, et al. Protection of xenogeneic cells from human complement-mediated lysis by the expression of human DAF, CD59 and MCP[J].FEMS Immunol Med Microbiol, 2001,31(3):203-209.
    [75] Niemann H, Verhoeyen E, Wonigeit K, et al. Cytomegalovirus early promoter induced expression of hCD59 in porcine organs provides protection against hyperacute rejection[]].Transplantation, 2001,72(12):1898-1906.
    [76] Costa C, Zhao L, Burton WV, et al. Transgenic pigs designed to express human CD59 and H-transferase to avoid humoral xenograft rejection[J].Xenotransplantation, 2002,9(1):45-57.
    [77] Cowan PJ,Shinkel TA, Aminian A, et al.High-level coexpression of complement regulators on vascular endothelium in transgenic mice: CD55 and CD59 provide greater protection from human complement-mediated injury than CD59 alone[J].Xenotransplantation, 1998,5(3):184-190.
    [78] Jankowsky JL, Slunt HH. Co-expression of multiple transgenes in mouse CNS a companon of strategies[J].Biomol, 2001,17 (6):157-165.
    [79] Brackett BG, Baranska W,Sawicki W. Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization[J].PNAS, 1971,68 (2):353-357.
    [80] Arezzo F. Sea urchin sperm as a vector of foreign genetic information[J].Cell Biol Int Rep, 1989,13(4):391-404.
    [81] havitrano M, Camaioni A, Fazio VM, et al. Sperm cells as vectors for introducing foreign DNA into eggs—genetic transformation of mice[J].Cell, 1989,57 (5):717-723.
    [82] Brinster RL, Sandgren EP, Behringer RR, et al. No simple solution for making transgenic mice[J].Cell, 1989,59 (2):239-241.
    [83] Smith K, Spadafora C. Sperm-mediated gene transfer: applications and implications[J].BioEssays, 2005, 27(5):551-562.
    [84] Maruyama-Tabata H, Harada Y,Matsumura T, et al. Effective suicide gene therapy in vivo by EBV-based plasmid vector coupled with polyamidoamine dendrimer[J].Gene Ther, 2000,7(1):53-60.
    [85] Howard DS, Rizzierri DA, Grimes B, et al. Genetic manipulation of primitive leukemic and normal hematopoietic cells using a novel methdod of adenovirus-mediated genetransfer[J].Leukemia, 1999, 13 (10): 1608-1616.
    [86] Teixeira LA, Fricke CH, Bonorino CB, et al. An efficient genetransfer system for hematopoietic cell line using transient and stable vectors[J].J Biotechnol, 2001, 88 (2):159-165.
    [87] Roberts JC, Bhalgat MK, Zara RT. Preliminary biological evaluation of polymidoamine (PAMAM) tarburst dendrimers[J].J Biomed Mater Res, 1996, 30(1):53-65.
    [88] 杨凯,程汉华,郭一清,等.采用高分子介导精子作载体制备转基因泥鳅[J].遗传学报,2001,28(12):1137—1141.
    [89] havitrano M, Busnelli M, Cerrito M G, et al. Sperm-mediated gene transfer[J].Reprod Fertil Dev, 2006, 18(1-2):19-23.
    [90] Spadafora C. Sperm cells and foreign DNA:a controversial relation[J]. Bioessays, 1998, 20(11):955-964.
    [91] Giordano R, Magnano AR, Zaccagnini G, et al. Reverse transcriptase activity in mature spermatozoa of mouse[J].J Cell Biol, 2000, 148(6):1107-1113.
    [92] 康睿,曹励之.聚酰胺-胺型纳米载体在肿瘤治疗中的研究现状[J].国外医学儿科学分册,2004,31(2):96-103.
    [93] Maksimenko AV, Mandrouguine V, Gottikh MB, et al. Optimisation of dendrimer-mediated gene transfer by anionicoligomers[J].J gene Med, 2003,5(1):61-71.
    [94] Bielinska AU, Chen C,Johnson J, et al. DNA complexing with polyamidoamine dendrimers:implications for transfection[J]. Bioconjug Chem, 1999, 10(5):843-850.
    [95] Bielinska AU, Kukowska-Latallo JF, Baker JR. The interaction of plasmid DNA with polyamidoamine dendrimers:mechanism of complex formation and analysis of alterations induced in nucleass sensitivity and transcriptional activity of the complexed DNA[J]. Biochim Biophys Acta, 1997, 1353(2):180-190.
    [96] Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes[J].GeneTher, 1997,4(8):823-832.
    [97] Dunlap DD, Maggi A, Soria MR, et al. Nanoscopic structure of DNA condensed for gene delivery[J].Nucleic Acids Res, 1997,25 (15): 3095-3101.
    [98] Kukowska-hatallo JF, Bielinska AU, Johnson J,et al. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers[J].PNAS, 1996,93(10):4897~4902.
    [99] Godbey WT, Wu KK, Mikos AG. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery[J].PNAS, 1999,96(9):5177-5181.
    [100] 霍立军,杨增明.哺乳动物精子质量的评价方法[J].动物学杂志,2002,37(2):89-93.
    [101] Malik N, Wiwattanapatapee R, Klopsch R, et al. Dendrimers: relationship between structure andbiocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo[J].J Control Release, 2000, 65(1-2):133-148.
    [102] 郭毅,张爽男,康春生,等.纳米阳离子多聚物在基因载体系统的应用[J].高分子通报,2005,10:142-146.
    [103] Kuo JH, Jan MS, Chiu HW. Mechanism of cell death induced by cationic dendrimers in RAW 264.7 murine macrophage-like cells[J]. J Pharm Pharmacol, 2005,57(4):489-495.
    [1] Lawson JH, Platt JL. Molecular barriers to xenotransplantation [J].Transplantation, 1996,62(3):303-310.
    [2] Steele DJ, Auchincloss HJ. Xenotransplantation[J].Annu Rev Med, 1995,46:345-360.
    [3] Ghanekar A, Lajoie G, Luo Y, et al. Improvement in rejection of human decay accelerating factor transgenic pig-to-primate renal xenografts with administration of rabbit antithymocyte serum[J]. Transplantation, 2002,74(1):28-35.
    [4] Niemann H, Verhoeyen E, Wonigeit K, et al. Cytomegalovirus early promoter induced expression of hCD59 in porcine organs providesprotection against hyperacute rejection[J].Transplantation, 2001,72(12):1898-1906.
    [5] Diamond LE, Quinn CM, Martin MJ, et al. ihuman CD46 transgenic pig model system for the study of discordant xenotransplantation [J].Transplantation, 2001,71(1):132-142.
    [6] Brenner P, Schmoeckel M, Wimmer C, et al. Combination of hDAFtransgenic pig hearts and immunoadsorption in heterotopic xenotransplantation of immunosuppressed baboons[J].Transplant Proc, 2005,37(1):483-486.
    [7] Brenner P, Schmoeckel M, Wimmer C, et al. Mean xenograft survival of 14.6 days in a small group of hDAF-transgenic pig hearts transplanted orthotopically into baboons[J].Transplant Proc, 2005,37(1):472-476.
    [8] Garcia B, Sun HT, Yang HJ, et al. Xenotransplantation of human decay accelerating factor transgenic porcine kidney to non-human primates: 4 years experience at a Canadian center[J].rransplant Proc, 2004,36(6):1714-1716.
    [9] McGregor CG, Teotia SS, Byrne GW, et al. Cardiac xenotransplantation: progress toward the clinic[J].Transplantation, 2004, 78(11):1569-1575.
    [10] Baldan N, Rigotti P, Calabrese F, et al. Ureteral stenosis in hDAF pig-to-primate renal xenotransplantation: a phenomenon related to immunological events? [J].Am J Transplant, 2004,4(4): 475-481.
    [11] Lam TT, Paniagua R, Shivaram G, et al. Anti-non-Gal porcine endothelial cell antibodies in acute humoral xenograft rejection of hDAF-transgenic porcine hearts in cynomolgus monkeys[J]. Xenotransplantation, 2004,11(6):531-535.
    [12] Lam TT, Hausen B, Boeke-Purkis K, et al. Hyperacute rejection of hDAF-transgenic pig organ xenografes in cynomolgus monkeys: influence of pre-existing anti-pig antibodies and prevention by the alpha GAL glycoconjugate GAS914[J].Xenotransplantation, 2004,11(6):517-524.
    [13] Zhong R, Luo Y, Yang H, et al. Improvement in human decay accelerating factor transgenic porcine kidney xenograft rejection with intravenous administration of gas914, a polymeric form of alpha GAL[J].Transplantation, 2003,75(1):10-19.
    [14] Brandl U, Michel S, Brhardt M, et al. Administration of GAS914 in an orthotopic pig-to-baboon heart transplantation model[J]. Xenotransplantation, 2005,12(2):134-141.
    [15] Costa C, Zhao L, Burton WV, et al. Expression of the human alphal, 2-fucosyltransferase in transgenic pigs modifies the cell surface carbohydrate phenotype and confers resistance to human serum-mediated cytolysis[J].FiSEB J,1999,13(13):1762-1773.
    [16] Radtke C, ikiyama Y, Brokaw J, et al. Remyelination of the nonhuman primate spinal cord by transplantation of H-transferase transgenicadult pig olfactoryensheathingcells[J].FASEB J, 2004, 18(2):335-337.
    [17] Menoret S, Plat M, Blancho G, et al. Characterization of human CD55 and CD59 transgenic pigs and kidney xenotransplantation in the pig-to-baboon combination[J].Transplantation, 2004,77(9): 1468-1471.
    [18] Chen RH, Naficy S, Logan JS, et al. Hearts from transgenic pigs constructed with CD59/DAF genomic clones demonstrate improved survival inprimates[J].Xenotransplantation, 1999, 6(3): 194-200.
    [19] Yeatman M, Daggett CW, Parker W, et al.Complement-mediated pulmonary xenograft injury:studies in swine-to-primate orthotopic single lung transplant models[J].Transplantation,1998,5(8): 1084-1093.
    [20] Byrne GW, McCurry KR, Martin MJ,et al. Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage[J].Transplantation, 1997,63(1):149-155.
    [21] Manez R, Domenech N, Centeno A,et al. Failure to deplete anti-Galalphat-3Gal antibodies after pig-to-baboon organ xenotransplantation by immunoaffinity columns containing multiple Galalphal-3Gal oligosaccharides[J].Xenotransplantation, 2004, 11(5):408-415.
    [22] Cowan PJ, Aminian A, Barlow H, et al. Renal xenografts from triple-transgenic pigs are not hyperacutely rejected but cause coazulopathy in non-immunosuppressed baboons[J].Transplantation,2000,69(12):2504-2515.
    [23] Zhou CY, McInnes E, Copeman L, et al. Transgenicpigs expressing human CD59, in combination with human membrane cofactor protein and human decay-accelerating factor[J].Xenotransplantation, 2005,12(2): 142-148.
    [24] 杨惠祥,徐勇,王广有,等.异种器官移植研究中的生命伦理学思考[J].医学与哲学(临床决策论坛版),2006,27(3):64-65.
    [25] Yu P, Zhang L, Li SF, et al. Long-term effects on HEK-293 cell line after co-culture with porcine endogenous retrovirus[J]. Transplant.Proc, 2005,37(1):496-499.
    [26] Harrison I, Takeuchi Y, Bartosch B, et al. Determinants of high titer in recombinant porcine endogenous retroviruses[J].J Virol,2004,78(24):1371-1379.
    [27] Takefman DM, Spear GT, Saifuddin M, et al. Human CD59 incorporation into porcine endogenous retrovirus particles: implications for the use of transgenic pigs for xenotransplantation[J].J Virol, 2002,76(4):1999-2002.
    [28] Di Nicuolo G, van de Kerkhove MP, Hoekstra R, et al. No evidence of in vitro and in vivo porcine endogenous retrovirus infection after plasmapheresis through the AMC-bioartificial liver[J]. Xenotransplantation, 2005,12(4):286-292.
    [29] Nishitai R, Ikai I, Shiotani T, et al. ibsence of PERV infection in baboons after transgenic porcine liver perfusion[J].J Surg Res, 2005,124 (1):45-51.
    [30] Winkler ME, Winkler M, Burian R, et al.Analysis of pig-to-human porcine endogenous retrovirus transmission in a triple-species kidney xenotransplantation model[J].Transpl Int, 2005,17 (12): 848-858.
    [31] Paradis K, Langford G, Long Z, et al. Search for Cross-Species Transmission of Porcine Endogenous Retrovirus in Patients Treated with Living Pig Tissue. The XEN 111 Study Group.[J].Science, 1999, 285(5431):1236-1241.
    [32] Hagelin J. Public opinion surveys about xenotransplantation [J].Xenotransplantation, 2004,11(6):551-558.
    [33] Purdy L. Should we add "xeno" to" transplantation" ?[J]. Politics Life Sciences, 2000,19(2):247-259.
    [34] Mani V, Mathew R, Homer-Vanniasinkam S. Xenotransplantation: animal rights and human wrongs[J].Ethics Med, 2003, 19(1):55-61.
    [35] 邱仁宗.高新生命技术的伦理问题[J].自然辩证法研究,2001,17(5):21-27.
    [36] Sykes M,d' Apice A, Sandrin M, et al. Position Paper of the Ethics Committee of the International Xenotransplantation Association[J].Transplantation, 2004,78(8):1101-1107.
    [1] Brackett BG, Baranska W Sawicki. W. Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertili-zation [J]. PNAS, 1971, 68(2): 353-357.
    [2] Arezzo F. Sea urchin sperm as a vector of foreign genetic information[J]. Cell Biol Int Rep, 1989, 13(4): 391-404.
    [3] Lavitrano M, Camaioni A, Fazio VM, et al. Sperm cells as vectors for introducing foreign DNA into eggs—genetic transformation of mice[J]. Cell, 1989, 57(5): 717-723.
    [4] Brinster RL., Sandgren EP, Behringer RR, et al. No simple solution for making transgenic mice[J]. Cell, 1989, 59(2): 239-241.
    [5] Smith K, Spadafora C. Sperm-mediated gene transfer: applications and implications[J]. BioEssays, 2005, 27(5): 551-562.
    [6] Lavitrano M, Busnelli M, Cerrito MC,, et al. Sperm-mediated gene transfer[J]. Reprod Fertil Dev, 2006, 18(1-2): 19-23.
    [7] Lavitrano M, Bacci ML. Forni M, et al. Efficient production by sperm-mediated gene transfer of human decay accelerating factor (hDAF)transgenic pigs for xenotransplantation[J]. PNAS, 2002, 99 (22): 14230-14235.
    [8] Webster NL, Forni M, Bacci ML, et al. Multi-transgenic pigs expressing three fluorescent proteins produced with high efficiency by sperm mediated gene transfer[J]. Mol. Reprod Dev, 2005, 72(1): 68-76.
    [9] 肖红卫,郑新民,陈思怀,等.精子介导生产转hCD59基因猪[J].华中农业大学学报,2006,25(2):170-173.
    [10] Zani M, Lavitrano M, French D, et al. The mechanism of binding of exogenous DNA to sperm cells:fact.ors controlling the DNA uptake [J].Exp Cell. Res, 1995, 217 (1): 57-64.
    [11] Maione B, Pittoggi C, Achene L, et al. Activation of endogenous nucleases in matture sperm cells upon interaction with exogenous DNA[J].DNA Cell Biol,1997,16(9):1087-1097.
    [12] Lavitrano M, French D, Zani M, et al. The interaction between exogenous DNA and sperm cells[J].Mol Reprod Dev, 1992,31(3):161-169.
    [13] Francolini M, Lavitrano M,Lora LC, et al. Evidence for nuclear internalization of exogenous DNA into mammalian sperm cells[J]. Mol Reprod Dev, 1993, 34(2): 133-139.
    [14] Zoraqi G, Spadafora C. Integration of foreign DNA sequences into mouse sperm genome[J]. DNA Cell Biol, 1997, 16(3):291-300.
    [15] Pittoggi C, Renzi L, Zaccagnini G, etal. A fraction of mouse sperm chromatin is organized in nucleosomal hypersensitive domains enriched in retroposon DNA[J]. J Cell Sci, 1999, 112 (Pt20): 3537—3548.
    [16] Spadafora C. Sperm cells and foreign DNA:a controversial relation[J]. Bioessays, 1998, 20 (11):955-964.
    [17] Lavitrano M, Maione B, Forte E, et al. The interaction of sperm cells with exogenous DNA: a role of CD4 and major histocompatibility complex class Ⅱ molecules[J].Exp Cell Res,1997,233(1): 56-62.
    [18] Giordano R, Magnano AR, Zaccagnini. G, et al. Reverse transcriptase activity in mature spermatozoa of mouse[J]. J Cell Biol, 2000, 148 (6): 1107-1113.
    [19] Deininger PL, Moran JV, Batzer MA, et al. Mobile elements and mammalian genome evolution [J]. Curr Opin Genet Dev, 2003, 13(6): 651-658.
    [20] Brosius J, Wiedge H. Reverse transcriptase: Mediator of genomic plasticity[J].Virus Genes, 1995,11(2-3):163-179.
    [21] Sciamanna I, Barberi L, Martire A, et al. Sperm endogenous reverse transcriptase as mediator of new genetic information[J]. Biochem Biophys Res Commun, 2003, 312 (4): 1039-1046.
    [22] FARRE L, RIGAU T, MOGAS T, et al. Adenovirus-mediated introduction of DNAInto pig sperm and offspring[J].Mol Reprod Dev, 1999, 53 (2): 149-158.
    [23] Jakob M, Muhle C, Park J, et al. No evidence for germ-line transmission following prenatal and early postnatal AAV-mediated gene delivery[J].J Gene Med, 2005,7(2):630-637.
    [24] Rieth A,Pothier F, Sirard MA. Electroporation of bovine spermatozoa to carry DNA containing highly repetitive sequences into oocytes and detection of homologous recombination eveners[J]. Mol Reprod Dev, 2000, 57(4): 338-345.
    [25] Celebi C, Auvray P, Benvegnu T, et al. Transient. transmission of a transgene in mouse offspring following in vivo transfection of male germ cells [J]. Mol Reprod Dev, 2002, 62 (4): 477-482.
    [26] Sparrow DB, Latinkic B, Mohun TJ. A simplified method of generating transgenic Xenopus[J].Nucleic Acids Res, 2000,28(4): E12.
    [27] Sato M, Ishikawa A,Kimura M.Direct injection of foreign DNA into mouse testis as a possible in vivo gene transfer system via epididymal spermatozoa[J].Mol Reprod nev, 2002, 61(1): 49-56.
    [28] Yonezawa T, Furuhata Y, Hirabayashi K, et al. Detection of transgene in progeny at: diffecent developmental stages following Testis-Mediated Gerie Transfer[J].Mol Reprod Dev, 2001,60 (2): 196-201.
    [29] Hirabayashi M, Kato M, Ishikawa A, et. al. Factors affecting production of transgenic rats by ICSI-mediated DNA transfer: effects of sonication and freeze-thawing of spermatozoa, rat strains for sperm and oocyte donors, and different constructs of exogenous DNA[J]. Mol Related Dev, 2005, 70 (4): 422-428.
    [30] Yong HY, Hao Y, Lai L, et al. Production of a transgenic piglet by a sperm injection technique in which no chemical or physical treatments were used for oocytes on sperm[J]. Mol Related Dev, 2006, 73 (5): 595-599.
    [31] Chang K,Qian.J,Jiang M, et al. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer[J].BMC Biotechnol, 2002,2:5.
    [32] 杨惠祥,徐勇,王广有,等.精子介导转纂因技术的进展与争论[J].医学与哲学(临床决策论坛版),20(16,27(10):62-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700