电能质量参数检测算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济和现代科学技术的飞速发展,电能质量问题正受到越来越多的关注。全面有效的检测和分析是改善和提高电能质量的前提和依据,快速、先进、有效的参数估计算法是实现有效检测和分析的基础。
     由于电力信号的复杂性和电能质量内涵的扩展性,以及不断提高的测量精度、广度与测量速度的要求,电能质量指标参数测量技术有待进一步发展和提高。
     本文依据国内外相关电能质量标准,结合电能质量研究现状和工程实际需要,应用数字信号处理技术及电力系统自动化技术,研究电能质量中最重要和最受关注的指标参数的测量理论和估计算法。主要工作包括:
     1)提出了一种基于自适应短时傅里叶变换的基波参数估计算法,并以此算法为基础计算电压偏差、频率偏差、三相不平衡度和功率因数等基本电能质量参数。算法采用固定的采样周期,采样频率不需随信号频率的变化而调整,实现简单;算法不需要迭代运算,可一次得到参数估计值,计算量小,响应时间快;通过采用矩形自卷积窗,并自适应地确定与信号频率相适应的时间窗宽度,有效抑制了频谱泄漏对基波参数测量的影响,测量精度高。
     2)根据谐波和间谐波各自的频谱特征,提出了一种新的谐波、间谐波实时检测算法。算法根据正余弦函数的特性,将各次谐波分量变换成直流分量,经由低通滤波后估计其有效值和初相角;从原信号中去除基波和谐波分量,再通过搜寻频谱极大值获取间谐波频率及有效值和初相角。算法实现简单,精度高,动态跟踪特性好,适合于离散频谱电压、电流信号的谐波、间谐波参数实时估计。
     3)谐波、间谐波和闪变关系密切,但现有谐波、间谐波的检测与闪变的检测实现方法不同且无关联。本文推导了间谐波和调幅波对于闪变的等价关系,在此基础上,将间谐波检测和闪变检测结合起来,根据国家标准和IEC标准的闪变检测技术规范,提出了一种基于间谐波估计的闪变参数检测新算法。新算法除了能求取瞬时视感度、短时间闪变值和长时间闪变值等反映闪变强弱的参数外,还能提供电压波动频度和幅度的信息,有利于电压波动与闪变的分析和治理,为闪变检测提供了一种新的实现模式。
     4)应用数字图像处理理论,采用图像边缘形态检测算子,实现了暂态电能质量扰动的检测和时间定位。该方法具有实现简单,计算量小,对采样频率要求低,实时性好等特点,可对电压暂降、暂升、短时中断、短时高频振荡、陷波等常见暂态电力扰动进行有效检测。
     5)减小背景梯度是实现暂态电能质量扰动检测的关键。针对非扰动情况下电力信号周期交替变化引起的背景梯度,提出了基于Top-Hat形态变换的抑制方法,针对噪声引起的背景梯度,构造了合适的形态滤波器,提高了扰动检测的灵敏度。
     6)提出了基于顺序形态学和Top-Hat形态变换的扰动检测方法,既可有效抑制信号平稳变化引起的背景梯度,又具有较好的抗噪声能力,同时很好地保留了扰动信号突变的局部细节,保证了扰动检测灵敏度和时间定位精度。
     7)提出了一种改进的单相电压暂降特征参数实时检测算法。通过构造新的变换矩阵,减小了传统方法构造虚拟三相系统的延时,可对单相电压暂降幅值、持续时间和相位跳变等特征参数进行近乎瞬时的估计。分析了单相电压暂降检测时“异动”现象的产生原因,提出了基于形态运算的解决方法。
     8)提出了一种改进的三相电压暂降检测算法。针对三相不平衡电压暂降,通过正序dq变换和负序dq变换,经由形态低通滤波得到三相电压的基波正序、负序分量,采用改进的单相电压暂降检测算法得到零序分量,进而得到各相电压暂降的特征参数。改进方法实时性好,参数估计精确,满足电压暂降实时检测的要求,可应用于电压暂降监测、评估及动态电压恢复器(DVR)对电压暂降的实时补偿控制。
     本文提出的电能质量参数估计理论和系列算法,为电能质量实时检测和离线分析提供了有效的工具。仿真研究验证了所提算法的可行性和有效性;算法已成功应用于“基于虚拟仪器技术的电能质量综合测试仪”的研制和开发中。
With rapid development of economy and science technology, power quality (PQ) problems have increasingly become a substantial concern in recent years. Completely and accurately assessing power quality is the first step in solving and mitigating the problems, fast and advanced algorithms are the basis for effective measurement and evaluation.
     Due to the complexity of power system signal and the variety of power quality event, it is a challenge to detect power quality indices completely, accurately and promptly.
     In accordance with national and international power quality standard, a systematic and in-depth research about power quality major indices evaluation is carried out based on analyzing domestic and overseas research situations. By use of digital signal-processing methods as well as power system automation techniques, the research works pay more attention to the measurement theories and estimation algorithms of important indices. The main contributions of this dissertation are listed as follows:
     1)A new digital algorithm based on adaptive Short-Time Fourier Transform (STFT) is presented to estimate some basic power quality indices, such as voltage deviation, frequency deviation, voltage unbalance degree and power factor of fundamental component. The algorithm employs fixed sampling period although the frequency of the signal varies. No recursive calculation is needed to get evaluation values of above mentioned parameters. As a result, the algorithm is easy to implement with less computation burden and short response time. To restrain the spectrum leakage of harmonics, a novel kind of window called Rectangle Self-Convolution Window (RSCW) is adopted and the window length is adjusted according to the frequency variation of the signal. It is thus suitable for real-time measuring with high presicion.
     2)According to the spectrum characteristics of harmonics/inter-harmonics, an approach is proposed to compute harmonics/inter-harmonics in real time. Considering the characteristic of sine/cosine function, the harmonic component can be transformed into DC component, the rms value and initial phase angle of harmonic then can be got after low-pass filtering. As to inter-harmonics, it is generally considered to be a challenge because the inter-harmonics only have small ratio, it is hard to estimate them accurately. By subtracting fundamental and harmonic components from the original signal, maximum spectrum searching technique is used to compute frequency, rms value and initial phase angle of inter-harmonic. The proposed approach is easy to implement with high precision and good dynamic tracking feature, it suits to estimate harmonic/inter-harmonic parameters of voltage or current signals with discrete spectrum.
     3)It is known that flicker phenomena are closely related with harmonics and inter-harmonics, but at present, the detection methods of harmonics/inter-harmonics and flicker are completely different. Based on deducing the equivalent relation of inter-harmonic and amplitude modulation wave to flicker, the detection methods of inter-harmonic and flicker are combined. Therefore, according to national and International Electrotechnical Commission (IEC) standard, a new flicker evaluation algorithm is presented based on inter-harmonic estimation. The algorithm can not only compute instantaneous visual acuity, short-term flicker severity index and long-term flicker severity index, but also provide frequency and amplitude imformation of voltage fluctuation, thus, it benefits to analyze and manage voltage fluctuation and flicker. Furthermore, it provides a novel implemental model for flicker detection.
     4)To detect and locate non-steady-state disturbances, digital image processing theory and image edge morphology detecting method are introduced. The outstanding features of the method are easy implementation, less computing complexity, high time resolution and low demand of sampling frequency, therefore, it can be used to effectively detect common power disturbances such as voltage sag, swell, short-time interruption, short-time high frequency oscillatory, notching , etc.
     5)Deep analysis reveals that restrain background gradient is the key step for disturbing detection. Based on examining the origin of background gradient, two different methods for restrain background gradient are proposed. One uses Top-Hat morphology transform to restrain the background gradient produced by normal periodic alternation of analyzed signal, the other constructs suitable morphology filters to restrain the background gradient introduced by noises. Thus, the detecting sensitivity can be improved obviously.
     6)A new disturbing detection method based on order morphology and Top-Hat transform is then presented. It can not only restrain the background gradient produced by steady variation of analyzed signal, but also resist noises while keep the partial details of signal’s abrupt change. Therefore, it ensures the sensitivity and time locating precision of distrurbing detection.
     7)An improved single phase voltage sag dececting algorithm is put forward. A new matrix, which is designed to decrease the phase delay that is unavoidable in traditional fictitious three phase systems, is constructed. The improved algorithm can almost instantaneously quantify the magnitude, duration and angel jump for voltage sag in single phase systems. Since‘abnormal variation’phenomenon presents in the detecting process, a corresponding solving measure is carried out based on morphology calculation.
     8)As to three phase unbalanced voltage sag, an improved detection method is also presented. After carrying out positive and negative dq transform, morphology low pass filter which possesses the superiority of high accuracy and fast dynamic performance compared with traditional Butterworth filter is used to obtain positive-sequence fundamental component and negative-sequence fundamental component, and the zero-sequence component is obtained by using improved single phase voltage sag detection method, then, voltage sag characteristics can be got easily. The improved method can estimate the sag parameters with high accuracy in real time. Therefore, it is not only efficient for the real-time detection of voltage sag but also effective for the real-time voltage sag control and compensation in dynamic voltage restorers(DVRs).
     The purpose of the dissertation is to form an arithmetic system that related to some main power quality problems. It will provide effective theorem basis and algorithms for power quality on-line detection and off-line analysis. The validity of the proposed algorithms has verified by normorous simulations, and the algorithms have been successfully applied in the development of a practical device named‘the VI-based Electric Parameter Measurement Device’.
引文
[1]肖湘宁.电能质量分析与控制附[M].北京:中国电力出版社,2004年
    [2] IEC 610002221 (1990). Electromagnetic Compatibility (EMC)-Part 2 Environment. Section 1: Description of the Environment - Electromagnetic Environment for Low-Frequency Conducted Disturbances and Signaling in Public Power Supply System [S]. 1990.
    [3] IEEE Std 115921995. IEEE Recommended Practice for Monitoring Electric Power Quality [S]. 1995.
    [4] IEEE Std 1159. 322003. IEEE Recommended Practice for the Transfer of Power Quality Data [S]. 2003.
    [5] GB 12325 - 2003.电能质量供电电压允许偏差[S]. 1990.
    [6] GB /T 15945 - 1995.电能质量电力系统频率允许偏差[S]. 1995.
    [7] GB /T 14549 - 1993.电能质量公用电网谐波[ S].1993.
    [8] GB /T 15543 - 1995.电能质量三相电压允许不平衡度[S]. 1995.
    [9] GB 12326 - 1990.电能质量电压波动和闪变[S].1990.
    [10] GB /T 18481 - 2001.电能质量暂时过电压和瞬态过电压[S]. 2001.
    [11]王丽,刘会金,王陈.瞬时无功功率理论的研究综述[J].高电压技术, 2006, 32(2): 98-103
    [12] Akagi H , Kanazawa Y, Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage compensators[J]. IEEE Trans on Industry Applications, 1984, 20(3): 625-630.
    [13] Akagi H ,Sato shi Ogasawara, Hyosung Kim. The theory of instantaneous power in three-phase four-wire systems: a comprehensive approach[J]. IEEE Trans on Industry Applications, 1999, 1: 431-439.
    [14] Akagi H. Trends in Active Power Line Conditioners. IEEE Trans Power Election, 1994, 9(3): 263-268.
    [15] Akagi H, Kanazawa Y, Nabae A. Generalized theory of the instantaneous reactive power in three-phase circuits. IEEE & JIEE, 1983: 1375-1386.
    [16] Vasco Socares, Pedro Verdelho, Gil D Marques. An instantaneous active and reactive current component method for active filters[J]. IEEE Trans on Power Electronics, 2000, 15(4): 660-669.
    [17] Fang Zheng Peng, Jin Sheng Lai. Generalized instantaneous reactive power theory for three-phase power systems[J]. IEEE Transactions on Instrumentation and Measurement, 1996, 45(1): 293-297.
    [18] Fang Zheng Peng, Heorge WOtt , Donald J Adams. Harmonic and reactive power compensation based on the generalized instantaneous reactive power theory for three-phase four-wire systems [J]. IEEE Trans on Power Electronics, 1998, 13(6): 1174-1181.
    [19] Takeda M,Ikeda K,Teramoto A,et al.Harmonic current and reactive power compensation with an active filter[C].IEEE PESC’98,Fukuho-Ka,Japan,1998:1174-1179.
    [20]刘进军,刘波,王兆安.基于瞬时无功功率理论的串联混合型单相电力有源滤波器.中国电机工程学报,1997, 17(1): 37~41
    [21]杨君,王兆安,丘关源.单相电路谐波及无功电流的一种检测方法.电工技术学报, 1996, 11(3): 42~46
    [22]冯小明,杨仁刚.动态电压恢复器的形态学—dq变换综合检测算法[J].中国电机工程学宝, 2004, 24(11): 193-198.
    [23] H. Kim, S.-J. Lee, S.-K., Sul. A calculation for the compensation voltages in dynamic voltage restorers by use of PQR power theory[C]. Applied power electronics conference and exposition, 2004, No.1: 573-579.
    [24]邹理和.数字信号处理.国防工业出版社. 1985,68-79
    [25] Huang Dishan. Phase Error in Fast Fourier Transform analysis. Mechanical System and Signal Processing. 1995, 9(2): 113-118
    [26] Burgess J C. On digital spectrum analysis of periodic signals. J. Acoust. Soc. Am, 1975, 58(3): 56-67
    [27] Grandke T. Interpolation Algorithms for Discrete Fourier transforms of Weighted Signals. IEEE Transactions on IM, 1983, 32(2): 350-355
    [28] Harris F J, On the use of windows for harmonic analysis with the discrete Fourier transform, Proc IEEE,1978,66(1):51-83
    [29] V. K. Jain, W. L. Collins, D. C. Davis. High accuracy analog measurements via interpolated FFT, IEEE Trans. IM, 1979, 28(2):113-122
    [30] Andria G,Savino M,Trotta A. Windows and interpolation algorithms to improve electrical measurement accuracy. IEEE Tans on IM, 1989, 38(4): 856-863
    [31] Micheletti R. Phase Angle Measurement between Two Sinusoidal Signals. IEEETrans on IM, 1991, 40(1): 82-91
    [32] Carlo Offelli, Dario Petri. The Influence of Windowing on the Accuracy of Multi- Frequency Signal Parameter Estimation. IEEE Trans on IM. 1992, 41(2): 256-261
    [33] P M Xu. A Method of Improving the Accuracy of FFT Linear Spectrum. In: Proceedings of the Fifth International Conference on Condition Monitoring (Condition Monitoring’97). Beijing: National Defense Industry Press 1997, 291-295
    [34] Heydt G T, Fjeld P S, Liu C C, et al. Applications of the windowed FFT to electric power quality assessment. IEEE Trans on Power Delivery, 1999, 14(4): 1411-1416
    [35]赵文春,马伟明,胡安.电机测试中谐波分析的高精度FFT算法.中国电机工程学报, 2001, 21(12): 83-87, 92
    [36]丁康,谢明.提高FFT和谱分析速度及精度的方法.重庆大学学报,1992,15(2):51-57
    [37] Xie Ming, Ding Kang. Correction for the Frequency, Amplitude and Phase in FFT of Harmonic Signal. Mechanical System and Signal Processing. 1996, 10(2): 211-221
    [38]谢明,丁康,莫克斌.频谱校正时谱线干涉的影响和判定方法.振动工程学报,1998,11(1):22-28
    [39]谢明,丁康,莫克斌.两个密集频率成分重叠频谱的校正方法.振动工程学报,1999,12(1):109-114
    [40]朱利民,钟秉林,黄仁.离散频谱多点卷积幅值修正法的理论分析.振动工程学报,1999,12(1):120-125
    [41]丁康,张小飞.频谱校正理论的发展.振动工程学报,2000,13(1):14-22
    [42]朱利民,熊有伦.一个通用的频谱误差校正快速算法.振动工程学报,2001,14(2):166-171
    [43]徐培民,杨积东,闻邦春.离散频谱分析中两邻近谱峰参数的识别.振动工程学报,2001,14(3):254-258
    [44]丁康,钟舜聪,朱小勇.离散频谱相位差校正方法研究.振动与冲击,2001,20(2):52-55
    [45] Sachdev M S, Baribeau M A. A new algorithm for digital impedance relay. IEEE Trans on PAS, 1978, 97(6):1845-1850
    [46]杨念慈,姜惠兰.电力系统频率偏移对傅里叶算法的影响.天津大学学报.1993,(5):9-16
    [47]周大敏.递推富氏算法中衰减非周期分量的消除方法.继电器,1998,26(5): 5-7, 11
    [48] Childer D. G. Modern Spectrum Analysis. IEEE Press, 1978
    [49] Kay S. M, Marple S. L. Spectrum Analysis—A Modern Perspctive. Proc IEEE, 1981,69 (11): 1380-1419
    [50] Kesler S. B. Modern Spectrum Analysis II . IEEE Press, 1986
    [51] Kay S. M. Modern Spectral Estimation. Prentice-Hall, 1988
    [52]王宏禹.随机信号处理.科学出版社. 1988
    [53]陈兆国.时间序列及其谱分析.科学出版社, 1986
    [54] Marple S. L. Digital Spectral Analysis with Applications. Prentice-Hall, 1987
    [55] Zbigneiew Leonowicz, Tadeusz Lobos, Jacek Rezmer. Adcanced Spectrum Estimation Methods for Signal Analysis in Power Electronics. IEEE Trans on Industrial Electronics. 2003, 50(3):514-519.
    [56] T. Lobos, Z. Leonowicz, J. Rezmer. Harmonics and Interharmonics Estimation Using Advanced Signal Processing Methods. IEEE Int. Conf. Harmonics and Quality of power. 2000, 1(5):335-340.
    [57]王志群,朱守真,周双喜.基于Pisarenko谐波分解的间谐波估算方法[J].电网技术, 2004, 28(15): 72-77, 82.
    [58]石敏,吴正国,尹为民.基于多信号分类法和普罗尼法的间谐波参数估计[J].电网技术,2005, 29(15): 81-84.
    [59]丁屹峰,程浩忠,吕干云,等.基于Prony算法的谐波和间谐波频谱估计[J].电工技术学报,2005,20(10): 94-97.
    [60] Q S, Willis A J. Fast root MUSIC algorithm[J]. Electronics Letters, 1997, 33(6): 450-451.
    [61]高培生,谷湘文,吴为麟.基于求根多重信号分类和遗传算法的谐波间谐波频谱估计.电工技术学报,2008,23(6): 109-113.
    [62]马秉伟,刘会金,周莉,崔福鑫.一种基于自回归模型的间谐波谱估计的改进算法[J].中国电机工程学报, 2005, 25(15): 79-83.
    [63]马秉伟,周莉,刁均伟.基于现代谱估计方法的间谐波检测,继电器,2005,33(3): 25-27.
    [64]张经纬;周念成;杨芳,等.基于四阶累积量的多信号分类法间谐波检测研究[J].继电器,2008, 36(7): 19-23, 28.
    [65] Gu, Y.H.; Bollen, M.H.J. Time-frequency and time-scale domain analysis of voltage disturbances[J]. IEEE Trans on Power Delivery, 2000, 15(4):1279-1284
    [66]赵成勇,何明锋.基于特定频带的短时傅里叶分析[J].电力系统自动化,2004,28(14):41-44.
    [67]刘俊,戴本祁,王之悦.基于小波和短时傅里叶变换的电网谐波分析[J].继电器,2007,35(23): 55-59.
    [68]江亚群;何怡刚.基于自适应短时傅立叶变换的电频率跟踪测量算法[J].电子测量与仪器学报,2006 20(02): 10-15.
    [69]郭辉;傅成华;何春芳.基于短时傅里叶变换的电压间谐波分析,电力系统通信, 2008, 29(186): 66-68.
    [70]阮霭兰,全书海.窗口傅里叶分析法的非正弦电功率实时测量[J].华中师范大学学报(自然科学版) , 2001, 35(03): 291-293.
    [71] Hlawatsch F, Boudreaux-Bartels G F. Linear and quadratic time-frequency signal representations. IEEE Signal Processing Magazine, 1992, 9(2): 21-67.
    [72] Poission Q, Rioual P, Meunier M. New signal processing tools applied to power quality analysis[J]. IEEE Trans on Power Delivery, 1999, 14(2): 561-566.
    [73]乐叶青,徐政.平滑伪Wigner-Ville分布在电力系统谐波和电压变动检测中的应用[J].继电器, 2006, 34(16): 39-43
    [74]乐叶青,徐政.基于时频分布的电能质量交叉扰动检测[J].电力系统及其自动化学报,2007, 19(6): 114-117
    [75]樊荣.基于Wigner分布和经验模态分解的谐波分析方法.科技创新导报, 2008(12): 9-10
    [76]周文晖,李青.采用小波变换的电能质量暂态干扰检测.科技通报,2002,18(3):208-212.
    [77]齐泽锋,赵瑞娜,谈顺涛等.基于短时李氏指数的电能质量扰动检测仿真研究.电力自动化设备,2002,22(1):29-31.
    [78]严居斌,刘晓川,杨洪耕,张斌.基于小波变换模极大值原理和能量分布曲线的电力系统短期扰动分析.电网技术,2002,26(4):16-19
    [79]李天云,范广良,陈晓东等.电能质量短期扰动分类检测的db1小波分析法.吉林电力,2003,24(5):9-12.
    [80]李天云等.几种电能质量扰动分类和检测的双小波法.电力系统自动化,2003,27(22):26-29
    [81]何顺忠.采用meyer小波变换对电能质量扰动信号进行检测与时频分析.自动化技术与应用,2004,23(5):55-57
    [82]林轶群,林奇峰.基于小波多孔算法的暂态电能质量检测方法.中国电力,2002,85(10):54-57
    [83] Angrisani L,daponte P,et al. A new Wavelet Transform based Procedure for Electrical Power Quality Analysis. Inproc.Of the 1996 IEEE Int.Conf.On Harmonics and Quality of Power,Las Vegas,USA,1996:608-614
    [84]王克星,王建华,耿英三等.利用小波变换提取工频信号方法的研究.电子技术杂志,2002,18(2):8-10
    [85]周文晖,林丽莉,周兆经.基于小波变换的谐波检测法.仪器仪表学报,2001,22:5-10
    [86] Pham V L and Wong K P. Antidistortion method for wavelet transform filter banks and nonstationary power system waveform harmonic analysis. IEE Proceedings on Generation, Transmission and Distribution, 2001, 148(2): 117-122
    [87]王建赜,冉起文,纪延超等.基于小波变换的时变谐波检测.电力系统自动化,1998,22(8):52-55
    [88]任震,黄群古,黄雯莹.基于多频带小波变换的电力系统谐波分析新方法.中国电机工程学报,2000,20(12):38-41,46
    [89]杜天军,陈光褕,雷勇.基于混叠补偿小波变换的电力系统谐波检测方法.中国电机工程学报,2005,25(3):54-59
    [90] Tao Lin, Mineo Tsuji, Eiji Yamade. A wavelet approach to real time estimation of power system frequency. In: The 27nd Annyal Conference of the IEEE Industrial Electronics Society. Denver, 2001, 58-65
    [91] Keaochantranond T, Boonseng C. Harmonics and interharmonics estimation using wavelet transform. In: Proceedings of IEEE/PES Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. Yokohama, 2002, 2, 775-779
    [92] Pham V L, Wong K P. Wavelet-transform-based algorithm for harmonic analysis of power system waveforms. IEE Proceedings on Generation, Transmission and Distribution, 1999, 146(3): 249-254
    [93] Pham V L and Wong K P. Antidistortion method for wavelet transform filter banks and nonstationary power system waveform harmonic analysis. IEE Proceedings on Generation, Transmission and Distribution, 2001, 148(2): 117-122
    [94]赵成勇,何明锋.基于复小波变换相位信息的谐波检测算法.中国电机工程学报,2005,25(1):38-42
    [95]陈祥训.实时跟踪电压闪变幅度的移动不变小波分析方法.中国电机工程学报,2004,24(10):1-7
    [96] Donoho D L. De-noising by soft-thresholding. IEEE Trans on Inform. Theory, 1995, 41(5): 613-627 [ 97 ] Hong-Tzer Yang, Chiung-Chou Liao. A de-noising scheme for enhancing wavelet-based power quality monitoring system, IEEE Trans on Power Dilivery, 2001, 16(3): 353-360
    [98]欧阳森,宋政湘,陈德桂等.小波软阈值去噪技术在电能质量检测中的应用.电力系统自动化,2002,26(19):56-60
    [99] Pan Quan, Zhang Lei, Dai Guangzhong et al. Two denoising methods by wavelet transform, IEEE Trans on Signal Processing, 1990, 47(12): 3401-3406
    [100]董新洲,耿中行,葛耀中等.小波变换应用于电力系统故障信号分析初探[J].中国电机工程学报,1997,17(6): 421-424
    [101] Stockwell R G,Mansinha L,Lowe R P.Localization of the complex spectrum:The S transform [J].IEEE Trans. on Signal Processing,1996,44(4):998-1001.
    [102] Dash P K, Panigrahi B K, Panda G.Power quality analysis using S-transform [J].IEEE Trans.on Power Delivery, 2003, 18(2): 406-411.
    [103]杨洪耕,刘守亮,肖先勇,等.基于S变换的电压凹陷分类专家系统[J].中国电机工程学报, 2007, 27(1): 98-104.
    [104]占勇,程浩忠,丁屹峰,等.基于S变换的电能质量扰动支持向量机分类识别[J].中国电机工程学报,2005,25(4):51-56.
    [105]刘守亮,肖先勇,杨洪耕.基于S变换模时频矩阵相似度的短时电能质量扰动分类[J].电网技术,2006,30(5):67-71.
    [106]赵凤展,杨仁刚.基于S变换和时域分析的电能质量扰动识别[J].电网技术, 2006, 30(15): 90-94,100.
    [107] Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[C].The Royal Society of London,London,1998.
    [108]李天云,赵妍,韩永强等. Hilbert-Huang变换方法在谐波和电压闪变检侧中的应用.电网技术,2005,29(2):73-77
    [109]李天云,程思勇,杨梅.基于希尔伯特-黄变换的电力系统谐波分析[J],中国电机工程学报,2008,28(4):109-113.
    [110]刘稳坚;黄纯;邢耀广,等.经验模态分解及Hilbert谱分析在电压闪变检测中的应用[J].计算机测量与控制, 2006, 14(6): 707-709, 756
    [111]李天云.赵妍,李楠等.基于HHT的电能质量检测新方法.中国电机工程学报,2005,25(1): 52-56
    [112]李天云,赵妍,李楠.基于Hilbert-Huang变换应用于暂态信号分析.电力系统自动化,2005,29(4):49-52
    [113]李天云,赵妍,季小债,等. HHT方法在电力系统故障信号分析中的应用.电工技术学报,2005,20(6): 87-91.
    [114]王波,杨洪耕.电力系统电压短期扰动的三角模态检测方法[ J ].电工技术学报, 2005, 20 (11) : 101~105.
    [115]肖冰.电力系统电能质量分析方法的研究[D].济南:山东大学, 2005.
    [116]樊荣.基于Wigner分布和经验模态分解的谐波分析方法.科技创新导报, 2008(12): 9-10
    [117]刘晓芳,刘会金,陈允平.人工智能技术在电能质量分析中的应用[J],电工技术杂志,2004(12): 66~70
    [118] P K Dash, D P Swain, et al. Power quality assessment using an adaptive neural network. Proc. IEEE Int. Conf. Power Electron, Drives, Energy Syst. Industria Grow, 1996, 2: 770-775
    [119]王群,吴宇,王兆安.一种基于人工神经网络的谐波测量方法[J].电网技术, 1999,23(1): 29-32
    [120] W W L Keerthipala, T C Low, C L Tham. Artificial neural network model for analysis of power system harmonics. Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, 1995, 2: 905-910
    [121] H. Morl, K. Itou et al. An Artificial Neural-Net Based Method for Predicting Power System Harmonics. IEEE Trans on Power Delivery. 1992, 7(1): 402-409
    [122] S. Osowski. Neural Network for Estimation of Harmonic Components in a Power System. IEE Proceeding-C. 1992, 139(2): 129-135
    [123] A K Ghosh, D L Lubkeman. Classification of power system disturbance waveforms using a neural network approach. IEEE Trans. on Power Delivery, 1995, 10(2): 109-115
    [124] S Santoso, E J Powers, W M Grady. Power quality disturbance identification using wavelet transforms and artificial neural networks. Proceedings of IEEEICHQP VII. Las Vegas, 1996: 615-618
    [125] S Santoso, J P Edward, et al. Power quality disturbance waveform recognition using wavelet-based neural classifier. Part 1: theoretical foundation, part 2: application. IEEE Trans on Power Delivery, 2000, 15(1): 218-235
    [126] Quyang Sen, Song Zhengxiang et al. Application of LVQ neural networks combined with genetic algorithm in power quality signals classification. Proceedings of Power Con 2002. International Conference on Power System Technology, 2002. 13~16 Oct. 2002, 2002, 1: 491~495
    [127] E Styvaktakis, M H J Bollen, I Y H Gu. Expert system for voltage dip classification and analysis1 Power Engineering Society Summer Meeting, 2001. 15~19 July IEEE, 2001, 2001, 1: 671~676
    [128] D G Kreiss. Analyzing voltage disturbances using a fuzzy logic based expert system. Proc. EPRI PQA Conf: Power Quality Assessment, End-Use Appl. Perspect ves, 1994, 1: A-2.02 [ 129 ] J S Huang, M Negnevitsky, D T Nguyen. A neural-fuzzy classifer for recognition of power quality disturbances. IEEE Transactions on Power Delivery, 2002, 17(4): 609-616
    [130] Serra. Image Analysis and Mathematical Morphology[M]. New York: Academic, 1982.
    [131]狄红卫,许瑶.数学形态学在图像滤波中的应用[J].暨南大学学报, 2003, 23(3):42-45
    [132] Y S , Pomalaza R C A ,Wang X H. Comparison Study of Nonlinear Filters in Images Processing Application. Op. t Eng. , 1989 , 28(7) : 749~760
    [133] Pitas I , Venetsanopoulus A N. Nonlinear Digital Filters Principles and Applications. Bostan : Kluwer Academic, 1990.
    [134] Novak D, Lhotska L, Alani T, et al. Morphology analysis of physiological signals using hidden Markov models[C]∥Proceedings of the 17th International Conference on PatternRecognition. Cambridge, UK: [s.n.], 2004: 754-757. [ 135 ] Soille P, Pesaresi M. Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Trans. On Geoscience and Remote Sensing, 2002, 40(9): 2042- 2055.
    [136] Keqi, Chen Shu-Ching, Whitman D et al. A progressive morphological filter for removing nonground measurements from airborne LIDAR data[J]. IEEE Tran.On Geoscience and Remote Sensing, 2003, 41(4):872-882.
    [137] Sun P, Wu Q H. Morphological Systems for Signal and Imaging Processes in Power Systems. UK: The University of Liverpool, 1998, 12-15
    [138] Wu Q H, Zhang J F, Zhang D J. Ultra-high-speed Directional Protection of Transmission Lines Using Mathematical Morphology. IEEE Trans on Power Delivery, 2002, PE-051PRD (08-2002)
    [139] L. Koskinen, J. Astola, Y. Neuvo. Soft Morphological Filters. in Proc. SPIE Symp. Image Algebra and Morphological Image Processing II. Vo1.1568,1991:262-270
    [140] L. Koskinen, J. Astola. Statistical Properties of Soft Morphological Filters.in Proc. SPIE Symp. Nonlinear Image Processing III. Vo1.1658, 1992: 25-36
    [141] F. Y. Shih, C. C. Pu. Analysis of the Properties of Soft Morphological Filtering Using Threshold Decomposition. IEEE Trans. on Signal Processing.1995, 43(2): 539-544
    [142] H. Huttunen, P. Kuosmanen, L. Koskinen, J. Astola. Optimization of Soft Morphological Filters by Genetic Algorithms. in Proc. SPIE Symp. Image Algebra and Morphological Image Processing V. Vo1.2300, 1994: 13-24
    [143]陈平,李庆民.基于数学形态学的数字滤波器设计与分析[J].中国电机工程学报,2005,25(11): 60-65
    [144]岳蔚,刘沛.基于数学形态学消噪的电能质量扰动检测方法[J] .电力系统自动化, 2002, 26( 7) : 13-17.
    [145]欧阳森.基于顺序形态方法的电力信号处理方法[J].电工电能新技术,2005, 24(01): 45-48,75
    [146]全玉生,李学鹏,杨俊伟,等.数学形态学算子在电力系统突变信号检测中应用[J] .电力自动化设备,2006, 26(3): 1-5.
    [147]凌玲,徐政.基于数学形态学的动态电能质量扰动的检测与分类方法[J] .电网技术, 2006, 30(5) : 62-66.
    [148]曾纪勇,丁洪发,段献忠.基于数学形态学的谐波检测与电能质量扰动定位方法[J].中国电机工程学报,2005,25(21): 57-62.
    [149] Mandelbrot B. The fractal geometry of nature[M]. W. H. Freeman and Company, 1983.
    [150]李庚银,罗艳,周明,等.基于数学形态学和网格分形的电能质量扰动检测及定位[J].中国电机工程学报,2006,26(3): 25-30.
    [151]赵瑞娜,齐泽锋,陈允平,等.基于短时网格分形维数的电能质量扰动检测[J].继电器,2001,29(11): 21-23
    [152]胡为兵,李开成,张明,等.基于小波变换和分形理论的电能质量扰动监控系统[J].电网技术, 2008 ,32(12): 51-55
    [153]王晶,束洪春,陈学允.动态电能质量的分形指数小波分析方法[J].中国电机工程学报,2004,24(5): 40-45.
    [154]黄纯,江亚群.谐波分析的加窗插值改进算法[J],中国电机工程学报,2005, 25(15): 26-32
    [155] Zhan Changjiang, Fitzer C, Ramachadaramurthy V K, et al. Software phase- locked loop applied to dynamic voltage restorer (DVR) // Proceedings of IEEE Power Engineering Society Winter Meeting : Vol 3 , January 28 - February 1, 2001, Columbus, OH, USA: 1033-1038.
    [156] Barbosa Roliml G B , Rodrigues DA Costajr D R , Aredes M, et al . Analysis and software implementation of a robust synchronizing PLL circuit based on t he pq t heory. IEEE Trans on Indust rial Elect ronics, 2006, 53(6): 1919-1926.
    [157] Phipps W S, DukE R M, Harrison M J. A novel there-phase software phase- locked loop[C]. Proceedings of 12th International Power Electronics and Motion Control Conference, August 30-September 1, 2006, Portoroz, Slovenia: 172-177.
    [158] Rodriguez P, Pou J, Bergas J, et al. Decoupled double synchronous reference frame PLL for power converters control. IEEE Trans on Power Electronics, 2007, 22(2): 584-592.
    [159] Bueno E J, Rodriguez F J, Espinosa F, et al. SPLL design to flux oriented of a VSC interface for wind power applications. Proceedings of 31st Annual Conference on IEEE Industrial Electronics Society, November 6-10, 2005, Raleigh, NC, USA: 2451-2456.
    [160] Karimi Ghartemani M. A novel three-phase magnitude-phase-locked loop system[J]. IEEE Trans on Circuit s and Systems, 2006, 53(8): 1792-1802.
    [161]李根,庞浩,徐健飞,等.一种基于改进锁相环的谐波分析逻辑电路.电力系统自动化,2007,31(21): 82-85.
    [162]孔雪娟,罗眆,彭力,等.基于周期控制的逆变器全数字锁相环的实现和参数设计.中国电机工程学报,2007,27(1): 60-64.
    [163] Kaura V, Blasko V. Operation of a phase locked loop system under distortedutility conditions. IEEE Trans on Industrial Applications, 1997, 33 (1): 58-63.
    [164] IEC 86820. Flickermeter Part 0: Evaluation of flicker severity[S], 1986.
    [165] IEC Publication 868. Flickermeter - functional and design specification[S].1986.
    [166]徐士良.C常用算法程序集(第二版).北京:清华大学出版社,1996.
    [167] Bollen M H J. Understanding power quality problems, voltage sags and interruptions [J]. IEEE PRESS, Piscataway, NewJersey, 2000
    [168] Middlekauff S W, Collins J E R. System and customer impact: considerations for series custom power devices [J]. IEEE Trans. on Power Delivery, 1998, 13(1): 278-282.
    [169] XIAO Xiangning, XU Yonghai, LIU Liangguang. Simulation and analysis of voltage sag mitigation using active series voltage injection[A]. Proceedings of the 2000 International Conference on Power System Technology (POWERCON 2000) [C]. Perth, Australia, 2000. 1317-1322.
    [170]赵国亮,刘宝志,肖湘宁,等.一种无时延的改进d-q变换在动态电压扰动识别中的应用.电网技术,2004,28(7): 53-57.
    [171]彭春萍,陈允平,孙建军.动态电压恢复器及其检测方法的探讨[J].电力自动化设备,2003,23(1): 68-71.
    [172]杨淑英,杜彬.基于dq变换的动态电压恢复器综合求导检测算法[J].电力系统自动化,2008,32(2): 40-44
    [173]杨潮,张秀娟,唐志,等.三相串联电能质量控制器及其补偿电压算法,清华大学学报(自然科学版),2003年,43(03): 15-19
    [174]王兆安.谐波抑制和无功功率补偿(第2版),北京:机械工业出版社,2006年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700