乳酸片球菌素pedA基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌素作为一种天然生物防腐剂,用于食品防腐以提高食品安全性和延长食品货架期。为解决天然菌株细菌素产量较低的问题,本课题采用基因工程技术,克隆乳酸片球菌的片球菌素pedA基因,建立大肠杆菌片球菌素基因pedA表达系统,以期获得片球菌素的高效表达。
     以乳酸片球菌基因组为模板,采用PCR法,扩增出了片球菌素的结构基因pedA。将扩增的pedA基因连接到pMD18-T载体,转化至大肠杆菌DH5α。提取含有pedA基因的pMD18-T重组质粒,Bgl II和Xhol I双酶切获得pedA基因,与经同样双酶切后的表达质粒pET32a(+)连接,先后转化至大肠杆菌DH5α和大肠杆菌BL21(DE3),用PCR法筛选阳性克隆菌株后,选取其中的一株阳性克隆菌株,提取重组质粒,进行pedA基因测序,发现该重组质粒含有pedA基因,其核苷酸序列与NCBI公布的片球菌素pedA基因(GenBank AY083244)同源性为100%。该菌株在含有1mmol/L IPTG的培养基中,37℃培养4小时后,高效表达了预期大小的22kDa硫氧还蛋白和片球菌素的融合蛋白。
     重组菌培养物经超声破碎后离心,分别取上清和沉淀物用SDS-PAGE进行分析,由于在沉淀物SDS-PAGE电泳结果中有预期大小的融合蛋白条带,表明表达的蛋白为包涵体。为获得有活性的表达产物,将提取的包涵体充分洗涤,用含有谷胱甘肽氧化还原系统的复性缓冲液处理,促进蛋白正确折叠复性。由于表达的融合蛋白含有His-tag,复性后的蛋白质通过Ni-IDA亲和重力柱分离纯化,在500mmol/L咪唑浓度下洗脱得到单一蛋白条带,纯化的蛋白浓度在0.4-0.7mg/mL。纯化的蛋白质经肠激酶酶切后,SDS-PAGE电泳出现两个蛋白条带,其中一个与片球菌素分子量相近,另一个与硫氧还蛋白的分子量相近。
     纯化的蛋白质经肠激酶酶切后,牛津杯法测定酶切产物的抑菌活性,发现对单核细胞增多症李氏杆菌具有抑制作用,表明本试验建立的pedA基因大肠杆菌表达系统可以表达片球菌素融合蛋白,经包涵体复性、融合蛋白酶切后得到了有活性的片球菌素产物。对得到的基因工程片球菌素,用牛津杯法测定其抑菌谱,除对单核细胞增多症李氏杆菌有抑菌作用外,对植物乳杆菌也有抑制作用,但对金黄色葡萄球菌、沙门氏菌、大肠杆菌O157无抑制作用。
As one of natural biopreservatives, bacteriocin plays important role in improvingfood safety and extending shelf-life. This research subject made use of geneengineering technology to clone the pediocin pedA gene from Pediococcusacidilactici and construct pediocin pedA gene expression system in Escherichia coliin order to solve the low bacteriocin production problem in wild strain and realizeexpected highly efficient expression of pediocin.
     The total DNA of P. acidilactici was used as the template to amplify thestructural gene pedA in the method of polymerase chain reaction (PCR). Theamplified pediocin structural gene pedA was ligased with pMD18-T vector beforetransformed E. coli DH5α competent cells. The pMD18-T recombinant plasmidcontaining pedA gene was extracted and digested by Bgl II和Xhol I restrictionenzymes and then ligased with the expression vector pET32a(+) which was digestedwith the same restriction enzymes. The ligation mixture was used to transform E. coliDH5α competent cells and further E. coli BL21(DE3) competent cells. Therecombinant strains were screened by PCR method and one was selected to extractrecombinant plasmid for DNA sequencing of the pedA gene. The result testified thatthe recombinant plasmid contained the pedA gene which was100%homologous tothe pedA gene published in the NCBI (GenBank AY083244). This recombinant strainwas induced with1mmol/L IPTG at37℃for4h and efficiently expressed22kDaTrx-Ped Afusion protein.
     The culture of the recombinant was sonicated and centrifuged. Both thesupernatant and the pellet were analized by SDS-PAGE. Since the result showed thatthe expected fusion protein was in the pellet, the protein was expressed as inclusionbody. To obtain active expression product, the extracted inclusion body was washedadequately and treated with the renaturation buffer containing GSSG-GSH system forthe correct refolding of the protein. The refolding protein took advantage of its ownHis-tag and was separated and purified by adding to the Ni-IDA agarose resin column.A single protein band was observed in500mmol/L imidazol elute. The purified fusionprotein has the concentration of0.4-0.7mg/mL. Purified fusion protein was treatedwith enterokinase and two protein bands appeared. One of them corresponded withthe predicted molecular mass of pedA gene; the other corresponded with the predicted molecular mass of thioredoxin.
     Purified fusion protein was treated with enterokinase and the well test revealedthat the cleavage product had antimicrobial activity to Listeria monocytogenes whichproved that the constructed pediocin pedA gene expression system in E. coli couldexpress pediocin fusion protein and obtain biological active pediocin product afterinclusion body renaturation and enterokinase treatment of the fusion protein. The welltest evaluated the inhibitory spectrum of the genetic engineering pediocin. The resultsindicated that the antimicrobial activity on and Lactobacillus plantarum as well as L.monocytogenes was found clearly and the antimicrobial activity againstStaphylococcus aureus, Salmonella typhi and E. coli O157was not found.
引文
[1] Marth, E.H., Extended shelf life refrigerated foods: microbiological quality andsafety, Food Technol,1998,52:57-62
    [2] Hust A., Function of nisin and nisin-like basic proteins in the growth cycle ofStreptococcus lactis, Nature,1967,214:1232-1234
    [3] Paul D.Cotter, Colin Hill and R.Paul Ross, Bacteriocins: developing innateimmunity for food. Nature,2005,3:777-788
    [4]丁成为,乳酸片球菌素抑菌谱及应用性研究:[硕士学位论文],天津;天津大学,2007
    [5] Nettles Catherine G., Susan F, Barefoot S.F, Biochemical and geneticcharacterization of bacteriocin of food-associated lactic acid bacteria, J. FoodProtection,1993,50(4):338-356
    [6] Klaenhammer, T.R., Genetic of bacteriocins produced by lactic acid bacteria.FEMS Microbiol. Rev,1993,12:39-85
    [7] Altena, K., Guder, A., Cramer, C., Bierbaum, G., Biosythesis of the lantibioticmersacidin: organization of a type B lantibiotic gene cluster. Appl. Environ.Microbiol.,2000,66:2565-2571
    [8] Francisco B.E, Wang June Kim, Dae Young Kwon, Rapid purification, partialcharacterization and antimicrobial spectrum of the bacteriocin Pediocin AcH fromPediococcus acidilatici M, International Journal of Food Microbiology,1997,4(4):371-374
    [9]朱文淼,刘稳,乳酸菌细菌素的分子生物学研究进展,中国微生态学杂志,2000,12:113-115
    [10] Siegers K and Entian K.D, Genes involved in immunity to the lantibiotic Nisinproduced by Lactococcus lactic6F, Applied and Environmental Microbiology,1995,12(5):1082-1089
    [11]李明春,田瑞,邢来君,乳球菌肽(Nisin)的研究进展,基础研究,1999(12):10-12
    [12] Jennifer Cleveland, Thomas J.Montville and Ingolf F. Nes et al, Bacteriocins:safe, natural antimicrobials for food preservation, International Journal of FoodMicrobiology,2001,71:1-20
    [13] U.S. Food and Drug Administration, Nsin Preparation: Affirmation of GRASstatus as direct human food ingredient, Federal Register,1988,53,April6
    [14] Hansen, J.N., Antibiotics synthesized by post translational modification, Ann.Rev. Microbiol.,1993,47:535-564
    [15] Hust,A., Nisin,Appl. Microbiol.,1981,27:85-123
    [16] Jack, R.W., Tagg, J.R., and Ray B, Bacteriocins of Gram-positive bacteria,Microbiol. Rev.,1995,59:171-200
    [17] Eijsink, V.G.H., Skeie. M., Middelhoven, P.H., Brurberg, M.B. and Nes, I.F.,Comparative studies of class Iia bacteriocins of lactic acid bacteria, Appl.Environ. Microbiol,1998,64:3275-3281
    [18] Aymerich, T., Holo, H., Havarstein, L.S., Hugas, M., Garriga, M., amd Nes, I.F.,Biochemical and genetic characterization of enterocin A from Entercoccusfaecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins.Appl. Environ. Microbiol.,1996,62:1676-1682
    [19] FimLand, G., Blingsmo, O.R., Sletten, K., Jung, G., Nes, I.F. and Nissen-Meyer,J., New biologically active hybrid bacteriocins constructed by combining regionsfrom various pediocin-like bacteriocins: the C-terminal region is important fordeterming specificity, Appl. Environ. Microbiol.,1996,62:3313-3318
    [20] Said Ennahar, Toshihir Sashihara, Kenji Sonomoto, Ayaaki Ishizaki, Class Iiabacteriocins: biosynthesis, structure and activity, FEMS Microbiology Reviews,2000,24:85-106
    [21] Chen, Y., Ludescher, R.D., Montville, T.J., Electrostatic interaction, but not theYGNGV consensus motif, govern the binding of pediocin PA-1and its fragmentsto phospholipid vesicles. Appl. Environ. Microbiol.,1997,63:4770-4777
    [22] Chen, Y., Sharpira, R., Eisenstein, M, Montville, T.J., Functional characterizationof pediocin PA-1binding to liposomes in the absence of a protein receptor andits relationship to a predicted tetiary structure. Appl. Environ. Microbiol.,1997,63:524-531
    [23] Okereke, A., Montville, T.J., Nisin dissipates the proton motive force of theobligate anaerobe Clostridium sporogenes PA3679. Appl. Environ. Microbiol.,1992,58:2463-2467
    [24] Bruno M.E.C., Montville T.J., Common mechanistic action of bacteriocins fromlactic acid bacteria.Appl. Environ. Microbiol.,1993,59:3003-3010
    [25] Kaiser AL, Montville TJ, Purification of the bacteriocin bavaricin MN andcharacterization of its mode of action against Listeria monocytogenes Scott Acells and lipid vsicles, Appl. Environ. Microbiol,1996,62:4529-4535
    [26] Maftah A, Renault D, Vignoles C, Hechard Y, Bressolier P, Ratinaud MH,Cenatiempo Y, Julian R, Membrane permeabilization of Listeria monocytogenesand mitochondria by bacteriocin mesentaricin Y105, J Bacteriol,1993,175:3232-3235
    [27] Moll GN, Hildeng-Hauge H, Nissen-Meyer J, Nes IF, Konings WN, Dressen AJ,Mechanistic properties of the two-component bacteriocin lactococcin G, JBacteriol,1998,180:96-99
    [28] Nicholls DG, Ferguson SJ, Chemiosmotic energy transduction. In: Nicholls DG,Ferguson SJ (eds) Bioenergetics2, Academic Press, London, pp1-20
    [29] Montville, T.J and Chen, Y, Mechanistic action of pediocin and nisin: recentprogress and unresolved questions, Appl. Microbiol. Biotechnol.,1998,50:511-519
    [30] Ojcius, D.M., Young, J.D., Cytolytic pore-forming proteins and peptides: is therea common structural motif? TIBS,1991,16:225-229
    [31] Driessen, A.J., van den Hooven, H.W., Kuiper, W., van de, K.M., Sahl, H.G.,Konings, W.N., Mechanistic studies of lantibiotic-induced permeabilization ofphospholipid vesicles, Biochemistry,1995,34:1606-1614
    [32] Breukink, E., Wiedemann, I., van Kraaij, C., Kuippers, O.P., Sahl, H., de Kruijff,B., Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic,Science,1999,286:2361-2364
    [33] Friedrich, C.L., Moyles, D., Beveridge, T.J., Hancock. R.E., Antibacterial actionof structurally diverse cationic peptides on Gram-positive bacteria, Antimicrob.Agents Chemother,2000,44:2086-2092
    [34] Brotz, H., Josten, M., Wiedemann, I., Schneider, U., Gotz, F., Bierbaum, G., Sahl,H.G., Role of lipid-bound peptidoglycan precursors in the formation of pores bynisin, epidermin and other lantibiotics, Mol. Microbiol.,1998,30:317-327
    [35] Broz, H., Bierbaum, G., Leopold, K., Reynolds, P.E., Sahl, H.G., The lantibioticmersacidin inhibits peptidoglycan synthesis by targeting lipid II, Antimicrob.Agents Chemother,1998,42:154-160
    [36] Crandall, A.D., Montville, T.J., Nisin resistance in Listeria monocytogenes ATCC700302is a conplex phenotype, Appl. Environ. Microbiol.1998,64:231-237
    [37] Mazzotta, A.S., Crandall, A.D., Montville, T.J., Nisin resistance in Clostridiumbotulinum spores and vegetative cells, Appl. Environ. Microbiol.,1997,63:2654-3659
    [38] Ming, X., Daeschel, M.,1993, Nisin resistance of foodborne bacteria and thespecific resistance responses of Listeria monocytogenes Scott A, J. Food Prot,1993,56:944-948
    [39] Lucie Beaulieu, Hafida Aomari, Denis Groleau and Muriel Subirade, Animproved and simplified method for the large-scale purification of pediocin PA-1produced by Pediococcus acidilactici, Biotechnol. Appl. Biochem,2006,43,77-84
    [40] Abee, T., Krockel, L., Hill, C., Bacteriocins: modes of action and potentials infood preservation and control of food poisoning. Int. J. Food Microbiol,1995,28:169-185
    [41] Delves-Broughton, J., Blackburn, P., Evans, R.J., Hugenholtz, J., Application ofthe bacteriocin, nisin. Antonie van Leeuwenhoek,1996,69:193-202
    [42] Wessels, S., Jelle, B., Nes, I., Bacteriocins of lactic acid bacteria. Report of theDanish Toxicology Centre, Denmark,1998
    [43] Chung H.J, Montivile T. J and Chikindas M.J, Nisin depletes ATP and protonmotive force in mycobacteria, Letters in Applied Microbiology,2000,31:416-420
    [44] Rayman, M.K., Aris, B., Hust, A., Nsin: a possible alternative or adjunct to nitritein the preservation of meats,Appl. Environ. Microbiol,1981,41:375-380
    [45] Rayman, K., Mailik, N., Hurst, A., Failure of nisin to inhibit outgrowth ofClostridium botulinum in a model cured meat system. Appl. Environ. Microbiol.,1983,46:1450-1452
    [46] Baccus-Taylor, G., Glass, K.A., Luchansky, J.B., Maurer, A.J., Fate of Listeriamonocytogenes and pediococcal starter cultures during the manufacture ofchicken summersausage,1993,72:1772-1778
    [47] Coventry, M.J., Muirhead, K., Hickey, M.W., Partial characterisation of pediocinPO2and comparison with nisin for biopreservatition of meat products, Int. J.Food Microbiol,1995,26:133-145
    [48] Schlyter,J.H., Glass, K.A., Loeffelholz, J., Degnan, A.J., Luchansky, J.B., Theeffects of diacetate with nitrite, lactate, or pediocin on the viability of Listeriamonocytogenes in turkey slurries, Int. J. Food Microbiol,1993,19:271-281
    [49]宋连花,王彦文,乳链菌肽的研究进展,食品研究与开发,2004,25(6):89-92
    [50] Engelke, G., Gutowski-Eckel, Z., Hammelmann, M., Entian, K.D., Biosynthesisof the lantibiotic nisin: genomic organization and menbrane localization of theNisB protein,Appl. Environ. Microbiol.,1992,58:3730-3743
    [51]Diep, D.B., Havarstein, L.S., Nes, I.F., Characterization of the locus responsiblefor the bacteriocin production in Lactobacillus plantarum C11, J. Bacteriol,1996,178:4472-4483
    [52] Rauch, P.J., de Vos, W.M., Characterization of the novel nisin-sucroseconjugative transposon Tn5276and its insertion in Laxtococcus lactis, J.Bacteriol,1992,174:1280-1287
    [53] Klein, C., Kaletta, C., Schnell, N., Entian, K.D., Analysis of genes involved inbiosythesis of the lantibiotic subtilin [published erratum appears in Appl.Environ. Microbiol.1992, May;58(5):1795]. Appl. Environ. Microbiol.58,132-142
    [54] Klein, C., Kaletta, C., Entian, K.D., Biosynthesis of the lantibiotic subtilin inregulated by a histidine kinase/response regulator system, Appl. Environ.Microbiol,1993,59,296-303
    [55] Engelke, G., Gutowski-Eckel, Z., Kiesau, P., Siegers, K., Hammelmann, M.,Entian, K.D., Regulation of nisin biosythesis and immunity in Lactococcus lactis6F3, Appl. Environ. Microbiol,1994,60:814-825
    [56] Marugg J. D., Gonzalez C. F., Kunka, B. S. et al. Cloning, expression, andnucleotide sequence of genes involved in production of pediocin PA-1, abacteriocin from Pediococcus acidilactici PAC1.0, Appl.Environ. Microbiol,1992,58:2360–2367
    [57] María Martín, Jorge Gutiérrez, Raquel Criado et al. Cloning, production andexpression of the bacteriocin enterocin A produced by Enterococcus faeciumPLBC21in Lactococcus lactis,Appl Microbiol Biotechnol,2007,76:667–675
    [58] Stoddard GW, Petzel JP, Mcka Y LL. Molecular analysis of the lactococcin Agene cluster from Lactococcus lactis subsp biovardiacetylactis WM4, App lEnvir Microbiol,1992,58:1952-1956
    [59]王培培,乳酸片球菌16SrRNA基因和片球菌素基因的克隆及序列分析:[硕士学位论文],天津;天津大学,2007
    [60] FimLand G., Johnson L., Nisswn-Meyer J. Pediocin-like antimicrobial peptides(class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, andmode of action, Journal of Peptide Science,2005,11:688–696
    [61] Chikindas ML, Garcera MJG, Driessen AJM et al. Pediocin PA-1, a bacteriocinfrom Pediococcus acidilactici PAC1.0, forms hydrophilic pores in thecytoplasmic membrane of target cells, Appl Environ Microbiol,1993,59:3577-3584
    [62] El-Jastimi R, Lafleur M. Structural characterization of free and membrane-boundnisin by infrared spectroscopy, Biochim BiophysActa,1997,1324:151-158
    [63] Gerard M. Gibbs, Barrie E. Davidson, and Alan J. Hillier, Novel expressionsystem for large-Scale production and purification of recombinant class IIabacteriocins and its application to piscicolin126, Applied and EnvironmentalMicrobiology,2004,70:3292–3297
    [64] Somkuti G.A., Steinberg D.H., Pediocin production by recombinant lactic acidbacteria, Biotechnology Letters,2003,25:473-477
    [65] Mundt J.O., Beattie W.G., Wieland F.R. Pediococci residing in plants, Bacteriol,1969,98:2730-2733
    [66]谢磊,孙建波,张世清,黄俊生,大肠杆菌表达系统及其研究进展,华南热带农业大学学报,2004,10:16-20
    [67] Dong H, Nilsson L, Kurland CG, Co-variation of tRNA abundance and codonusage in Esherichia coli at different growth rate, J Mol. Biol.,1996,260:649-663
    [68] Kurland C and Gallant J, Errors of heterologous protein expression, Curr. Opin.Biotechnol.,1996,7:489-493
    [69] Kay Terpe, Overview of bacterial expression systems for heterologous proteinproduction: from molecular and biochemical fundamentals to commercialsystems,Appl Microbiol Biotechnol,2006,72:211–222
    [70] Gi-Seong Moon, Yu-Ryang Pyun, Wang June Kim, Expression and purificationof a fusion-typed pediocin PA-1in Escherichia coli and recovery of biologicallyactive pediocin PA-1, International Journal of Food Microbiology,2006,108:136-140
    [71] Lucie Beaulieu, Dmitri Tolkatchev, Jean-Francois Jette et al, Production of activepediocin PA-1in Escherichia coli using a thioredoxin gene fusion expressionapproach: cloning, expression, purification, and characterization, Can. J.Microbiol,2007,53:1246–1258
    [72] Corrine Austin, Novel approach to obtain biologically active recombinantheterodimeric proteins in Escherichia coli, Journal of Chromatography B,2003,786:93-107
    [73]龙建银,王会信,外源基因在大肠杆菌中表达的研究进展,生物化学与生物物理进展,1997,24(2):126-131
    [74] De Bernardez, Clark E., Protein refolding for industrial process, Current Opinionin Biotechnology,2001,12:202-207
    [75] Ralph Zahn, Ashley M.B., Sarah P., Chaperone activity and structure ofmonomeric polypeptide binding domains of GroEI, Proe Natl Acad Sci USA,1996,93:15024-15029
    [76] Myriam M.A., Consuelo G., Lourival D.P., Oxidative refolding chromatography:folding of the scorpion toxin Cn5, Nature Biotechnology,1999,17:187-191
    [77]徐明波、孟文华、马贤凯,PDI、PPI和分子伴侣催化重组人IL-2和GM-CSF的再折叠,中国科学B辑,1994,24:717-723
    [78] Hagen A.J., Hatton T.A., Wang, D.I.C., Protein refolding in reverse micelles,Biotech and Bioeng,1989,35:955-965
    [79] Muller C, Rinas U, Renaturation of heterodimeric platelet-derived growth factorfrom inclusion bodies of recombinant Esherichia coli using size-exclusionchromatography, J ChromatographyA,1999,855:203-213
    [80] Geng X.D., Chang X.Q., High-performance hydrophobic interactionchromatography as a tool for protein refolding, J Chromatography,1992,599:185-194
    [81] Yoshimoto M., Immobilized liposome chromatography for studies ofprotein-menbrane interactions and refolding of denatural bovine carbonicanhydrase, J Chromatography B,1998,712:59-71
    [82] Wil N Konings, Jan Kok, Oscar P Kuipers and Bert Poolman, Lactic acid bacteria:the bugs of the new millennium, Current Opinion in Microbiology,2000,3:276-282
    [83] Platteeuw, C., I van Alen-Boerrigter, S. van Schalkwijk and W.M. de Vos,Food-grade cloning and expression system for Lactococcus lactis, Appl. Environ.Microbiol,1996,62:1008-1013
    [84] Courvalin P, de Vos WM, Rubens CE, Genetics of Streptococci, Enterococci andLactococci, ASM News,1998,64:501-504
    [85] Bolotin A, Malarme K, Ehrlich S.D., Sorokin A, Low redundancy sequencing ofthe entire Lactococcus lactis IL1403genome, Antonie van Leeuwenhoek,1999,1-4:27-76
    [86] de vos W.M., Gene cloning and expression in lactic streptococci, FEMSMicrobiol Rev,1987,46:281-295
    [87]王荫榆,有关乳酸菌和表达体系的研究:[博士论文],上海,复旦大学,2003
    [88] Harley, CB, and Reynolds, RP, Analysis of E.coli promoter sequences, NucleicAcids Res,1987,15:2343-2361
    [89] de Ruyter PGGA, Kuipers OP, Meijer WC, de Vos WM., Food-grade controlledlysis of Lactococcus lactis for accelerated cheese ripening, Nat Biotechnol1997,15:976-979
    [90]阮孟斌,朱明月,周鹏,外源基因在乳酸菌中的表达,应用与环境生物学报,2004,10(4):526-529
    [91] Havarstein L.S., Holo H., andNes I.F., The leader peptide of colicin V sharesconsensus sequences with leader peptide that are common among peptidebacteriocins produced by gram-positive bacteria, Microbiology,1994,140:2383-2389
    [92] Havarstein D.B.Diep, Nes I.F., A family of bacteriocin ABC transporters carryout proteolytic processing of their substrates concomitant with export, Mol.Microbiol,1995,16:229-240
    [93] Van Belkum M.J., Worobo R.W., and Stiles M.E., Double-glycine-type leaderpeptides direct secretion of bacterioncins by ABC transporters: colicin Vsecretion in Lactococcus lactis, Mol. Microbiol,1997,23:1293-1301
    [94] Nikki Horn, Antonio Fernandez, Helen M. Dodd et al, Nisin-controlledproduction of pediocin PA-1and collin V in nisin-and non-nisin-producingLactococcus lactis Strains, Appl. Environ. Microbiol,2004,70:5030-5032
    [95] Horn N., Martinez M.L., Hernandez P.E., Gasson M.J. et al, Enhancedproduction of pediocin PA-1and coproduction of nisin and pediocin PA-1byLactococcus lactis, Appl. Environ. Microbiol.,1999,65:4443-4450
    [96] Hanlin M.B., Kalchayanand N., Ray P.et at, Bacteriocin if lactic acid bacteria incombination have greater antibacterial activity, Journal of food Protection,1993,56:252-255
    [97] Mulet-Powell N., Lacoste-Armynot A.M., Vinas, M.et al, Interactions betweenpairs of bacteriocins from lactic acid bacteria, Journal of Food Protection,1998,61,1210-1212
    [98] Rekhif N., Atrih A and Lefebure G, Selection of spontaneous mutants of Listeriamonocytogenes ATCC15313resistant to different bacteriocins produced by lacticacid strains, Current Microbiology,1994,28:237-241
    [99] Reviriego C., Ferandez A., Horn N.et al, Production of pediocin PA-1andcoproduction of nisin A and pediocin PA-1, by wild Lactococcus lactis strains ofdairy origin, International Dairy Journal,2005,15:45-49
    [100] Jose M. Martinez, Jan Kok, Jan W. Sanders et al, Heterologous Coproduction ofEnterocin A and Pediocin PA-1by Lactococcus lactis: Detection by SpecificPeptide-Directed Antibodies,Appl. Environ. Microbiol,2000,66:3543-3549
    [101]张剑英,酸性植酸酶基因的克隆及其在大肠杆菌和毕赤酵母中的表达:[硕士学位论文],湖南,湖南农业大学,2004
    [102]李志龙,张富春,巴斯德毕赤酵母表达系统研究进展,生物技术通报,2006,6:9-13
    [103] Lucie Beaulieu, Denis Groleau, Carlos B. Miguez et al, Production of pediocinPA-1in the methylotrophic yeast Pichia pastoris reveals unexpected inhibitionof its biological activity due to the presence of collagen-like material, ProteinExpression and Purification,2005,43:111-125
    [104]万素英,李琳,王慧君,食品防腐与食品防腐剂,北京:中国轻工业出版社,1998,陈祥奎,保证食品安全的抗菌剂,中国食品添加剂,1995,3:16-26
    [105]田晓乐,孟庆繁,微生物防腐剂-细菌素的研究与应用,食品添加剂,2004,25(1):120-123
    [106] Nielsen, J.W., Dickson, J.S., Crouse, J.D., Use of a bacteriocin produced byPediococcus acidilactici to inhibit Liesteria monocytogenes associated withfresh meat. Appl. Environ. Microbiol,1990,56:2142-2145
    [107] Maachupalli-Reddy J, Kelly BD, De Bernardez Clark E, Effect of inclusionbody contaminants on the oxidative renaturation of hen egg white lysozyme.Biotechnol. Prog.,1997,13:144-150
    [108] Tran-Moseman A, Schauer N, De Bernardez Clark E, Renaturation ofEscherichia coli-derived recombinant human macrophage colony-stimulatingfactor, Protein Expr. Purif.,1999,16:181-189
    [109] Matouschek A, Serrano L, Meiering E.M., Bycroft M., Fersht A.R., The Foldingof an Enzyme V. H/2H Exchange-nuclearMagnetic Resonance Studies on theFolding Pathway of Barnase: Complementarity to and Agreement with ProteinEngineering Studies, Journal of Molecular Biology,1992,224(3):837—845
    [110] De Bernardez Clark E, Protein Refolding for Industrial Process, Curr. Opin.Biotechnol.,2001,12:202—207
    [111] Cinata L.M., Casaus P, Fernandez M.F. et al, Comparative antimicrobial activityof enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage andfoodborne pathogenic bacteria, Food Microbiology,1998,15(8):289-298
    [112] Cinat L.M., Rodriguez J.M. et al, Isolation and characterization of Pediocin L50,a new bacteriocin from Pediococcus acidilactici with a broad inhibitionspectrum,Appl Environ Microbiol,1995,61(7):2643-2648
    [113] Rodriguez E, Calzada J.L., Arques J.M. et al, Antimicrobial activity ofPediocin-producing Lactococcus lactic on Listeria monocytogenes,Staphylococcu aureus and Esherichia coli O157: H7in cheese, InternationalDairy Journal,2005,15(11):51-57
    [114]李亚玲,周志江,韩烨,薛照辉,乳酸片球菌细菌素的分离纯化及理化性质,食品工业科技,2007,08:94-97
    [115] Chen C.M., Sebranek J.G., Dickson J.S, Mendonca A.F. Use of pediocin forcontrol of Listeria monocytogenes on Frankfurters, Journal of Food Science,2003,15:35-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700