木薯SBEⅡ和MeEFⅠ基因物理定位的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木薯(Manihot esculenta Crantz)是世界三大薯类作物之一,同时也是重要的热带能源植物。围绕着木薯高产优质、抗逆性等相关性状,前人开展了一系列分子生物学研究,已从木薯中克隆了多种重要基因或cDNA。例如,颗粒结合型淀粉合成酶基困(gbss)、淀粉分支酶基因(she)、α-羟腈酶基因(hnl)、甘油醛-3-磷酸脱氢酶基因(G3Pdh)、苯丙氨酸解氨酶基因(PAL2)、延长因子基因(MeEF1)、富含羟脯氨酸糖蛋白基因(HRGP)、铜锌超氧化物歧化酶基因(sod)等。然而,这些基因在木薯染色体上的位置和分布特点等至今尚未见报道。本研究通过原位PCR技术对木薯淀粉分支酶相关基因(SBEⅡ)和木薯延长因子(MeEFⅠ)进行了基因定位,结果如下
     设计、合成及筛选了2对特异扩增木薯淀粉分支酶基因(SBEⅡ)和木薯延长因子(MeEFⅠ)的引物。
     在原先甘庶、橡胶树原位PCR技术体系的基础上,确立了适合于木薯的原位PCR技术体系。该原位PCR反应液体积为50μl,各反应组分的终浓度为:1×Buffer, 4.5 mM MCl2,0.5 mg/ml BSA,200μM的dATP、dGTP、dGTP,72μm dTTP,4μm DIG-Ⅱ-dUTP,5 U/5μ1的Taq DNA聚合酶,2μM的引物。扩增程序为:PCR扩增,先95℃变性10min,然后94℃变性1min,55℃退火1 min(视引物的Tm值),72℃延仲1.5 min,共20个循环,最后72℃延伸10min。操作流程为:5 ug/ml胃蛋白酶5 min→0.5×TBS 10min→灭菌水2×5 min→70%甲酰胺70℃变性2min→0.1×SSC冰浴1min→灭菌水冰浴1min→乙醇脱水→PCR扩增。扩增后处理流程为:0.1×PBS 37℃4-5 min→5% BSA 37℃孵育20 min→20μg/ml Anti-DIG-Fluorescein37℃孵育1 h→0.1×SSC/吐温20漂洗2×4 min→1μg/μl PI37℃孵育15 min→0.1×SSC/吐温20漂洗2×1 min→抗褪色剂Vectashield封片检测。
     用SBEⅡ特异引物在华南6号的根尖(2n=36)中期细胞的染色体标本进行原位PCR扩增,在不同分裂时期的细胞核中均能发现1-2个信号位点,初步将木薯特异DNA序列SBEⅡ丛因定位于木薯华南6号的第7号染色体的长臂上,扩增位点到着丝粒的百分距离是63.80。
     用MeEFⅠ特异引物在华南6号的根尖(2n=36)中期细胞的染色体标本进行原位PCR扩增,在不同分裂时期的细胞核中均能发现1-2个信号位点,将木薯特异DNA序列MeEFⅠ基因定位于木薯华南6号的第10号染色体的短臂上,扩增位点到着丝粒的百分距离是35.11。,
     对木薯华南6号进行了核型分析,华南6号的染色体数目为2n=36,染色体相对长度为3.66%-7.35%,笫2、7、18为近中着丝粒染色体(sm),其余的为中着丝粒染色体(m)。最长与最短染色体的长度比为2,平均臂比为1.44,第2、9号染色体为随体染色体。核型公式为2n=36=30m(1 sat)+6sm(1 sat)。按照Sttebbins的方法,核型分类属于2B型。
Cassava is one of the three potato crops in world, and is an important economic crop. Many important genes or cDNAs about high yield and steessing resistance have been cloned, for example granule-bound starch synthase (gbss)、starch branching enzyme (sbe)、manihot esculenta elongation factor 1-alpha (MeEF1) Alpha-hydroxynitrile lyase (hnl)、glyceraldehyde 3-phosphate dehydrogenase (G3pdh)、Phenylalanine ammonia-lyase (PAL)、hydroxyproline-rich glycoprotein (HRGP)、copper/zinc superoxide dismutase (SOD) etc, but few of them has been reported physically located onto chromosomes. Starch branching enzymeⅡ(SBEⅡ) and manihot esculenta elongation factor 1-alpha (MeEFl) gene were physically located onto chromosomes in SC6 by in situ PCR . The results were as felloeing:
     Get two primers which is specific to Starch branching enzyme (SBE) and manihot esculenta elongation factor 1-alpha (MeEF1).
     The method of direction in situ PCR on chromosomes of cassava was discussed and a complete set of method was found in this study by refered the methods in Hevea and sugarcane. The total volume of direction in situ PCR reaction was 50μl, which contained 1×Buffer, 4.5 mM MCl2, 0.5 mg/ml BSA, 5 U/5μl Taq DNA Polynerase, 200uM dATP, dGTP and dGTP, 72 uM dTTP, 4μM DIG-Ⅱ-dUTP, 2μM primers. The in stu PCR amplification procedure was like this: Predenaturalization 10 min with 95℃, then 20 cycles including denaturalization of 94℃for 1 min, anneling at 55°C (by Tin of primer) for 1 min, extension at 72℃for 1.5 min, the last stop was extenstion at. 72°C for 10 min. The operational process of in situ PCR was 5 ug/ml pepsin 5 min→0.5×TBS 10min→sterilized water 2×5 min→70% deionized formamide 70℃denatureed 2min→0.1×SSC ice-bath 1min→sterilized water ice-bathlmin→ethanol dehydrated→PCR amplification. The process of after PCR amplification was: 0.1×PBS 37℃4-5 min→5% BSA 37℃20 min→20μg/ml Anti-DIG-Fluorescein 37℃1 h→0.1×SSC/Tween 20 washed 2×4 min→1μg/μl PI 37℃15 min→0.1×SSC/ Tween 20 washed 2×1 min→coverslipping with Vectashield→signal detected..
     The signals were detected on the different phases of the cells of SC6 roots tip (2n=36) used the developed in situ PCR method. The signal site of the SBEⅡgene distributed on the long arm of the seventh chromosomes on SC6, the pereent distances from centromere to detection site was 63.80.
     The sign site of the MeEFl gene distributed on the short arm of the seventh chromosomes on SC6, the pereent distanees from centromere to detection site was 35.11.
     Karyotypes on SC6 were analysed. The number of chromosomes on SC6 was 36, the relative length was 3.66%-7.35%, the second、seventh and the Eighteenth chromosomes was sub-median kinetochores, others were median kinetochores, the rato between longest and shortest chromosome was 2,the average arm ratio was 1.44, the karyotype formula of SC6 was 2n=36=33m (2sat)+3sm (1sat), the karyotype belonged to 2B type.
引文
1. 毕学知,宋运淳,任南,刘立华,鄢慧民.水稻光敏素基因(phyA)和1.5-二磷酸核酮糖羧化酶/加氧酶小亚基基因(rbcS)的染色体定位.植物生理学报,1999,25(1):73-79
    2. 蔡东宏.世界木薯业回顾展望及中国木薯业发展前景和对策,广西热作科技,1998(4):16-19
    3. 陈林姣,缪颖,陈德海.原位PCR技术及其应用,生物工程进展2000,20(2):57-63
    4. 程祝宽杨学明于恒秀等.水稻随体染色体的研究.遗传学报199825(3):225-231
    5. 董学君.原位PCR技术及其方法的优化.中国优生与遗传杂志,1999,7(2):153-162
    6. 范耀山.分子细胞遗传学技术与应用.北京:科学出版社,2007
    7. 高和琼.巴西橡胶树HbMybl基因和OPV-10390连锁标记原位PCR定位研究,海南大学硕十学位论文,2008
    8. 韩永华,金危危,王小兰,宋运泞.水稻程序性细胞死亡抑制基因Dad-1在慧苡中的定位,武汉植物学研究,2003,21(6):471-474
    9. 胡茄.原位逆转录PCR技术检测多肤:N-乙酞氨基半乳粮转移酶2(ppGalNAcT2)在肿瘤
    10.黄留玉.CR最新技术原理、方法及其应用.北京:化学工业出版社,2006,194-206
    11.黄梅,袁仕取,朱作言.原位杂交和原位PCR技术在鱼类基因定位中的应用.水生生物学报,2001,25(2):195~201
    12.黄毓文,刘殷勤.国际热带农业中心的木薯研究,热带亚热带植物学报,1995,3(2):93-100
    13.纪小龙,李晓明,林汉良等.原位PCR.诊断病理学杂志,1995,2(3):172~173
    14.李贵全.细胞学研究基础,北京:中国林业出版社,2001
    15.李懋学,张学方.植物染色体研究技术.东北林业大学出版社,1991 3
    16.李雪梅.寡核昔酸探针原位杂交和原位RT-PCR检测石蜡切片中PRRSV方法的建立及其应用.四川大学硕十学位论文,2005
    17.李远华,江昌俊,余有本.茶树叶片企葡萄糖苷酶基因的原位PCR研究.茶叶科学,2004,24(2):147-150
    18.两院农牧所资料:木薯种质资源产量、品质、抗性数据汇编
    19.林万明..PCR技术操作与应用指南.北京:人民军医出版社,1993
    20.马琦,徐耀先,杨建琪等.用原位PCR方法检测培养细胞中的单拷贝SRY基因.武汉大学学报(自然利学版),1998,44(2):225~228
    21.马琦,徐耀先,张锡元.原位PCR技术及其应用前景.生物化学与生物物理进展,1996,44(2):488~492
    22.牛建新,周民生,马兵钢等.梨组织中苹果褪绿叶斑病毒的原位RT-PCR检测.园艺学报,2007,34(1):53~58
    23.农业部.木薯优势区域布局规划(2007~2015年)
    24.彭瑞云,王德文,高亚兵.Y线照后小鼠骨髓造血细胞工L-3基因表达的原位PCR检测及其意义.中华放射医学与防护杂志,2000,20(2):91-93
    25.齐兰.木薯种质资源的遗传多样性分析与评价,海南大学硕士论文,2010任南,宋运淳,毕学知等.玉米(Zea mays L.)两个广谱抗病基因厂动和朋j1的原位定位.遗传学报,1998,25(3):271-277
    26.邱海燕.巴西橡胶树REF、RT和SRPP基因的物理定位研究,海南大学硕十学位论文,2010
    27.邵军军,常惠芸,谢庆阁.原位PCR技术及其应用.中国兽医科技,20期,33(6):32~36
    28.苏慧慈,刘彦仿.原位PCR技术.北京:科学出版社,1995
    29.苏伟,索振河.原位PCR技术.国外医学一遗传学分册,1996,19(2):64-66
    30.覃瑞,马骞,王德彬,吴绮.利用GISH和IIC Ot-IDNA-FISH对稻属B,C,G基因组的比较分析,中南民族大学学报,2009,28(2):31~35
    31.王昌留,张士璀,王长法.基因在染色体上的定位.生物学通报,2004,39(9):18-20
    32.王惠君.橡胶树初级分子遗传图谱的构建.华南热带农业大学硕士学位论文.2007
    33.王静晖,宋运淳,杭超等.玉米大斑病抗性基因htZ的原位杂交物理定位.武汉大学学报(自然科学版).1998,44(4):465~468
    34.王玲,宋运淳,宁顺斌等.玉米(ZeamaySL.)两个广谱抗病基因rip和Pan的原位定位.作物学报,1999,25(5):639~642
    35.王英.甘蔗亲本种特异DNA序列的PCR检测及原位PCR定位的研究.华南热带农业大学博士学位论文,2007
    36.韦本辉.中国木薯栽培技术与产业发展[M].北京:中国农业出版社,2008
    37.吴文墙,黄尔益,王英等.甘蔗栽培种崖城96/46及其近缘亲本种崖城斑茅2号的核型分析.热带农业科学,2006,26(3):5-7
    38.吴文.甘蔗染色体上斑茅特异DNA序列的原位PCR定位.华南热带农业大学硕士学位论文,2006
    39.吴文,黄东益,庄南生.原位PCR及其在植物研究中的应用.热带农业科学,2006,26(2):65-69
    40.肖琼,郭运玲,孔华.贺立卡,郭安平.木薯SBEI基因片段克隆及块根特异性反义表达载体的构建,2009,基因组学与应用生物学,28(2):255~261
    41.肖莎,朱新生,郭琳琅.半套式原位PCR技术在非何杰金淋巴瘤bcj-2/JH尸融合基因检测中的应用.细胞与分子免疫学杂志,1997,13(增刊1):14~15
    42.肖莎,朱新生,郭琳琅.原位PCR防脱片方法的选择及应用.临床与实验病理学杂志,1998,14(1):52~56
    43.熊志勇,谭光轩,游艾青,何光源,余朝文,李立家,宋运淳.与Glh,Bph-3和xa-5连锁 的BAC克隆在栽培稻和疣粒野生稻中的比较物理定位,科学通报,2004,,49(3):252-260
    44.姚庆荣.木薯遗传转化体系的建立与优化及转AGPase基因的研究,华南热带农业大学博士论文,2007
    45.余洁, 郭运玲,郭安平等.木薯淀粉分支酶基因克隆及反义表达载体的构建2008,热带作物学报,293):342~346
    46.元翠英,刘静宇,熊志勇,祝莉莉,宋运淳.动物细胞凋亡相关基因p53和c-myc在大麦中的染色体定位,武汉大学学报,2004,50(2):259~264
    47.曾霞.木薯遗传背景的染色体C-分带及RAPD研究,华南热带农业大学硕士学位论文.2002
    48.庄南生,梁达德.木薯核型的研究,热带作物研究,1997,(1),:33~35
    49. Attanyak DPSTG,Kekwick R G O, and Franklinn F C H, Molecular cloning and nucleotide aequencing of the rubber elongation factor gene from Hevea brasiliensis, Plant Moleciler Biology, 1991, 16: 1079-1081
    50. Bagasra O, Hansen L, in situ PCR techniques. New York, 1997
    51. Baguma Y, Sun C, Ahlandsberg S etal. Expression patterns of the gene encoding starch branching enzyme Ⅱ in the storage roots of cassava (Manihot esculenta Crantz), Plant Science,(2003,164:833-/839
    52. Browning, K., 1996. The plant translational apparatus. Plant MolBiol 32: 107-144.
    53. Burton R A, et al. Plant Jour. , 1995,7:3-15
    54. Burton R A, Jenner H, Carrangis L et al. Starch granule initiations growth are altered in barley mutants that lackisoamylase activity, Plant .1, 2002, 31(1): 97-112
    55. Cock JH. Cassava, New Potential for a neglected crop. 1985, Westview Press, Boulder
    56. De Carvalho R,Guerra M. Cytogenetics of Manihot esculenta Crantz (cassava) and eight related species, Hereditas, 2002, 136:159-168.
    57. Denyer K,Johnson P , Zeeman S , et al ,The control ofamylose synthesis, Plant Physiol, 2001, 158 (4):479~487
    58. Dieffenbach C W, Lowe T M J, Dveksler G 5. General concepts for PCR design. PCR Methods APP1., 1993, 3: 530-537
    59. esculenta.Proceedings of the National Aeademy of seienees,USA, 1999, 96:5586-5591.
    60. FAO Production yearbook: 1995-1997.
    61. Fregene M, Angel E, Gomez C etal. A molecular genetic map of cassava, Theor Appl Genet, 1997.95:431-441.
    62. Fregene M, Okogbenin E, Mba CET AL. Genome mapping in cassava improvement: Challenges, achievements and opportunities, Euphytica, 2001,12: 159-165.
    63. Greenway P J, Origins of some East African food, Plants African Agri J, 1994, 10:34-39
    64. Haase A T, Retzel E F and Staskus KA. Amplification and lentiviral DNA inside cells. Proc Natl Aead Sci USA, 1990, 87: 4971-4975
    65. Habn SKAn overview of African traditional cassava Processing and utilization .outlook Agric, 1989,18:110-188
    66. Han Y, Gomez Vasquez R., Reilly K, Li H., Tohme J, Cooper R M, Beeching J R, Hydroxyproline-rich glycoproteins expressed during stress responses, 2001, Euphytica, 120(1), 59-70
    67. Holden J,J Peacock and T Williams. Genes, Crops and the Environment, 1993, Cambridge, University Press, UK Publishers.
    68. Hughes J. and Hughes M A, Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons, 1994, DNA Seq. 5(1), 41-49
    69. Hughes,.!., Keresztessy,Z., Brown,K., Suhandono,S, Hughes,M.A, Genomic organization and structure of alpha-hydroxynitrile lyase in cassava (Manihot esculenta Crantz), Arch Biochem Biophys, 1998,356(2), 107-116
    70. Johansen B. In situ PCR on Plan! material with sub-cellular resolution. Annals of Botany, 1997, 11(5): 697-700
    71. Johansen BO. In situ PCR on plant material with sub-cellular resolution.annals of botany. 1997,80:697-700,
    72. Lawrence J B. Villnave C A, and Singer R H. Sensitive high-resolution chromatin and chromosome mapping in sine presence and orientation of two closely integrated copies of EBV in a lymphoma line. Cell, 1988,52:51-61
    73. Lewis F. An approach to in situ PCR. Foster City: PE Applied Biosystems, 1996
    74. Li Z Y, Ning S B, Hart Y H, Ning S B, Han Y H, Liu L H, and Song Y C, Chromosomal Localization of Genes bz 1, bz 2 in maize by using ultra-sensitive FISH with tyramide signal amplification(TSA-FlSH), Developmental and Reproductive Biology, 2002, 11(1): 1-7
    75. Littlepage, L., M. Garman, J.M. Mendenhall & L.C.Morejohn,1995. Plant microtubulc (MT) severing, stiffening, and bundlingby wheat germ protein synthesis elongation factor-1 alpha. MolBiol Cell, 6: 1495-1503
    76. Long A A, Komminoth P, Lee E, and Wolfe H J. Comparison of indirect and direct in situ polymerasechain reaction in cell preparations and tissue sections, Detection of viral DNA, gene rearrangements and chromosomal translocations, Histochemistry, 1993, 99(2): 151-162
    77. Magoon.ML, Morphology of the pachytene chromosomes and meiosis in manihot esculenta, Cytologia, 1969, 34: 612-626
    78. Martin F W. Cytogenetics and plant breeding of cassava (a review ), Plant Breeding Astracts 1976, 46(12): 909-916.
    79. Martin M N, Cloning and characterization of chitinase cDNA from Hevea Brasiliensis, Plant Physiology, 1991,95:469-474
    80. McMahon J.M, Sayre R T, Genomic sequence for a linamarase gene from cassava(Manihot esculenta Crantz), 1997, Plant Biology
    81. Morel M K, et al. P lant Physio, 1997, 113:201-208
    82. Morell M K, Lennow A, Kosar H B, et al. Differential expression properties of starch branching enzyme isoforms in developing wheat endosperm. Plant Physiol, 1997, 113(l):201-208
    83. Nair RB, Baga M, Scoles G J et al. Isolation, characterization expression analysis of a starch branching enzyme cDNA from wheat. Plant Sci, 1997, 122(2): 153-163
    84. Okogbenin E, Marin J, Fregene M etal. An SSR-based molecular genetic map of cassava, Euphytica, 2006, 147: 433-440
    85. olsen K M and B A Sehaal. Evidence on the Origin of cassava: Phylogeography of Manihot esculenta, Proceedings of the National Academy of Sciences, USA, 1999, 96: 5586-5591
    86. Olsen K M and B A Sehaal. Microsatelite variation in cassava(manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern, Amazonian origin of Domestication.American Journal of Botany, 2001, 88:131-142.
    87. Olsen,K.M, Minisatellite variation in a single-copy nuclear gene: phylogenetic assessment of repeat length homoplasy and mutational mechanism, 1999, Mol. Biol. Evol, 16(10), 1406-1409
    88. Rayburn A L, Gill B S, Use of biotin-labeled probes to map specifc DNA sequences on wheatchromosomes. Journal of Heredity, 1985, 76: 78-81
    89. Rayburn A L, Gill B S, Use of biotin-labeled probes to map specifc DNA sequences on wheatchromosomes. Journal of Heredity, 1985, 76: 78-81
    90. Reilly,K, Bernal,D, Cortes,D.F, Gomez-Vasquez,R, Tohme,J, Beeching,J.R, Towards identifying the full set of genes expressed during cassava, 2007, Plant Mol. Biol, 64(1-2), 187-203
    91. Rogers DJ and HS Fleming, A monograph of Manihot esculenta with an explanation of the taxonomic methods used.Economic Botany, 1973, 27: 1-113.
    92. Rogers DJ and SG Appan, Flora Neotropica Monograph No.13. Manihot manihotoid (Euphorbiaceae), 1973, Newyork: Hafner Press.
    93. RogersDJ, Studies on manihot esculenta Crantz (eassava) and related species.Bull Torrey Bot,1963, 90:42-54
    94. Rojas M R, Jiang H, Salati R, Functional analysis of Proteins involved in movement of the monopartite begomovirus, Tomato Yellow Leaf Curl Virus. Virology, 2001, 291(1): 110-125
    95. Sadequr R, Ahmed R, Li Z et al. Comparison of starch branchingenzyme genes reveals evolutionary relationships among isoforms. Plant Physiol, 2001, 125: 1314-1324
    96. Salehuzzaman S, Jacobsen E, Visser R.Cloning, partial sequencing and expression of a cDNA coding for branching enzyme in cassava, Plant Molecular Biology, 1992, 20: 809-819
    97. Salehuzzaman S, Jacobsen E, Visser R .Isolation and characterization of a eDNA encoding granule-bound starch synthase in cassava (Manihot esculenta Crantz) and its antisense expression in potato, Plant Molecular Biology, 1993, 23:947-962
    98. Salehuzzaman,S.N.l.M., Jacobsen,E.and Visser,R.G.F, Characterization on cDNA that encodes branching enzyme, 2005, Dept of Plant Breeding
    99. SeoltGJ, IV1 Rosegrant and CR Ingler, Global projeetions for root and tuber crops to the year 2020, Article accepted for Publication by food Policy, 2000
    100. Shin SY, Lee US, Kwon SY et al. Molecular characterization of a cDNA encoding copper/zinc superoxidc dismutase from cultured cells of Manihot esculenta, Plant Physiol. Biochem.,2005, 43:55-60
    101. Suhandono S, Hughes J, Brown K et al. Expression and structure of an elongation factor-la gene (MeEF1) from cassava (Manihot esculenta Crantz), Euphytica ,2001 120: 49-58
    102. Suhandono S, J. Hughes, K. Brown & M.A. Hughes, Expression and structure of an elongation factor-1α gene (MeEFl) from cassava (Manihot esculenta rantz) Plant Physiol. 1998, 116, 1603-1702
    103. Suhandono, S., Hughes, J., Brown, K., & Hughes, M. (2001). Expression and structure of an elongation factor-1[alpha] gene (MeEFl) from cassava (manihot esculenta crantz). Euphytica, 120(l).49.-62
    104. Troyer DL, Goad DW, Xie H, et al. Use of direction in situ sing-copy(DlSC)PCR to physically map five porcine microsatellites. Cytogenet Cell Gent 1994,47:1991-2004
    105. Uchiumi T, Kuwashiro R, Miyamoto J, Abe M, and Higashi S, Detection of the leghemoglobin geneon two chromosomes of Phaseolus vulgaris by in situ PCR linked-fluorescent in situ hybridization(FISH), Plant Cell Physiology, 1998, 39(7): 790-794
    106. Uchiumi T, Kuwashiro R, Miyamoto J, et al. Detection of the leghemoglobin gene on two chromosomes of Phaseolus vulgaris by in situ PCR linked-fluorescent in situ hybridization ( FISH). Plant Cell Physiology ,1998 ,39 (7) :790~794
    107. Uchiumi T, Kuwashiro R, Miyamoto J, Abe M, and Higashi S. Detection of the leghemoglobin geneon two chromosomes of Phaseolus vulgaris by in situ PCR linked-fluorescent in situ hybridization(FISH). Plant Cell Physiology,1998,39(7):790-794
    108. Yeo,T.W., Mak,Y.M. and Ho,K.K., Rubisco small subunit gene family in cassava, DNA Seq. 1999,10(3),189-194
    109. Yona Baguma, et al, Expression patterns of the gene encoding starch branching enzyme Ⅱ in the storage roots of cassava (Manihot esculenta Crantz),2003, Plant Science,164' 833-839

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700