聚乳酸单体L-乳酸由米根霉固定化发酵玉米秸秆水解物的生产研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物材料聚乳酸是受到广泛关注的生物相容性良好和全生物降解材料,由乳酸聚合而成。如果聚乳酸单体乳酸能够从廉价的生物质资源通过生物炼制转化而来,则无论对医学发展、环境保护还是资源节约都具有重要意义。乳酸是基本的有机酸之一,是一种重要的平台化合物,实现生物炼制生产也是未来生物基经济代替石油基经济的重要产业组成。要实现生物炼制生产乳酸目前尚有一些技术瓶颈需要被攻克,最主要的有两点,一是将木质纤维素原料低成本、高效率的转化成可生物利用的小分子糖类;二是生物发酵纤维素来源的糖类高效转化生产乳酸。目前该领域的技术积累还不能完全满足大规模的工业化生产,相关产业的经济效益还不能与以石油为基础的产业相比。本研究将针对这两大技术瓶颈,围绕农作物秸秆木质纤维素的高效糖化技术、米根霉固定化发酵生产乳酸等内容展开研究。
     我国是农业大国,农作物秸秆资源丰富,在各类秸秆资源中尤其以玉米秸秆最为丰富。如何提高玉米秸秆的糖化效率是利用该资源进行生物炼制,用于生产平台化合物的关键。在利用纤维素酶水解玉米秸秆纤维素生产葡萄糖的过程中,秸秆的致密结构是酶解β-1,4-糖苷键的主要障碍,本研究中我们采用蒸汽爆破技术对木质纤维素结构进行破坏,以提高纤维素酶解效率。
     在蒸汽爆破预处理玉米秸秆的研究中,以酶解还原糖产率为响应值,采用均匀实验设计得到最佳汽爆工艺条件,即汽爆压力2.2MPa、液固比1:1、维压时间9min、物料颗粒度40-60目。在此工艺条件下酶解还原糖产率是未处理原料的1.97倍。化学组分分析显示,蒸汽爆破处理后秸秆物料中纤维素含量及木质素含量相对于原料分别增加了29.73%和19.65%,说明通过蒸汽爆破预处理能够提高秸秆物料中纤维素的相对含量。SEM观察可见,蒸汽爆破处理后其结构破坏明显,表面出现褶皱,结构变的蓬松,比表面积增大。
     以优化工艺对玉米秸秆进行蒸汽爆破预处理,然后进行水/醇抽提处理,将纤维素、半纤维素和木质素等组分进行分离,进一步提高纤维素酶的可及性。对底物浓度、纤维素酶用量、酶解反应时间等因数采用单因素分析和响应面分析实验进行工艺优化。以酶解还原糖产率为响应值,对回归方程求解得到的最佳工艺条件为:底物浓度53.28g/L,纤维素酶用量53.32FPU/g,酶解时间60.45h,此工艺条件下还原糖产率的最大预测值为694.11mg/g。经过试验验证,得到酶解后还原糖产率为672.36mg/g,与模型预测结果接近。在相同酶解工艺条件下,经过蒸汽爆破-水/醇处理后物料酶解还原糖产率较原料提高了170.46%,较单纯蒸汽爆破后物料提高了28.97%。化学组分分析显示,水/醇处理能有效分离纤维素、半纤维以及木质素,进一步提高物料中的纤维素含量,SEM图谱也显示水醇处理使秸秆物料的结构变的更加的蓬松,这些因素可有效增加纤维素酶对纤维素的可及性,提高了酶解效率。
     为了克服丝状真菌发酵过程中细胞形态不易控制,机械运动易造成菌丝断裂损伤;会形成大的菌丝团,阻碍氧气和营养物质的传递等不利生产的特点。对米根酶固定化发酵技术进行了研究,包括固定界面的选择、固定支架的设计以及固定化效果的评价。并利用玉米秸秆水解物为主要碳源,筛选出适合利用水解物发酵产酸的米根霉菌种,采用固定化发酵技术进行了摇瓶和反应器发酵生产乳酸的研究,优化了发酵工艺。
     通过多种米根霉和乳酸杆菌发酵产乳酸的比较,筛选出米根霉As3.3462菌种是适合发酵玉米秸秆酶解物生产乳酸的菌种。为了制作出适合米根霉固定化发酵的固定支架,试验筛选出棉布是用于米根霉固定的良好纤维表面,六角星形载体菌丝层层固定后仍具有较大的表面积,多棱角的结构使菌丝层内部具有较好的物质传输特性,适合菌体生长和产酸。通过孢子固定动力学的研究发现,米根霉孢子能完全固定在载体上,随着菌丝的生长,吸附率急剧上升。通过对孢子固定动力曲线的数学拟合,发现孢子的吸附符合一级反应动力学特征。载体尺寸、数量与反应器容量以及孢子接种量间对于菌体生长和乳酸生产存在最佳比例关系。通过100mL的摇瓶实验,直径2.5cm、3个载体、1×106/mL的孢子接种浓度对菌体生长和乳酸生产最为有利。
     进一步研究As3.3462米根霉固定化发酵玉米秸秆水解物生产L-乳酸。为了了解米根霉对玉米秸秆水解物的代谢特性,分别研究米根霉对葡萄糖和木糖的代谢,揭示木糖代谢的磷酸戊糖途径乳酸转化率低,但能有效提高生物量,以玉米秸秆水解物发酵生产乳酸主要通过葡萄糖代谢转化。通过葡糖糖和木糖混合模拟玉米秸秆水解物,从糖消耗的动力学分析,米根霉优先消耗葡萄糖,对木糖的消耗需要经历一段时间的“适应性”调整,乳酸生成主要在葡萄糖消耗阶段。玉米秸秆水解物包含22.8%的葡萄糖和27.2%的木糖,其发酵动力学特点与1:1的混糖模拟类似。随着葡萄糖被迅速消耗,木糖的消耗速度逐渐提高,发酵176h时乳酸生产水平达到最大15g/L,转化率约30%,整个过程伴有乙醇的生成。在单因素分析的基础上,通过均匀设计优化了同步糖化发酵,使糖化和发酵过程良好耦合,秸秆转化率接近15%。
     采用本室自行设计制作的鼓泡式生物反应器,对米根霉固定化发酵的工艺进行了放大研究。考察了反应器中孢子的吸附和萌发状况,结果显示,通气对孢子固定具有干扰作用,在0.5vvm的通气量下需要10h萌发的孢子才能全部固定。通过对菌丝层的通气特性分析显示,菌丝层厚与氧气传输速率间非线性,超过15mm的临界厚度,菌丝层会严重阻碍氧的传输,提示固定发酵的菌丝层厚要控制在15mm的范围内。通过比较固定发酵和游离发酵,前者乳酸转化率可以达到72%,而后者只有40.4%,固定发酵显著优于游离发酵。同时进行了重复批次发酵和同步糖化发酵的研究,重复批次发酵可以连续发酵6批次,乳酸转化率保持在40%以上,同步糖化发酵可以达到57%的转化率。
     综上所述,为了有效的将玉米秸秆纤维素转化成L-乳酸,我们对玉米秸秆的物理和化学的预处理技术、生物酶解糖化技术进行了系统研究,建立了一种成本低、环境污染小、效率高的玉米秸秆木质纤维素糖化技术,为玉米秸秆资源用于生物炼制奠定了基础。接着以米根霉发酵玉米秸秆水解物生产L-乳酸为目的,筛选出了适合发酵产酸的米根霉菌种As3.3462,通过比较发现米根霉对葡萄糖和木糖转化途径的差异性,为有效利用秸秆资源提出了新思路。通过不同性质的材料对比筛选出适合米根霉固定的纤维材料,以增大表面积、提高菌团内部物质传输为目的,设计出了一种具有优化几何形状的固定化载体,并用于玉米秸秆水解物的固定化发酵研究。根据该固定化特点,设计制作了鼓泡式生物反应器用于工艺放大研究,通过建立气窜实验模型,分析了玉米秸秸秆水解物发酵液中的溶氧特性和菌丝层中溶氧传输特性,确定了反应器通气控制。利用优化的工艺进行补料分批发酵和同步糖化发酵试验,证实该固定化发酵技术具有较好的稳定性和较高的转化效率,以此研究为基础有望开发出满足产业化的玉米秸秆转化生产L-乳酸的工艺和设备。
Biomaterial polylactide has been widely paid attention in the world. Polylactide, abiocompatible and well-degraded polymeric material, is polymerized from the lacticacid. If the lactic acid can be produced from cheap biomass, that has great significancein medicine development, environment protection and resources saving. The lactic acidis basic organic acid and platform chemical. The biorefineries production of lactic acidwill be important industrial components of bio-based economies. To achievebiorefineries of lactic acid, several technical bottlenecks need to be overcome. One isthe low-cost and high-efficiency transformation of lignocellulose into small-moleculecarbohydrates, and the other is the conversion of carbohydrates into platform chemicalswith high-conversion ratio. Currently available technologies cannot fully meet theserequirements for large-scale industrial production and generate considerable economicbenefits. This research focused on the efficient sugar hydrolysis process andimmobilized fermentation of Rhizopus oryzae for L-lactic acid production.
     In a large agricultural country such as China, crop straw especially corn stover iswidely distributed and serves as a renewable resource. The efficiency of thesaccharification hydrolysis of corn stover must be enhanced for bio-refineries toproduce high-quality fuels and platform chemicals. In the process of the enzymatichydrolysis of corn stover cellulose to produce glucose, the supra-molecular structure ofcellulose crystalline regions is a major obstacle for the enzymatic hydrolysis of theβ-1,4-glycosidic bond. This study uses steam explosion technology and water/alcoholtreatment technology to destroy this structure and increase the efficiency of enzymaticcellulose hydrolysis.
     The steam explosion pretreatment of corn stalk was optimized with uniform design.The structures of untreated/treated corn stalk were detected by Scanning ElectronMicroscope (SEM) and X-ray diffraction (XRD), while their chemical composition wasalso investigated. Comparing with the untreated corn stalk, reducing sugar yield oftreated corn stalk was increased by97%after hydrolyzing. The relative content ofhemicelluloses and solvend decreased, while cellulose and lignin increased by29.73%and19.65%, respectively; the compact structure of corn stalk was remarkably destroyed.The optimum steam exploded process condition: operating pressure2.2MPa,solid-liquid ratio1:1(mL/g), reaction time9min and materials size40-60meshes.
     The enzymatic hydrolysis of cellulose treated by water/ethanol extraction aftersteam explosion was investigated. The substrate concentration, cellulase dosage, andreaction time were optimized with single-factor experiments and the response surfacemethodology. The reducing sugar yield reached672.36mg/g when the substrateconcentration was53.8g/L, cellulase dosage was53.32FPU/g, and reaction time was60.45h. Compared with the untreated and steam-exploded corn stover, the reducingsugar yield increased by170.46%and28.97%, respectively. The chemical compositionsof the untreated/treated corn stover were investigated and their structures werecharacterized by SEM. The results showed that the relative content of cellulose in cornstover treated by water/ethanol extraction increased significantly and the structurebecame fluffy due to the improved cellulose hydrolysis.
     To overcome such shortcomings as mycelium fracture injury and limited transferof oxygen and nutrients, the immobilization fermentation of Rhizopus oryzae wasinvestigated, including the choice of immobilization interface material, mountingbracket design, and the evaluation of the effectiveness of immobilization. Fermentationwith corn stover hydrolyzate as the main carbon source was conducted to screening theapplicable R. oryzae. Immobilized fermentation was performed in a shake flask and thereactor fermentation production of lactic acid was also studied to optimize thefermentation process.
     Comparison with a variety of R. oryzae-and Lactobacillus-fermented lactic acidproduction revealed that Rhizopus strain3.3462was the optimal fermentation strain. ForR. oryzae immobilized fermentation, the new support matrix was developed with thefiber material and geometry of the support matrix optimized. A comparative analysis ofthe fixing effects, cell growth, and L-lactid acid production showed that cotton fabricwas the optimal fiber surface for the support matrix and the hexagram w the mostsuitable geometry. Spore fixing kinetic studies revealed that R. oryzae spores cancompletely fix on the carrier, and that the adsorption rate sharply increased followingmycelium growth. By the mathematical fitting of the kinetic curves of spore adsorption,spore adsorption was found to follow first-order reaction kinetics. The optimal matrixsize, matrix number, reactor capacity, and spore inoculum density were determined by100mL shake flask experiments. The best culture condition was as follows: matrixdiameter of2.5cm, three matrices, and106spores/mL.
     The immobilization technique was used for R. oryzae3.3462L-lactic acidproduction from corn stalk hydrolyzate. To couple the saccharification and fermentation process, the simultaneous saccharification and fermentation technology was studied.Fermentation kinetics curve analysis showed that glucose depletion occurred after48hof fermentation, the lactic acid concentration reached51g/L, and the ethanol productionduring the entire fermentation process was low. Using the xylose of the stoverhydrolyzate as the carbon source resulted in a very low xylose consumption rate; thus,xylose was not suitable as the sole carbon source. Using the corn stover hydrolyzate asthe carbon source, R. oryzae underwent a48h adaptation period, after which glucoseand xylose were rapidly consumed and the maximum level of production of lactate was176h. The entire process was generated byproducts such as ethanol and fumaric acid.The simultaneous saccharification and fermentation process suggested that the initialsaccharification time and cellulase were the key factors. The uniform design showedthat saccharification for4h and45FPU/g cellulase dosage yielded better simultaneoussaccharification and fermentation results in shake flask experiments.
     An airlift bioreactor designed by our group was used to study the amplificationprocess of L-lactic acid production by immobilized R. oryzae from corn stalkhydrolyzate. The curve of absorption and germination of the spores in the reactorshowed that all spores germinated after6h under ventilation. However, ventilationinterfered with spore absorption and needed10h. Oxygen transmission becomeschallenging after amplifying the culture medium volume. The gassing out measurementshowed that the oxygen uptake and transmission rates of the corn stalkhydrolyzate-containing medium were much larger than those of the glucose-containingmedium. Thus, the corn stalk hydrolyzate-containing medium can be used for R. oryzaefermentation in the airlift bioreactor. A comparison between immobilized and freefermentation revealed that the lactic acid conversion rate reached72%in the former andonly40.4%in the latter, which suggested that immobilized fermentation wassignificantly advantageous over free fermentation. To test the stability of immobilizedfermentation, a second batch fermentation as well as simultaneous saccharification andfermentation were conducted. Repeated batch fermentation can produce nineconsecutive batches, and the lactic acid conversion rate remained above40%to70%. Insimultaneous saccharification and fermentation, the lactic acid conversion rate reached57%.
     In summary, to transform the cellulose of corn stover into L-lactic acid, thephysical and chemical pretreatment of corn stover, as well as bio-enzymaticsaccharification were systematically studied. The technology for producing reducing sugar was established based on steam explosion, water/alcohol treatment, and cellulasehydrolysis. For the purpose of R. oryzae fermentation for L-lactic acid production fromcorn stover hydrolysis, a Rhizopus strain with a high lactic acid production capacity wasscreened. A support matrix for immobilized fermentation was then designed and thefermentation technology optimized. A higher L-lactic acid yield was obtained and thetechnology was found be stable for repeated batch fermentations as well assimultaneous saccharification and fermentation.
引文
[1]中国科学院生物质资源领域战略研究组.中国至2050年生物质资源科技发展路线图[M].科学出版社,2010.10,第一版
    [2] Birgit K, Pratrick R.G, Michael K. Biorefineries industrial Processes and Products: Status Quoand Future Directions Volume [M],Wiley-VCH Verlag GmbH&Co. K Ga, Weinheim, Germany,2006.
    [3] Bozell JJ. Washington DC. Chemicals and Materials from Renewable Resources[M]. AmericanChemical Society,2001
    [4] Wyman CE, Dale BE, Elander RT, et al. Coordinated development of leading biomasspretreatment technologies [J]. Bioresource Technology,2005,96(18):1959-1966
    [5]徐昌洪.木质纤维素类原料生物炼制预处理技术的研究进展[J].精细与专用化学品,2011,19(9):38-41.
    [6] Hendriks AT, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J].Bioresource Technology,2009,100(1):10-18.
    [7] Tan TW, Yu JL, Lu JK, et al. Biofuels in China [J]. Adv Biochem Eng Biotechnol,2010,122:73-104.
    [8] Ohara H. Biorefinery. Appl Microb Biotechn,2003,62(5-6):474-477
    [9] Kamm B, Kamm M. Principles of biorefineries. Appl Microbiol Biotechnol,2004,64(2):137-145
    [10] Ringpfeil M. Biobased Industrial Products and Biorefinery Systems-Industrielle Zukunft des21.Jahrhunderts?[2001, www.biopract.de]
    [11] Kamm B, Kamm M. Biorefinery-systems. Chem Biochem Eng Q,2004,18(1):1-6.
    [12] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review [J].Bioresour Technol,2002,83(1):1-11.
    [13] Webb C, Koutinas WR, Wang R. Developing a sustainable bioprocessing strategy based on ageneric feedstock. Adv Biochem Eng Biotechnol,2004,87:195-268.
    [14]王亚静,毕于运,高春雨.中国秸秆资源可收集利用量及其适宜性评价[J].中国农业科学,2010,43(9):1852-1859
    [15]崔明,赵立欣,田宜水,等.中国主要农作物秸秆资源能源化利用分析评价[J].农业工程报,2008,24(12):291-296.
    [16] Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues.Biomass Bioenergy,2004,26(4):361-375.
    [17] Wyman CE. Biomass ethanol: technical progress, opportunities, and commercial challenges,Ann Rev Energy Environ,1999,24:189-226.
    [18]孙振钧,孙永明.我国农业废弃物资源化与农村生物质能源利用的现状与发展[J].中国农业科技导报,2006,8(1):6-13
    [19]Eggersdorfer M, Meyer J, Eckes P. Use of renewable resources for non-food materials. FEMSMicrobiolol Rev,1992,103(2-4):355-364.
    [20]Morris DJ, Ahmed I. The carbohydrate Economy: Making Chemicals and IndustrialMaterials from Plant Matter [Institute of LocalSelf Reliance, Washington D.C.1992]
    [21] Bozell JJ, Landucci R. Alternative feedstock program-technical and economic assessment [USDepartment of Energy,1992]
    [22] Schilling LB. Chemicals from alternative feedstock in the United States. FEMS Microbiol Rev,1995,16(2-3):1001-1110.
    [23] Ross DL, Dale LB, Reshamwala ST, et al. An integrated process for protein and ethanol fromcoastal bermuda grass. Appl biochem biotechnol,1994,45/46(1):483-497.
    [24] Ohara H. Biorefinery. Appl Microb Biotechn,2003,62(5-6):474-477
    [25] Lynd LR, Cushman JH, Nichols RJ, et al. Fuel ethanol from cellulosic biomass. Science,1991,251(4999):1318-1323.
    [26] Lynd L. Overview and evaluation of fuel ethanol from cellulosics biomass: technology,economics, the environment, and policy. Ann Rev Environ Ener,1996,21(1):403-465
    [27] Sanchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from differentfeedstocks[J]. Bioresour Technol,2008,99(13):5270-5295.
    [28] Okano K,Tanaka T, Ogino C, et al. Biotechnological production of enantiomeric pure lactic acidfrom renewable resources: recent achievements, perspectives, and limits[J]. Microb Biotechnol,2010,85(3):413-423.
    [29] Adsul MG, Varma AJ, Gokhale DV. Lactic acid production from waste sugarcane bagassederived cellulose[J].Green Chem,2007,9(1):58-62.
    [30] Tan TW, Lu JK, Nie KL, et al. Biodiesel production with immobilized lipase: A review[J].Biotechnol Adv,2010,28(5):628-634.
    [31] Patil PD, Gude VG, Mannarswamy A, et al.Optimization of direct conversion of wet algae tobiodiedel under supercritical methnanol conditions[J]. Bioresour Technol,2011,102(1):118-122.
    [32] Papoutsakis ET. Engineering solventogenic clostridia[J]. Curr Opin Biotechnol,2008,19(5):420-429.
    [33] Tomas CA, Welker NE, Papoutsakis ET. Overexpression of groesl in clostridiumacetobutylicum results in increased solvent production and tolerance, prolonged metabolism,and changes in the cell’s transcriptional program[J]. Appl Environ Microbiol,2003,69(8):4951-4965.
    [34] Yu Q, Zhuang XS, Yuan ZH, et al. Two-step liquid hot water pretreatment of eucalyptus grandisto enhance sugar recovery and enzymatic digestibility of cellulose[J]. Bioresour Technol,2010,101(13):4895-4899.
    [35] Wang K, Jiang JX, Xu F, et al. Influence of steaming pressure on steam explosion pretreatmentof Lespedeza stalks (Lespedeza crytobotrya): Part1. Characteristics of degraded cellulose[J].Polym Degrad Stab,2009,94(9):1379-1388.
    [36] Tokuda G, Watanabe H, Lo N. Does correlation of cellulase gene expression and cellulolyticactivity in the gut of termite suggest synergisti-c collaboration of cellulases?[J]. Gene,2007,401(1-2):131-134.
    [37] Bridgwater AV. Production of high grade fuels and chemicals from catalytic pyrolysis ofbiomass [J]. Catalysis Today,1996,29(1-4):285-295.
    [38]杨自文.生物炼制技术的现状与展望[J].湖北农业科学,2009,48(12):3185-3189.
    [39]Ragauskas AJ, Williams CK, Davison BH, et al. The path forward for biofuels andbiomaterials[J]. Science,2006,311(5160):484-489.
    [40] Ballesteros I, Oliva JM, Negro MJ, et al. Enzymic hydrolysis of steam exploded herbaceousagricultural waste (Brassica carinata) at different particule sizes [J]. Process Biochem,2002,38(2):187-92.
    [41]Schliephake D. Nachwachsende Rohstoffe, Teil I Holz und Stroh [Landwirtschaft-Industrie e.V.(ed.), Verlag J.Kordt, Bochum] a) I3–I226, b) I–160, c) I–166.1986
    [42] Ackerson MD. Energy from Biomass and Wastes.16th IGT Conf.[Washington D.C],1991,725
    [43]张名佳,苏荣欣,齐崴等.木质纤维素酶解糖化[J].化学进展,2009,21(5):1070-1074.
    [44] Hendriks AT, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass.Bioresour Technol,2009,100(1):10-18.
    [45] Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogasproduction: a review. Int J Mol Sci,2008,9(9):1621-1651.
    [46] Ooshima H, Aso K, Harano Y, et al. Microwave treatment of cellulosic materials for theirenzymatic hydrolysis[J]. Biotechnol Lett,6(5):289-294.
    [47] Aimin T, hongwei Z, Gang C, et al. Influence of ultrasound treatment on accessibility andregioselective oxidation reactivity of cellulose. Ultrason Sonochem,2005,12(3):467-472.
    [48]Saha BC, Iten LB, Cotta MA, et al. Dilute acid pretreatment, enzymatic saccharification andfermentation of wheat straw to ethanol[J]. Process Biochem,2005,40:3693-3700.
    [49] Carad C, Ruiz E, Ballesteros M, et al. Production of fuel ethanol from steam-explosionpretreated olive tree pruning [J]. Fuel,2008,87(6):692-700.
    [50] Sanchezo J, Cardona CA. Trends in biotechnological production of fuel ethanol from differentfeedstocks[J]. Bioresour technol,2007,99(13):5270-5295.
    [51] Silverstein RA, Chen Y, Sharma-Shivappa RR, et al. A comparison of chemical pretreatmentmethods for improving saccharification of cotto-n stalks[J]. Bioresour Technol,2007,98(16):3000-3011.
    [52]李辉勇,黄可龙,金密,等.碱性臭氧预处理对稻草秸秆酶水解的影响[J].化学与生物工程,2009,26(10):60-62.
    [53]邓辉,李春,李飞,等.棉花秸秆糖化碱预处理条件优化[J].农业工程学报,2009,25(1):208-212.
    [54] Saha BC, Cotta MA. Ethanol production from alkaline peroxide pretreated enzymaticallysaccharified wheat straw[J]. Biotechnol prog,2006,22(2):449-453.
    [55] Kim DW, Kim TS. Fractionation of herbaceous biomass by ammonia-hydrogen peroxidepercolation treatment [J]. J Ferment Bioeng,1992,73:461-466.
    [56]Akhtar M, Young RA. Environmentally friendly technologies for the pulp and paper industry[M].New York: John Wiley&Sons, Inc,1997:309-342.
    [57] Blanchette RA. Delignification by wood-decay fungi [J]. Ann Rev Phytopathol,1991,29(1):381-403.
    [58] Yang QF, Zhan HY, Wang SF, et al. Bio-modification of eucalyptus chemithermomechanicalpulp [J]. Frontiers of Chemical Engineering in China,2008,2(1):28-33.
    [59] Srinivasan C, souza TM, Boominathan K, et al. Demonstration of laccase in the white rotbasidiomycete Phanerochaete chrysosporium BK M-F1767[J].Appl Environ Microbiol,1995,61(12):4274-4277
    [60] Martinez A, Rodriguez ME, Wells ML, et al. Detoxification of dilute acid hydrolysates oflignocelluloses with lime [J]. Biotechnol Progr,2001,17(2):287-293.
    [61]金强,张红漫,严立石,等.生物质半纤维素稀酸水解反应[J].化学进展,2010,22(4):654-661.
    [62] Yang B, Wyman CE. Pretreatment:the key to unlocking low-cost cellulosic ethanol. Biofpr,2008,2:26-40.
    [63] Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment oflignocellulosic biomass. Bioresour Technol,2005,96(6):673-686
    [64] Schell DJ, Farmer J, Newman M, et al. Dilute-sulfuric acid pretreatment of corn stover in pilotscale reactor: investigation of yields, kinetics, and enzymatic digestibilities of solids. ApplBiochem Biotechnol,2003,105-108:69-85.
    [65] Aden A, Ruth M, Ibsen K, et al. Lignocellulosic biomass to ethanol process design andeconomics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for cornstover. NREL/TP-510-32438,2002. National Renewable Energy Laboratory. Golden, CO
    [66] Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysatesI: Inhibition anddetoxification [J]. Bioresour Techno,2000,74(1):17-24.
    [67] Sun YE,Cheng JY. Hydrolysis of lignocellylosic materials for ethano production: A review[J]. Bioresour Technol,2002,83(1):1-11.
    [68] Dekker RFH, Wallis AFA. Autohydrolysis-explosion as pretreatment for the enzymic saccharification of sunflower seed hulls. Bioteeh Lett,1983,5(5):311-316.
    [69] Mamman AS, Lee JM, Kim YC, et al. Furfural: hemicellulose/xylose-derived biochemical.Biofuels,Bioproducts and Biorefining,2008,2:438-454
    [70] Carad C, Ruiz E, Ballesteros M, et al. Production of fuel ethanol from steam-explosionpretreated olive tree pruning[J]. Fuel,2008,87(6):692-700.
    [71] Huang XL, Penner MH. Apparent substrate inhibition of the Trichoderma reesei cellulosesystem [J]. J Agri Food Chem,1991,39(11):2096-2100.
    [72] Himmel ME, Ding SY, Johnson DK, et al. Biomass recalcitrance: Engineering plants andenzymes for biofuels production. Science,2007,315(5827):804-807.
    [73] Sun XY, Liu ZY, Zheng K, et al. The composition of basal and induced cellulase systems inPenicillium decumbens under induction or repression conditions. Enzyme Microb Tech,2008,42(7):560-567.
    [74] Sanchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. BiotechnolAdv,2009,27(2):185-194.
    [75]方诩,秦玉琪,李雪芝等.纤维素酶与木质纤维素生物降解转的研究进展[J].生物工学报,2010,26(7):1-6.
    [76] Kumar R, Wyman CE. Effect of xylanase supplementation of cellulase on digestion of cornstover solids prepared by leading pretreatment technologies. Bioresour Technol,2009,100(18):4203-4213.
    [77]谢慧,耿涛,王风芹,等.以玉米秸秆为原料同步糖化发酵生产燃料乙醇[J].生物学杂志,2011,28(5):91-94.
    [78] Danner H, Madzingaidzo L, Thomasser C, et al. Thermophilic production of lactic acid usingintergrated membrane bioreactor systems coupled with monopolar electrodialysis[J]. ApplMicrobiol Biotechnol.2002,59(2-3):160-169.
    [79] Rojan P, John K, Nampoothiri M, et al. Fermentative production of lactic acid from biomass: anoverview on process developments and future perspectives. Appl Microbiol Biotechnol,2007,74(3):524-534.
    [80] Zhou S, CauseyTB, Hasona A, et al. Production of optically pure D-lactic acid in mineral saltsmedium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol.2003,69(1):399-407.
    [81] Davidson BE, Llanos RM, Cancilla MR, et al. Current research on the genetics of lactic acidproduction by lactic acid bacteria. Int Dariy J,1995,5(8):763-784.
    [82] Moldes AB, Alonso JL, Parajo JC. Multi-step feeding systems for lactic acid production bysimultaneous saccharification and fermentation of processed wood[J]. Bioproc Eng,2000,22(2):175-180.
    [83] Moldes AB, Torrado A, Converti A, et al. Complete bioconversion of hemicellulosic sugarsfrom agricultural residues into lactic acid by Lactob-acillus pentosus[J]. Biotechnol ApplBiochem,2006,135(3):219-227.
    [84] Wee YJ, Yun JS, Park DH, et al. Biotechnological production of L(+)-lactic acid from woodhydrolyzate by batch fermentation of enteroccoccus faecalis[J]. Biotechnol Lett,2004,26(1):71-74.
    [85] Maas RH, Bakker RR, Jansen ML, et al. Lactic acid Production from lime-treated wheat strawby Bacillus coagulans:neutralinzation of acid by fed-batch addition of alkaline substrate[J].Appl Microbiol Biotechnol,2008,78(5):751-758.
    [86] Zheng L, Lu H, Ji YZ, et al. Fermentative production of L-lactic acid from hydrolysate of wheatbran by Lactobacillus rhamnosus[J].Biochem Engin J,2010,49(1):138-142.
    [87] Vijayakumar J, Aravindan R, Viruthagiri T. Recent trends in the production, purification andapplication of lactic acid. Biochem,2008,22(2):245-264.
    [88] Thongchul N. Lactic acid production by immobilized rhizopus oryzae in a rotating fibrous bedbioreactor. Doctorial thesis, Ohio State University2005
    [89]唐开宇,宋喜军,高大成等.乳酸连续化发酵进展[J].化学与生物工程,2006,23(11):4-6.
    [90] Mei LX, Ping LJ, Moe L. L-Lactic acid production using immobilized Rhizopus oryzaein athree phase fluidized-bed with simultaneous product separation by electrodialysis [J].Bioprocess Engin,1999,20(3):231-237.
    [91] John RP, Nampoothiri KM, Pandey A. Fermentative production of lactic acid from biomass: anoverview on processdevelopments and future perspectives[J]. ApplMicrobiol Biotechno,2007,74(3):524-534.
    [92] Shen X, Xia L. Lactic acid production from cellulosic material by synergetic hydrolysis andfermentation [J]. Appl Biochem Biotechno,2006,133(3):251-262.
    [93] Alkasrawi M, Eriksson T, Borjesson J, et al. The effect of Tween-20on simultaneoussaccharification and fermentation of softwood to ethanol [J]. Enzyme Microb Techno,2003,33(1):71-78.
    [94] Sinha J, Bae JT, Park JP, et al. Changes in morphology of paecilomyces japonica and theireffect on broth rheology during production of exobiopolymers. Appl Microbiol and Biotechnol,2001,56(1-2):88-92.
    [95] Martak J, Schlosse S, Sabolova E, et al. Fermentation of lactic acid with Rhizopus arrhizus in astirred tank reactor with a periodical bleed and feed operation. Process Biochem,2003,38(1):1573-1583.
    [96] Tamerler C, Keshavarz T. Optimization of agitation for production of swainsonine fromMetarhizium anisopliae in stirred tank and airlift reactors. Biotechnol Lett,1999,21(6):501-504.
    [97] Maas RH, Bakker RR, Eggink G, et al.. Lactic acid production from xylose by the fungusRhizopus oryzae [J]. Appl Microbiol Biotechnol,2006,72(5):861-868.
    [98] Du LX, Jia SJ, Lu FP. Morphological changes of Rhizopus chinesis12in submerged cultureand its relationship with antibiotic production. Process Biochem,2003,38(12):1643-1646.
    [99] Wang X, Sun L, Wei D, et al. Reducing by product formation in L-lactic acid fermentation byRhizopus oryzae[J]. J Ind Microbiol Biotechnol,2005,32(1):38-40.
    [100]Huang LP, Jin B, Lant P, et al. Biotechnological production of lactic acid integrated withpotato wastewater treatment by Rhizopus arrhizus[J]. J Chem Technol Biotechnol,2003,78(8):899-906.
    [101] Tay A, Yang ST. Production of L-lactic acid from glucose and starch by immobilized cells ofRhizopus oryzae in a rotating fibrous bed bioreactor[J]. Biotechnol Bioengi,2002,80(1):1-12.
    [102] Miura S, Arimura T, Hoshino M, et al. Optimizaiton and scale-up of L-lactic acid fermentationby mutant strain Rhizopus sp. MK-96-1196in airlift bioreactors[J]. J Biosci Bioeng,2003,96(1):65-69.
    [103] Martak J, Schlossera S, Sabolova E, et al. Fermentation of lactic acid with Rhizopus arrhizusin a stirred tank reactor with a periodical bleed and feed operation[J]. Process Biochem.2003,38(11):1573-1583.
    [104] Amanullah A., Blair R., Nienow AW, et al. Effects of agitation intensity on mycelialmorphology and protein production in chemostat cultures of recombinant Aspergillus oryzae.Biotechnol and Bioengin,1999,62(4):434-446
    [105]Palma MB, Milagres AMF, Prata AMR, et al. Influence of aeration and agitation rate on thexylanase activity from Penicillium janthinellum, Process Biochem,1996,31(2):141-145.
    [106] Siedenberg D, Gerlach SR., Weigel B, et al. Production of xylanase by Aspergillus awamori onsynthetic medium in stirred tank and airlift tower loop reactors: the influence of stirrer speedand phosphate concentration. Journal of Biotechnology,1997,56(2)103-114.
    [107]Papagianni M, Mattey M, KristiansenB. Hyphal vacuolation and fragmentation in batch andfed-batch culture of Aspergillus niger and its relation to citric acid production. Process Biochem,1999,35(3):359-366.
    [108]Bai D M, Jia M Z, Zhao X M, et al. L-Lactic acid production by pellet-form Rhizopus oryzaeR1021in a stirred tank fermentor[J]. Chem Eng Sci,2003,58:785-791.
    [109]Yin P M, Nishina N, Kosakai Y, et al. Enhanced production of L-lactic acid from corn starch ina culture of Rhizopus oryzae using an air-lift bioreactor[J]. J Ferment Bioeng,1997,85(1):249-253
    [110] Nishiyama Y, Paul L, Henr IC. Crystal structure and hydrogen bonding system in cellulose Iβfrom synchrotron X-ray and neutron fiber diffraction [J]. J Am Chem Soc,2002,124(31):9074-9082.
    [111] Qian X.Z, Ding S.Y, Mark R, et al. Atomic and electronic structures of molecular crystallinecellulose Iβ: a first-principles investigation [J]. Macromolecules,2005,38(25):10580-10589.
    [112] Li DM, Chen HZ. Biological hydrogen production from steam-exploded straw bysimultaneous saccharification and fermentation[J]. Int J Hydrogen Energy,2007,32(32):1742-1748.
    [113]Chen H.Z, Liu L.Y, Yang X.X, et al. New process of maize stalk amination treatment by steamexplosion [J]. Biomass Bioenergy,2005,28(4):411-417.
    [114]Jin SY, Chen HZ. Superfine grinding of steam-exploded rice straw and its enzymatichydrolysis[J]. Biochem Engin J,2006,30(3):225-230.
    [115]王堃,王芳,蒋建新,等.蒸汽爆破维压时间对胡枝子成分、结晶度及酶解糖化的影[J].北京林业大学学报,2009,31(5):121-125.
    [116]Wang K, Jiang JX, Xu F, et al. Influence of steaming explosion time on the physic-chemicalproperties of cellulose from Lespedeza stalks (Lespedeza crytobotrya)[J]. Bioresour Technol,2009,100(21):5288-5294.
    [117]Wang K, Jiang JX, Xu F, et al. Influence of steaming pressure on steam explosion pretreatmentof Lespedeza stalks (Lespedeza crytobotrya): Part1. Characteristics of degraded cellulose [J].Polymer Degradation and Stability,2009,94(9):1379-1388.
    [118] Ghose TK. Measurement of cellulase activities[J]. Pure Applied Chemical,1987,59:257-268.
    [119]杨胜.饲料分析及饲料质量检测技术[M].北京:中国农业大学出版社,1993.1.
    [120]Ververis C, Georghiou K, Christodoulakis N, et al. Fiber dimension, lignin and cellulosecontent of various plant materials and their suitability for paper production [J].Industrial CropProduction,2004,19(3):245-254.
    [121]陈洪章,刘丽英.蒸汽爆碎技术原理及应用[M].北京:化学工业出版社,2007.1.
    [122] Xu WL, Ke GZ, Wu JH, et al. Modification of wool fiber using steam explosion[J]. Eur PolymJ,2006,42(9):2168-2173.
    [123]Sun XF, Xu F, Sun RC, et al. Flowerc and M. S. Bairdd. Charateristics of degraded celluloseobtained from steam-exploded wheat straw [J]. Carbohydr Res,2005,340(1):97-106.
    [124]Xu LW, Kea G, Wua J, et al. Modification of wool fiber using steam explosion[J]. Eur Polym J,2006,42(9):2168-2173.
    [125] Amen C, Pakdel, H, Roy C. Production of monomeric phenols by thermochemical conversionof biomass: a review [J]. Bioresour Technol.2001,79(3):277-299.
    [126]Cara C, Moya M, Ballesteros I, et al. Influence of solid loading on enzymatic hydrolysis ofsteam exploded or liquid hot water pretreated olive tree biomass[J]. Process Biochem,2007,42:1003-1009.
    [127]Kadam KL, McMillan JD. Availability of corn stover as a sustainable feedstock for bioethanolproduction[J]. Bioresour Technol,2003,88(1):17-25.
    [128] Allen SG, Schulman D, Lichwa J, et al. A comparison between hot liquid water and steamfractionation of corn fiber[J]. Ind Eng Chem Res,2001,40(13):2934-2941.
    [129]Tengborg C, Galbe M, Zacchi G. Reduced inhibition of enzymatic hydrolysis ofsteam-pretreated softwood [J]. Enzyme Microb Technol,2001,28(9-10):835-844.
    [130]Sharma SK, Kalra KL, Grewal HS. Enzymatic saccharification of pretreatedsunflower stalks [J].Biomass Bioener,2002,23(3):237-243.
    [131] Ruiz E, Cara C, Ballesteros M, et al. Ethanol production from pretreated olive tree wood andsunflower stalks by an SSF process [J]. Appl Biochem Biotechnol,2006,130(1-3):631-643.
    [132] Robinson J, Keating JD, Mansfield SD, et al. The fermentability of concentratedsoftwood-derived hemicellulose fractions with and without supplemental cellulose hydrolysates[J]. Enzyme Microb Technol,2003,33(6):757-765.
    [133]Osorio NM, Ferreira DS, Gusmao JH, et a1. Response surface modeling of the production ofω-3polyunsaturated fatty acids-enriched fats by a commercial immobilized lipase[J]. J MolCatal B Enzym,2001,11(4-6):677-686.
    [134]葛菁萍,刘国明,孙红兵,等.响应面法优化玉米芯半纤维素水解条件[J].中国农学通报,2011,27(18):64-68
    [135]苏晓明,魏小娅,王珍,等.固定化米根霉发酵生产乳酸的研究进展[J].化工进展,2008,27(2):206-209.
    [136]Tay A,Yang ST. Production of L (+)-lactic acid from glucose and starch by immobilized cell ofRhizopus oryzae in a rotating fibrous bed bioreactor[J]. Biotechnol Bioeng,2002,80(1):1-12.
    [137]Sun Y, Li YL, Bai S. Modelling of continuous L(+)-lactic acid production with immobilizedRhizopus oryzae in airlift bioreactor[J]. Biochem Eng,1999,3(1):87-90.
    [138]Sun Y, Li YL, Bai S et al. Stability of immobilized R. oryzae in repetitive batch productions ofL(+)-lactic acid: effect of inorganic salts[J]. Bioprocess Eng,1998,19(2):155-157.
    [139]Elena NE, Olga VS, Dmitri VV et al. L(+)-Lactic acid production using poly(vinylalcohol)-cryogel-entrapped Rhizopus oryzae fungal cells[J]. Chem Technol Biotechnol,2006,81(4):519-522.
    [140]Ruma G, Pallavi D, Singh RP. Production of lactic acid with loofa sponge immobilizedRhizopus oryzae RBU2-10[J]. Bioresour Technol,2007,98(6):1246-1251.
    [141]Bosch A, Maronna RA, Yantorno OM. A simple descriptive model of filamentous fungi sporegermination[J]. Process Biochem,1995,30:599-606.
    [142]刘伟,高年发.乳酸生产菌性能的比较[J].发酵科技通讯,2002,31(3):9-11
    [143]Stiles ME, Holzapfel WH. Lactic acid bacteria of foods and their current taxonomy[J]. Int JFood Microbiol,1997,36(1):1-29.
    [144]Bazaraa WA, Hamdy MK, Toledo R. Bioreactor for continuous synthesis of compactin byPenicillin cyclopium[J]. J Indust Microbio Biotechnol,1998,21(4-5):192-202.
    [145]Grivel F, Larroche C, Gros JB. A convenient method to study fungal spores retention on aporous preformed support[J]. Biotechnol Tech,1999,13(12):823-829.
    [146]Flemming HC, Griebe T, Schaule G.Antifouling strategies in technical systems:a shortreview[J]. Water Sci Tech,1996,34(5-6):517-524.
    [147]Videla HA. Prevention and control of biocorrosion[J]. Int Biodeteri Biodegr,2002,49(4):259-270.
    [148]Meyer B. Approaches to prevention, removal, and killing of biofilms[J]. Int BiodeterBiodegrad,2003,51(4):249-253.
    [149]Guimaraes C, Matos, C, Azeredo J, et al. The importance of the morphology andhydrophobicity of different carriers on the immobilization and sugar refinery effluentdegradation activity of Phanerochaete chrysosporium[J]. Biotechnol lett,2002,24(10):795-800.
    [150]Osherov N, May G S. The molecular mechanisms of conidial germination[J]. FEMS MicrobiolLett,2001,199:153-160.
    [151]Bosch A, Maronna RA, Yantorno OM, A simple descriptive model of filamentous fungi sporegermination[J]. Process Biochem,1995,30(7):599-606.
    [152]Nielsen J.1992. Modelling the growth of filamentous fungi[M]. In Advances inBiochemical Engineering/Biotechnology, ed. A. Fiechter. Springer-Verlag, NY.
    [153]Ganguly R, Dwivedi P, Singh RP. Production of lactic acid with loofa sponge immobilizedRhizopus oryzae RBU2-10[J]. Bioresour Technol,2007,98(6):1246-1251.
    [154]Skory CD, Freer SN, Bothast RJ. Production of L-lactic acid by Rhizopus oryzae under oxygenlimiting conditions[J]. Biotechnol Lett,1998,20(2):191-194.
    [155]Taherzadeh M J, Fox M, Hjorth H. Production of mycelium biomass and ethanol from paperpulp sufite liquor by Rhizopus oryzae[J]. Bioresour. Technol,2003,88(3):167-177.
    [156]Herbert D, Phipps PJ, Strange RE, et al. Chapter III Chemical Analysis of Microbial Cells,Methods in Microbiology[M]. New York: Academic Press,1971,209-344
    [157]王润光.新型支架固定米根霉发酵L-乳酸的研究.重庆大学硕士论文,2011
    [158] Maas RHW,Springer J,Eggink G,Weusthuis RA,Xylose metabolism in the fungusRhizopus oryzae: effect of growth and respiration on l (+)-lactic acid production. J IndMicrobiol Biotechnol,2008,35(6):569-578.
    [159]Vuong C, Kidder JB, Jacobson ER, et al. Staphylococcus epidermidis polysaccharideintercellular adhesin production significantly increases during tricarboxylic acid cycle stress. JBacteriol,2005,187(9):2967-2973
    [160]Kotyk A. Properties of the sugar carrier in baker’s yeast. Folia microbiol,1967,12(2):121-131
    [161]刘宁,李霜,何皓,等.少根根霉利用木糖和葡萄糖分步发酵制备富马酸.过程工程学报,2008,8(4):794-797.
    [162]San KY, Bennett GN, Berrios-Rivera, et al. Metabolic Engineering through CofactorManipulation and Its Effects on Metabolic Flux Redistribution in Escherichia coli. Metab Eng,2002,4(2):182-192.
    [163]Maas RHW, Springer J, Eggink G, et al. Xylose metabolism in the fungus Rhizopus oryzae:effect of growth and respiration on L(+)-lactic acid production. J Ind Microbiol Biotechnol,2008,35(6):569-578.
    [164]Tai C, Li S, Xu Q, et al. Chitosan production from hemicellulose hydrolysate of corn straw:impact of degradation products on Rhizopus oryzae growth and chitosan fermentation. LettAppl Microbiol,2010,51(3):278-284.
    [165]Ozbek B, Gayik S. The studies on the oxygen mass transfer coefficient in a bioreactor. ProcessBiochemistry,2001,36:729-741.
    [166]Hahn-Hagerdal B, Wahlbom CF, Gardonyi M, et al. Metabolic engineering of Saccharomycescerevisiae for xylose utilization. Adv Biochem Eng Biotechnol.2001,73:53-84.
    [167]秦义,董志姚,刘立明,等.工业微生物中NADH的代谢调控.生物工程学报,2009,25(2):161-169.
    [168]Wee YJ,Kim JN,Ryu HW. Biotechnological production of lactic acid and its recentapplications[J]. Food Technol Biotechnol,2006,44(2):163-172.
    [169] Gauss WF, Suzuki S, Takagi M. Manufacture of alcohol from cellulosic materials using pluralferments. US3990944[P].1976-11-09
    [170]John RP, Nampoothiri KM, Pandey A. Fermentative production of lactic acid from biomass:An overview on process developments and future perspectives[J]. Appl Microbiol Biotechnol,2007,74(3):524-534.
    [171]Sreenath HK, Moldes AB, Koegel RG, et al. Lactic acid production by simultaneoussaccharification and fermentation of alfalfa fiber[J]. J Biosci Bioeng,2001,92(6):518-523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700