金钗石斛多糖的化学结构与抗白内障活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金钗石斛(Dendrobium nobile Lindl.)为兰科(Orchidaceae)石斛属(Dendrobium Sw.)多年生附生草本植物,是中国药典(2010版)收载的名贵中药。金钗石斛化学成分的研究主要为生物碱、萜类、木脂素、酚类等小分子化合物,对其多糖类组分的研究较少。为了了解金钗石斛多糖的化学结构及生物活性,本文对金钗石斛多糖进行了提取、分离纯化、结构表征、糖链构象和抗白内障活性的研究。
     金钗石斛干燥的茎脱色脱脂后经热水浸提获得金钗石斛水提粗多糖DNP-W,DNP-W进一步用DEAE-纤维素和葡聚糖凝胶进行分离纯化,获得7个均一多糖组分DNP-W1A、DNP-W1B、DNP-W2、DNP-W3、DNP-W4、DNP-W5和DNP-W6。采用化学(甲基化分析、高碘酸氧化-Smith降解反应、部分酸水解)与波谱学(UV、IR、GC、GC-MS、ESI-MS、NMR)结合的手段,对各均一多糖的一级结构进行了表征。结果表明DNP-W1A是由Man、Glc和Gal组成的半乳葡甘聚糖,主链由α-(1→6)-linked Manp和α-(1→3)-linked Manp组成,Glcp和Galp残基支链分别通过α-(1→6)-linked Manp的3位和2位连接在主链上。DNP-W1B是一个阿拉伯半乳葡聚糖,拥有[→4)-β-Glcp-(1→6)-β-Glcp-(1→]二糖单位的主链结构,在β-(1→6)-linked Glcp的4位形成分支,支链由Galp和Arap残基组成。DNP-W2是一个部分乙酰化的半乳甘露葡聚糖,主链由β-(1→4)-linked Glcp、β-(1→6)-linked Glcp及β-(1→4)-linked Manp组成,其中部分β-(1→4)-linked Glcp及β-(1→4)-linked Manp的6位连接有末端Galp。DNP-W3为阿拉伯半乳聚糖,主链由β-(1→3)-linked Galp组成,在其4位连接Arap和Rhap残基支链。DNP-W4是一个主链由β-(1→4)-Glcp、β-(1→6)-linked Glcp及β-(1→6)-linked Galp组成的酸性杂多糖。DNP-W5和DNP-W6为果胶类多糖,由[→4)-α-GalAp-(1→2)-α-Rhap-(1→]二糖重复单位构成主链,DNP-W5主链GalAp的3位和鼠李糖的4位存在分支,侧链包括半乳糖区域和葡萄甘露糖区域和木糖链。DNP-W6主链Rhap的4位存在分支,支链区包括半乳糖区域和葡萄甘露糖区域。
     抗白内障活性试验表明,金钗石斛水提粗多糖及各均一多糖组分都对链脲佐菌素(STZ)诱导的糖尿病性白内障有一定的延缓作用,但各多糖处理组之间差异较大,以粗多糖与DNP-W1A处理组的效果最好,呈剂量依赖性。实验结束时,粗多糖与DNP-W1A处理组大鼠晶体混浊程度明显低于模型及其它多糖处理组,体重增加幅度在150-190%之间,血糖下降了25%以上,晶体各清除氧自由基酶活性及GSH含量显著高于STZ模型组,膜脂过氧化指标MDA与H_2O_2、蛋白质氧化损伤产物、糖基化终产物等含量显著低于STZ模型组。结合金钗石斛多糖抗白内障活性试验的生化指标测定及各均一多糖的结构分析,金钗石斛多糖抗白内障活性与其减轻大鼠晶体氧化损伤及抑制糖基化终产物的形成有关,其活性作用的化学结构基础可能与多糖中甘露糖含量及其连接方式有关。
     进一步采用扫描电镜(SEM)、X-射线、差示扫描量热仪(DSC)、尺寸排除色谱-激光光散射(SEC-LLS)和原子力显微镜(AFM)等方法对抗白内障活性多糖DNP-W1A的溶液行为进行了探讨。SEM、X-射线及DSC分析表明DNP-W1A不具有完整单晶结构,其玻璃化转变温度为85℃。AFM显示DNP-W1A糖链分子间互相缠绕,形成大小不一的无规线团与岛屿状结构。SEC-LLS结果表明DNP-W1A在溶液中主要以半柔顺链的无规线团存在。
Dendrobium nobile Lindl. (Chinese name“Jin-Chai-Shi-Hu”) is a species of Orchidaceae with distribution in southeast Asia, southwest and south of China and has been recorded in Chinese Pharmacopoeia (2010 Edition). The chemical structures of several low molecular weight compounds from D. nobile have been elucidated, such as alkaloids, bibenzyls, stilbenoids, glycosides, sesquiterpenes, fluorenones and phenanthrenes. In contrast, the polysaccharides of D. nobile were much less investigated, even though polysaccharides have been proved to be one of major active constituents of Dendrobium plants. In order to investigate the chemical structural features, solution behavior and biological activities of the polysaccharides obtained from D. nobile, the isolation, purification, structural elucidation, solution behavior and anti-cataract tests of polysaccharides from D. nobile were carried out in this paper.
     The hot-water extracts from the dried stems of D. nobile were precipitated with 4 volume ethanol to give the crude polysaccharide DNP-W. Further, DNP-W was fractionated on DEAE–Cellulose anion-exchange column and purified by gel filrtaiton chromatography to obtain seven homogeneous polysaccharide fractions: DNP-W1A, DNP-W1B, DNP-W2, DNP-W3, DNP-W4, DNP-W5 and DNP-W6. The structural features of seven homogeneous polysaccharides were revealed by a combination of chemical and instrumental analysis, including IR, GC, GC-MS, ESI-MS, methylation analysis, periodate oxidation, partial acid hydrolysis, and NMR. The results showed that DNP-W1A had the backbone consisting of 1,6-linked and 1,3-linkedα-D Manp residues with branches at O-3 and O-2 of 1,6-linkedα-D-Manp residues. The branches were composed of terminalβ-D-Glcp residues, 1,4-linkedβ-D-Glcp residues, 1,6-linkedα-D-Galp residues, and terminalα-D-Galp residues. DNP-W1B possessed a backbone of a disaccharide of [→4)-β-Glcp-(1→6)-β-Glcp-(1→], with 33% branches at O-4 of (1→6)-linkedβ-D-Glcp residues. The side chains contained arabinosyl and galactosyl residues. DNP-W2 was a 2-O-acetyl galactomannoglucan and had a backbone consisting of (1→4)-linkedβ-D-Glcp, (1→6)-linkedβ-D-Glcp, and (1→4)-linkedβ-D-Manp residues, with branches at O-6 of (1→4)-linkedβ-D-Glcp andβ-D-Manp residues. The branches were composed ofα-D-galp residues. The acetyl groups were substituted at O-2 of (1→4)-linked Manp residues. DNP-W3 was a rhamnoarabinogalactan and had the backbone consisting of 1,3-linkedβ-D-Galp residues with branches at O-4. The branches were composed of 1-linkedβ-L-Arap and 1,4-linkeα-L-Rhap residues. DNP-W4 was a complex heteropolysaccharide and possessed a backbone compoesd of (1→4)-linkedβ-D-Glcp, (1→6)-linkedβ-D-Glcp, and (1→6)-linkedβ-D-Galp residues, with substitutes at O-4/6 of Glcp residues and O-3 of Galp residues. The branches composed of terminal Manp residues, (1→6)-linkedβ-D-Manp, (1→3)-linkedβ-D-Glcp,β-D-Glcp,β-D-Galp, (1→4)-linkedα-D-GalAp, (1→2)-linkedα-L-Rhap, and Xylp residues. DNP-W5 and DNP-W6 were pectic polysaccharides with the backbone of a disaccharide of [→4)-α-GalAp-(1→2)-α-Rhap-(1→]. The side chains of DNP-W5 contained galactosyl, mannosyl, glucosyl, and xylosyl residues substituted at O-4 of the Rhap and O-3 of the GalpA residues. The side chains of DNP-W6 were attached at the O-4 of Rhap residues, including terminal Manp,β-(1→4)-linked Glcp residues,β-(1→6)-linked Manp residues, terminal Galp,β-(1→3) andβ-(1→6)-linked Galp (galactan) residues.
     The anti-cataract activities of polysaccharide fractions from the stems of D. nobile were assessed through streptozotocin(STZ)-induced cataract model in Sprague-Dawley (SD) rats. The results indicated that all the polysaccharide fractions from D. nobile exhibited anti-cataract activities to some extent. Among tested polysaccharide samples, DNP-W and DNP-W1A presented higher anti-cataract activities and there was a dose–response relationship between concentration of polysaccharides and anti-cataract activities. According to DNP-W and DNP-W1A treatment groups, at the end of experiment, the level of lenticular opacification from rats was much lighter than that of other polysaccharide treatment groups, the added value of body weight was between 150 and 190%, and the blood sugar decreased over 25%. The mean activities of the antioxidant enzymes and GSH content were significantly higher in lenses of rats from DNP-W and DNP-W1A treatment groups than in lenses of rats from model group. Conversely, the mean levels of MDA, H_2O_2, advanced glycation end products and protein carbonyl content in lenses was significantly lower in DNP-W and DNP-W1A group rats than in model group rat lenses. Together with the results of biochemical indicator in anti-cataract activity experiments and structural characteristics of seven homogeneous polysaccharide fractions, the biochemical mechanism of protective effect in rat lenses appeared to occur by maintaining the antioxidant defense system and decreasing protein glycation. And the chemical structure basis for anti-cataract activities is related to mannose content and its glycosyl linkage types.
     The conformation and solution behavior of DNP-W1A were investigated with scanning electron microscope (SEM), X-ray, differential scanning calorimetry (DSC), size-exclusion chromatography-Laser light scattering (SEC-LLS), atomic force microscopy (AFM) and Congo-red reaction. The results of SEM,X-ray and DSC indicated that the physical structure state of DNP-W1A was noncrystal, and its vitrification temperature was 85℃. The AFM observation showed that the molecular chain morphology of DNP-W1A was different size islands and random coils in solution. DNP-W1A was proved to be the hemi-flexible with the technique of SEC-LLS, Congo-red reaction and intrinsic viseosity, and the conformation could be changed by temperature.
引文
[1]王镜岩,朱圣庚,徐长法.生物化学.高等教育出版社, 2002, pp: 40-55.
    [2]焦庆才.糖工程概论.科学出版社, 2010, pp: 3-287.
    [3]张树政,朱正美,王克夷.糖生物学基础.科学出版社, 2010, pp: 1-537.
    [4]张树政.糖生物学与糖生物工程北京.清华大学出版社, 2002, pp: 8-74.
    [5]陈海霞.高活性茶多糖的一级结构表征、空间构象及生物活性的研究.华中农业大学博士论文, 2002, pp: 92-137.
    [6] Albersheim P, Nevins DJ, English PD, Karr A. A method for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography. Carbohydrate Research, 1968, 5: 340-345.
    [7] Biermann CJ. Hydrolysis and other cleavages of glycosidic linkages in polysaccharides. Advances in Carbohydrate Chemistry and Biochemistry, 1988, 46: 251-271.
    [8] Chambers RE, Clamp JR. An assessment of methanolysis and other factors used in the analysis of carbohydrate-containing materials. Biochemical Journal, 1971, 125(4): 1009-1018.
    [9] DeRuiter GA, Schols HA, Voragen AGJ, Rombouts FM. Carbohydrate analysis of water-soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis to four other methods. Analytical Biochemistry, 1992, 207(1): 176-185.
    [10] Talaga P, Vialle S, Moreau M. Development of a high-performance anion-exchange chromatography with pulsed-amperometric detection based quantification assay for pneumococcal polysaccharides and conjugate. Vaccine, 2002, 20(19): 2474-2484.
    [11] Kobayashi H, Shibata N, Suzuki S. 1986. Acetolysis of Pichia pastoris IFO 0948 strain mannan containingα-1,2 andβ-1,2 linkages using acetolysis medium of low sulfuric acid concentration. Archives of Biochemistry and Biophysics. 1986, 245(2): 494-503.
    [12]张惟杰.糖复合物生化研究技术.浙江大学出版社, 2006, pp: 21-252.
    [13] Abazia C, Ferrara R, Corsaro MM, Barone G, Coccoli P, Parrilli G. Simultaneousgas-chromatographic measurement of rhamnose, lactulose and sucrose and their application in the testing gastrointestinal permeability. Clinica Chimica Acta, 2003, 338(1): 25-32.
    [14] Lee YC. High-performance anion-exchange chromatography for carbohydrate analysis. Analytical Biochemistry, 1990, 189(2): 151-162.
    [15] Ciucanu I, Kerek f. A simple and rapid method for permethylation of carbohydrates. Carbohydrate Research, 1984, 131(2): 209-217.
    [16] Deters A, Dauer A, Schnetz E, Fartasch M, Hensel A. High molecular compounds (polysaccharides and proanthocyanidins) from Hamamelis virginiana bark: influence on human skin keratinocyte proliferation and differentiation and influence on irritated skin. Phytochemistry, 2001, 58(6): 949–958.
    [17] Saha NK, Balakrishnan M, Ulbricht M. Sugarcane juice ultrafiltration: FTIR and SEM analysis of polysaccharide fouling. Journal of Membrane Science, 2007, 306(12): 287-297.
    [18] Coimbra MA. Barros A, Rutledge DN, Delgadillo I. FTIR spectroscopy as a tool for the analysis of olive pulp cell-wall polysaccharide extracts. Carbohydrate Research, 1999, 317(14): 145-154.
    [19] Pereira L, Amado AM, Critchley AT, Velde FP, Ribeiro-Claro JA. Identification of selected seaweed polysaccharide (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocolloids, 2009, 23(7): 1903-1909.
    [20] Bock K, Pedersen C, Pedersen H. 13C Nuclear magnetic resonance data for oligosaccharides. Advances in Carbohydrate Chemistry and Biochemistry, 1984, 42(11): 193–225.
    [21] Yamasaki RD. NMR analysis of group B capsular polysaccharide of N. meningitidis: Complete assignment of H-NMR spectrum of B polysaccharide of strain 6275. Biochemical and Biophysical Research Communications, 1988, 154(1): 159-164.
    [22]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用.分析化学,2000, 28(2): 240-247.
    [23] Pawan KA. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry, 1992, 31(10): 3307-3330.
    [24]胡亚男,王义明,罗国安.质谱在糖分析中的应用.药学学报, 2000, 35(5): 397-400.
    [25]王静,王晴,向文胜.色谱法在糖类化合物分析中的应用.分析化学, 2001, 29(2): 222-227.
    [26] Shen X, Perrealt H. Characterization of carbohydrates using a combination of derivatization high-performance liquid chromatography and mass spectrometry.Journal of Chromatography. 1998, 811(12):47-59.
    [27] Zhang L, Ding Q, Zhang P, Zhu R, Zhou Y. Molecular weight and aggregation behavior in solution ofβ-D-glucan from Poriac ocos scleoritium. Carbohydrate Research, 1997, 303: 193-197.
    [28] Surenjav U, Zhang LN, Xu XJ, Zhang XF, Zeng FB. Effects of molecular structure on antitumor activities of (1→3)-β-d-glucans from different Lentinus Edodes. Carbohydrate Polymers, 2006, 63(1): 97-104.
    [29] Bluhm TLB, Sarko A. Conformational studies of polysaccharide multiple helics. Carbohydrate Research, 1977, 54(1): 125-138.
    [30] Ogawa K, Tsurugi J, Watanabe T. Complex of gel-formingβ-1,3-D-glucan with Congo Red in alkaline solution. Chemistry Letters, 1972: 689-692.
    [31] Wood PJ, Erfle JD, Teather RM. Use of complex formation between Congo Red andpolysaccharides in detection and assay of polysaccharide hydrolases. Methods in Enzymology, 1988, 160: 59-74.
    [32] Hara C, Kiho T, Ukai S. Anti-inflammatory (1→3)-β-d-glucan. Carbohadrate Research,1983, 117: 201-213.
    [33] Giese ES, Dekker RFH, Barbosa AM, Silva R. Triple helix conformation of botryosphaeran, a (1→3;1→6)-β-d-glucan produced by Botryosphaeria rhodina MAMB-05. Carbohydrate Polymers, 2008, 74(4): 953-956.
    [34] Haruk Y, Shuichi Y, Hiroaki K. Water-soluble glucans from the seed of coix LACRYMA-JOBI VAR. MA-YUEN. Phytochemistry, 1986, 25(1): 129-132.
    [35]焦佩玉,方积年.女儿茶多糖NLC-A的分离纯化及化学结构.药学学报, 1989, 24(5): 353-356.
    [36]李志孝,刘方明,孟延发.鬼臼葡聚糖的化学结构.化学学报, 1996, 54(10): 1037-1040.
    [37] Yoshida T. Synthesis of polysaccharides having specific biological activities. Progress in Polymer Science, 2001, 26(3): 379-441.
    [38] Gabriela G and Walther B. Starch fractions as examples for nonrandomlu branched marcromolecules-dimensional properties. Macromolecules, 1995, 28: 2362-2370.
    [39]张俐娜,陈敬华,丁琼等.高分子链形态学.武汉大学出版社, 1999 pp: 1-275.
    [40]钱保功,王洛礼,王霞瑜.高分子科学技术发展简史.科学出版社, 1994, pp: 141-159.
    [41] Bao XF, Dong Q, Fang JN. Structure and conformation behavior of a glucan from spores of ganodenna lucidum (Fr.) karst. Acta Biochemical et Biophysica Sinica, 2000, 32: 557-561.
    [42] Fari?a JI, Si?eriz F, Molina OE, Perotti NI. Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. Rheological properties, molecular weight and conformational characteristics. Carbohydrate Polymers, 2001, 44(1): 41-50.
    [43]袁玉燕,白华萍,李凤生.激光光散射法在超细粉粒度测试中的应用.理化检验2物理分册, 2001, 37(2): 57-60.
    [44] Barth G, Howard B. Particle size analysis. Analytical Chemmistry, 1995, 67(12): 257-272.
    [45] Peng YF, Zhang LN, Zeng FB, Xu YX. Structure and antitumor activity of extracellular polysaccharides from mycelium. Carbohydrate Polymers, 2003, 54(3): 297-303.
    [46]何天白,胡汉杰.海外高分子科学的新近展.北京:化学工业出版社, 1997, pp: 100-121.
    [47] Chen JG, Zhang LN, Nakamura Y, Norisuye T. Viscosity behavior and chain conformation of a (1→3)-β-d-glucan from Ganoderma lucidum. Polymers Bulletin, 1998, 41(4): 471-475.
    [48] Chen XY, Xu XJ, Zhang LN, Kennedy JF. Flexible chain conformation of (1→3)-β-d-glucan from Poria cocos sclerotium in NaOH/urea aqueous solution. Carbohydrate Polymers, 2009, 75(4): 586-591.
    [49] Huang QL, Jin Y, Zhang LN, Cheung PCK, Kennedy JF. Structure, molecular size and antitumor activities of polysaccharides from Poria cocos mycelia produced in fermenter. Carbohydrate Polymers, 2007, 70(3): 324-333.
    [50] Stokke BT, Elgsaeter AK. Conformation, order-disorder conformational transitions and gelation of non-crystalline polysaccharides studied using electron microscopy. Micron, 1994, 25(5): 469-491.
    [51] Qian JY, Chen W, Zhang WM, Zhang H. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: A primary approach . Carbohydrate Polymers, 2009, 78(3): 620-625.
    [52]秦利鸿,曹建波,易伟松.绿茶多糖的扫描电镜制样新方法及原子力显微镜观察.电子显微学报, 2009, 28(2): 163-167.
    [53]戴玲,沈业寿,庄永龙,赵帜平,廖洪梅.丹皮多糖分子的电子显微镜观察.电子显微学报, 2006, 25(5): 405-407.
    [54]刘站柱,朱国芬,金声.党参花粉多糖的研究.高等学校化学学报, 1991, 12(12): 1600-1604.
    [55]周义发,焦明大,胡阿林等.酵母甘露聚糖的电子显微镜观察.东北师大学报(自然科学版), 1994,1: 58-60.
    [56]刘如林,杨春.小核菌多糖分子形貌的电镜研究.南开大学学报(自然科学版), 1995, 28(1) : 68-71.
    [57]鲍幸峰,方积年.原子力显微镜在生物大分子结构研究中的应用进展,分析化学, 2000, 28(10): 1300-1307
    [58]吴佳,邓霄,张芸,汪兰,田斌强,谢笔钧.原子力显微镜技术在多糖研究中的应用.中国农业科学, 2008, 41(10): 3222-3228.
    [59]李国有,陈勇,王云起,廖问陶,蔡继业.原子力显微镜在多糖分子结构研究中的应用.现代仪器, 2006, 5: 14-17.
    [60] Li H, Rief M, Oesterhelt F, Gaub HE, Zhang X, Shen J. Single-molecule force spectroscopy on polysaccharides by AFM– nanomechanical fingerprint ofα-(1,4)-linked polysaccharides. Chemical Physics Letters, 1999, 305(34): 197-201.
    [61] Williams MAK, Marshall A, Haverkamp RG, Draget KI. Stretching single polysaccharides molecules using AFM: A potential method for the investigation of the intermolecular uronate distribution of alginate. Food Hydrocolloids, 2008, 22(1):18-23.
    [62] Iijima M, Shinozaki M, Hatakeyama T, Takahashi M, Hatakeyama H. AFM studies on gelation mechanism of xanthan gum hydrogels. Carbohydrate Polymers, 2007, 68(4): 701-707.
    [63] Round AN, Rigby NM, Alistair J. MacDougall, Morris VJ. A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy.Carbohydrate Research, 2010, 345(4): 487-497.
    [64] Mulloy B, Mour?o PAS, Gray E. Structure/function studies of anticoagulant sulphated polysaccharides using NMR. Journal of Biotechnology, 2000, 77(1): 123-135.
    [65] Peres I, Rocha S, Pereira MC, Coelho M, Rangel M, Ivanova G. NMR structural analysis of epigallocatechin gallate loaded polysaccharide nanoparticles. Carbohydrate Polymers, 2010, 82(3): 861-866.
    [66] Casu B. Structure and conformation of polysaccharides by NMR spectroscopy. Carbohydrate Polymers, 1982, 2: 247-253.
    [67] Coxon B, Sari N, Batta G, Coxon VP, Sari N, Batta G, Pozsgay V. NMR spectroscopy, molecular dynamics, and conformation of a synthetic octasaccharide fragment of the O-specific polysaccharide of Shigella dysenteriae type. Carbohydrate Research, 2000, 324(1): 53-65.
    [68] Sattelle BM, Shakeri J, Roberts IS, Almond A. A 3D-structural model of unsulfated chondroitin from high-field NMR: 4-sulfation has little effect on backbone conformation . Carbohydrate Research, 2010, 345(2): 291-302.
    [69] Almond A, DeAngelis PL, Blundell CD. Hyaluronan: the local solution conformationdetermined by NMR and computer modeling is close to a contracted left-handed 4-fold helix. Journal of Molecular Biology, 2006, 358(5): 256-1269.
    [70]段金友,方积年.圆二色谱在糖类化合物结构研究中的应用.天然产物研究与开发, 2004, 16(1): 71-75.
    [71]张丽萍,张翼伸.金顶侧耳多糖及其化学修饰产物水溶液构象的圆二色谱测定.生物化学杂志, 1994, 10(5): 633-635.
    [72]张丽萍,张翼伸,孙非,梁忠岩.硫酸化对金顶侧耳多糖的构象及生物活性的影响.生物化学及生物物理学报, 1994, 26(4): 417-421.
    [73]廖平,贺峰,金声.婴栗花粉中阿拉伯半乳聚糖的结构及圆二色性的研究.高等学校化学学报, 1994, 15(3): 379-382.
    [74] Kaluarachchi K, Bush CA. Determination of the absolute configuration of the sugar residues of complex polysaccharides by circular dichroism spectroscopy. Analytical Biochemistry, 1989, 179(1): 209-215.
    [75]周鹏,谢明勇,聂少平.茶多糖TGC的结构表征.中国科学(C辑:生命科学), 2004, 34(2): 178-185.
    [1]管志斌,李再林,里二.珍稀名贵中药一金钗石斛.中国野生植物资源, 2002, 21(4): 36-37.
    [2]王琳,叶庆生,刘伟.金钗石斛研究概况.亚热带植物科学, 2004, 33 (2): 73-76.
    [3]蒋波,詹源庆,黄捷.金钗石斛濒危原因及其野生资源保护.中国野生植物资源, 2005, 24(5): 34-36.
    [4]中华人民共和国卫生部药典委员会.中华人民共和国药典.北京:化学工业出版社, 2010, pp: 85-87.
    [5]郑晓珂,曹新伟.金钗石斛的研究进展.中国新药杂志, 2005, 14(7): 827-830.
    [6]刘莉,李智敏,李晚谊.金钗石斛的研究进展.云南大学学报(自然科学版), 2009, 31(51):509-513.
    [7]铃木秀干.中药金钗石斛碱的研究.药学杂志(日), 1932, 52(12):1049.
    [8] Chen KK, Chen AL. The alkaloid of Chin-shih-hu. The Journal of Biological Chemistry, 1935, 111(3): 653–665.
    [9] Onaka T, Kameta S, Maeda T. The structure of dendorbine. Chemical and Pharmaceutical Bulletin, 1964, 12: 506-512.
    [10]张光浓,毕志明,王峥涛,徐珞珊,徐国钧.石斛属植物化学成分研究进展.中草药, 2003, 34 (6): 5-8.
    [11] Morita H, Fujiwara M, Yoshida N, Kobayashi J. New picrotoxinin-type and dendrobine-type sesquiterpenoids from Dendrobium snowflake‘Red Star’. Tetrahedron, 2000, 56(87): 5801-5805.
    [12] Inubushi Y, Tsuda Y, Konita T. Shihunine: a new phthalide-pyrrolidine alkaloid. Chemical and Pharmaceutical Bulletin, 1964, 12(6): 749-750.
    [13] Inubushi Y, Ishii H, Yasui B, Takeshi K, Harayarna T. Isolation and characeterization of alkaloids of the Chinese drug "Chin-Shih-Hu". Chemical and Pharmaceutical Bulletin, 1964, 12(10): 1175-1180.
    [14] Inubushi Y, Nakanv J. The structure of dendrobine. Tetrahedron Letters. 1965, 31: 2723-2728.
    [15] Okamoto T, Natsume M,Onaka T. The structure of dendroxine: the third alkaloid from Dendorbium nobile. Chemical and Pharmaceutical Bulletin, 1966, 14(6): 672-676.
    [16] Okamoto T, Natsume M, Onaka T, Uchimaru F, Shimizu M. Structure of dendroxine (6-oxydendrobine) and 6-oxydendroxine-fourth and fifth alkaloid from Dendrobium nobile. Chemical and Pharmaceutical Bulletin, 1966, 14(6): 676-680.
    [17] Wang HK, Zhao TF. Dendrobine and 3-hydroxy-2-oxodendrobine from Dendrobium nobile. Jourual of Natural Products, 1985, 48(5): 796-801.
    [18] Ekevag U, Elander M ,Gawell L. Studies on orchidaceae a kaloids XXXIII. two new alkaloids, N-cisand N-trans-cinnamoylnorcusk hygrine from Dendrobium chrysanthum Wall. Acta Chemical Scandinavica, 1973, 27: 1982-198
    [19] Okamoto T, Natsume M, Shimizu M. Further studies on the alkaloid constituents of Dendrobium nobile (orchidaceae): structure determination of 4-hydroxy-dendroxine and nobilomethylene. Chemical and Pharmaceutical Bulletin, 1972, 20(8): 412-418.
    [20] Hedman K, Leander K. Studies on Orchidaceae alkaloids. Quaternary salts of the dendrobine type from Dendrobium nobile Lindl. Acta Chemical Scandinavica, 1972, 26(8): 3177–3180.
    [21] Onaka T, Kamata S, Meada T. The structure of nobilonine, the second alkaloid from Dendrobium nobile. Chemical and Pharmaceutical Bulletin, 1965, 13(6): 745-747
    [22] Hedman K, Leander K .Studies on orchidaceae alkaloids XXVII. quaternary salts of the dendrobine from Dendorbium nobile. Acta Chemical Scandinavica, 1972, 26: 3181-3186.
    [23]郑虎占,董泽宏,余靖.中药现代研究与应用(第二卷).学苑出版社, 1997, 1377-1387.
    [24] Liu QF, Zhao, WM. A new dendrobine-type alkaloid from Dendrobium nobile. Chinese Chemical Letters, 2003, 14(3): 278-279.
    [25]李墅,王春兰,郭顺星.高效液相色谱法测定金钗石斛中石斛碱含量.中国药学杂志, 2009, 44(4): 252-254.
    [26] Yamamoto K, Kawasaki I, Kaneko T. Synthetic studies of dendrobine I synthesis of the skeleton of dendrobine. Tetrahedron Letters, 1970, 11(9): 4859-4861.
    [27] Zhao WM, Ye QH, Tan XJ, Jiang HL, Li XY,Chen KX, Kinghom AD. Three new sesquiterpene glycosides from Dendrobium nobile with immunomodulatory activity. Journal of Natural Products, 2001, 64(9): 1196-1200.
    [28] Ye QH, Zhao WM. New alloaromadendrane, cadinene and cyclocopacamphane type sesquiterpene derivatives and bibenzyls from Dendrobium nobile. Planta Medica , 2002, 68(8): 723-729.
    [29] Zhang X, Liu HW, Gao H, Han HY, Wang NL, Wu HM, Yao XS, Wang Z. Nine new sesquiterpenes from Dendrobium nobile. Helvetica Chimica Acta, 2007, 90(12): 2386-2394.
    [30]张雪,高昊,韩慧英,刘宏伟,王乃利,姚新生,王钊.金钗石斛中的倍半萜类化合物.中草药, 2007, 38(12): 1771-1774.
    [31] Zhang X, Tu FJ, Yu HY. Copacamphane, picrotoxane and cyclocopacamphane sesquiterpenes from Dendrobium nobile. Chemical & Pharmaceutical Bulletin, 2008, 56(6): 854-857.
    [32]李满飞,徐国钧,吴厚铭.金钗石斛精油化学成份研究.有机化学, 1991, 11(2): 219-224.
    [33]刘建华,高玉琼,霍昕,杨嘉,赵德刚.金钗石斛、环草石斛挥发性成分研究.中成药, 2006, 28(4): 1339-1342.
    [34]舒莹,郭顺星,陈晓梅.金钗石斛化学成分的研究.中国药学杂志,2004,39(6): 421-422.
    [35]罗丹,张朝凤,林萍,王峥涛,徐珞珊.金钗石斛化学成分的研究.中草药, 2006, 37(1): 36-38.
    [36] Talapatra B, Mukhopadhyay P, Chaudhury P. Denbinobin, a new phenanthraquinone from Dendrobium nobile Lindl (Orchidaceae) . India Journal of Chemistry B, 1982, 21B: 386.
    [37] Lee YH , Park JD, Baek NI. in vitro and in vivo antitumoral phenanthrenes from the aerial parts of Dendrobium nobile. Planta Medica,1995, 61(2): 178-180.
    [38] Miyazawa M, Shimamura H, Nakamura S. Antimutagenic activity of gigantol from Dendrobium nobile. Journal of Agricultural and Food Chemistry, 1997, 45(8): 2849-2853.
    [39] Miyazawa M, Shimamura H, Nakamura S. Moscatilin from Dendrobium nobile, a naturally occurring bibenzyl compound with potential antimutagenic activity. Journal of Agricultural and Food Chemistry, 1999, 47(5): 2163-2167.
    [40]杨薇薇,辛浩.金钗石斛化学成分研究.分析测试技术与仪器, 2006, 12(2): 98-100.
    [41] Zhang X, Xu Jk, Wang NL, Kurihara H, Yao XS. Antioxidant phenanthrenes and lignans from Dendrobium nobile. Journal of Chinese Pharmaceutical Sciences, 2008, 17(4): 314-318.
    [42] Hwang JS, Lee SA, Hong SS, Han XH. Phenanthrenes from Dendrobium nobile and their inhibition of the LPS-induced production of nitric oxide in macrophage RAW 264.7 cells. Bioorganic & Medicinal Chemistry Letters, 2010, 20(12): 3785-3787.
    [43] Yang H, Sung SH, Kim YC. Antifibrotic phenanthrenes of Dendrobium nobile stems. Journal of Natural Products, 2007, 70(23): 1925-1929.
    [44] Liu QF, Chen WL, Tang J, Zhao WM. Novel bis(bibenzyl) and (propylphenyl)bibenzyl derivatives from Dendrobium nobile. Helvetica Chimica Acta, 2007, 90(25): 1745-1750.
    [45] Zhang X; Xu JK; Wang J. Bioactive bibenzyl derivatives and fluorenones from Dendrobium nobile. Journal of Natural Products, 2007, 70(12): 24-28 .
    [46]张雪,续洁琨,王乃利,栗原博,姚新生,王钊.金钗石斛中联苄类和酚酸类成分的抗氧化活性研究.中国药学杂志, 2008, 43(11): 829-832.
    [47] Zhang X, Gao H, Wang L. Three new bibenzyl derivatives from Dendrobium nobile. Journal of Asian Natural Products Research, 2006, 8(12): 113-118.
    [48]张雪,高昊,王乃利,姚新生.金钗石斛中的酚性成分.中草药, 2006, 37(5):652-655.
    [49]李玉鹏,蒋金和,刘莹,陈业高.金钗石斛化学成分的研究.时珍国医国药, 2010, 21(1): 39-40.
    [50]李妮亚,高培元,王紫.海南石斛属和金石斛属植物多糖及氨基酸含量分析.植物资源与环境学报, 2004, 13(4): 57– 58.
    [51]吴庆生,丁亚平,徐玲,杨道麒.金钗石斛茎的不同部位中有效成分分析及其分布规律研究.中国中药杂志, 1995, 20(3): 148-149.
    [52]高培元,李妮亚,王紫.海南野生石斛中必需微量元素与必需氨基酸的分析.中国野生植物资源, 2004, 23(4): 56-58.
    [53]鲍丽娟,王军辉,罗建平. 4种石斛水提物对人宫颈癌HelaS3细胞和肝癌HepG2细胞的抑制作用.安徽农业科学, 2008, 36(36): 15968–15970.
    [54]罗文娟,王光辉,张雪,陈志南,王乃利,姚新生.金钗石斛茎提取物联苄类化合物对人肝癌高侵袭转移细胞株FHCC-98增殖的抑制.中国临床康复, 2006, 10(43): 150-152.
    [55] Wang JH, Luo JP, Zha XQ, Feng BJ. Comparison of antitumor activities of different polysaccharide fractions from the stems of Dendrobium nobile Lindl. Carbohydrate Polymers, 2010, 79(1): 114-118.
    [56]施红,陈玉春,林智诚.石斛复方制剂对小鼠免疫功能的影响.福建中医学院报, 1996, 6(3): 24-26.
    [57] Huang MQ, Cai TY, Liu QL.Effects of polysaccharides from Dendrobium candidum on white blood cells and lymph cell moving inhibition factor of mice.Natural Product Research & Development, 1996, 8(3): 39-41.
    [58]赵武述,张玉琴,李洁.植物多糖提取物致有丝分裂反应的分析.中华微生物学和免疫学杂志, 1991, 11(318): 381-382.
    [59] Yang H, Yang YJ, Sung SH. Antiproliferative constituents isolated from Dendrobium nobile stem on hepatic stellate cells. Planta Medica, 2008, 74(9): 1059-1059.
    [60]黎英,赵亚,陈蓓怡,蒋思媛,于文利. 5种石斛水提物对活性氧的清除作用.中草药, 2004, 35(11): 1240-1242.
    [61] Luo AX, He XJ, Zhou SD, YJ, Luo AS, Chun Z. Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl. Carbohydrate Polymers, 2010, 79 (1): 1014-1019.
    [62] Luo AX, He XJ, Zhou SD, YJ, Luo AS, Chun Z. In vitro antioxidant activities of a water-soluble polysaccharide derived from Dendrobium nobile Lindl. extracts. International Journal of Biological Macromolecules, 2009, 45(4): 359-363.
    [63] One M. Antioxidative constituents from Dendrobii Herba (stems of Dendrobium spp.). Food Science & Technology, 1995, 1 (2): 115-119.
    [64]李小琼,金徽,葛晓军,唐彦萍.金钗石斛多糖对脂多糖诱导的小鼠腹腔巨噬细胞分泌TNF-α和NO的影响.安徽农业科学, 2009, 37(28): 13634-13635.
    [65] Devi PU, Selvi S, Devipriya D. Antitumor and antimicrobial activities and inhibition of in-vitro lipid peroxidation by Dendrobium nobile. African Journal of Biotechnology, 2009, 8(10): 2289-2293.
    [66]陈少夫,李宇权,吴亚丽.石斛对胃酸分泌及血清胃泌素、血浆生长抑素浓度的影响.中国中药杂志, 1995, 20(3): 181-182.
    [67]杨涛,梁康,侯纬敏.四种中草药对大鼠半乳糖性白内障相关酶活性的影响.生物化学杂志, 1991, 7(6): 731-736.
    [68]杨涛,梁康,侯纬敏.四种中草药成分对醛糖还原酶和脂类过氧化的抑制作用.生物化学杂志, 1992, 8(2): 169-173.
    [69]杨涛,粱康,张昌颖.四种中草药对大鼠半乳糖性白内障防治效用的研究.北京医科大学学报,1991, 23(2): 97-99.
    [70]杨涛,粱康,侯伟敏.四种中草药对白内障形成中晶状体脂类过氧化水平及脂类含量的变化.生物化学杂志,1992, 8(2): 164-167.
    [71]龙艳,魏小勇,詹宇坚,李熙灿,徐传磊,徐勤.金钗石斛提取物抗白内障的体外实验研究.广州中医药大学学报, 2008, 25(4): 345-349.
    [72]白金丽,温淑湘.金钗石斛提取物抗白内障的体外实验研究.云南中医中药杂志, 2009, 30(9): 57-59.
    [73]魏小勇,龙艳,詹宇坚,李熙灿,徐勤,徐传磊.金钗石斛提取物抗白内障的体外实验研究.现代中药研究与实践, 2008, 22(2): 27-31.
    [74]魏小勇,龙艳.金钗石斛生物碱抗糖性白内障作用及蛋白质组学效应的实验研究.天然产物研究与开发, 2008, 20(4): 617-621.
    [75]魏小勇龙艳.金钗石斛生物碱对糖性白内障大鼠诱导型一氧化氮合酶基因的调控.解剖学研究, 2008,30(3): 177-180.
    [76]李菲,黄琦,李向阳,吴芹,石京山.金钗石斛提取物对肾上腺素所致血糖升高的影响.遵义医学院学报,2008, 31(1): 11-12.
    [77]黄琦,李菲,吴芹,石京山.金钗石斛总生物碱对四氧嘧啶所致糖尿病大鼠的保护作用.遵义医学院学报, 2009, 32(5): 451-453.
    [78]陈建国,王菌,来伟旗,梅松.金钗石斛的安全性毒理学评价.中国卫生检验杂志,2002,12(1): 42-44.
    [79]马雪梅,章萍,于苏萍.云南石仙桃及石斛总生物碱和多糖含量的分析.中草药, 1997, 28(9): 561-563.
    [80]陈建伟,马虎,龚其海,吴芹,石京山.金钗石斛生物总碱对脂多糖诱导大鼠学习记忆功能减退的改善作用.中国药理学与毒理学杂志, 2008, 22(6): 406-411.
    [81]施红,黄玲.石斛抗衰老作用的研究.中草药,1993, 24(1): 534-536.
    [82]方泰惠.石斛对大鼠肠系膜的动脉血管的作用.南京中医学院学报, 1991, 7(2): 100-102.
    [1]中国医学科学院及中国疾病预防控制中心等联合主编.中国医药卫生科技发展报告(2003).中国协和医科大学出版社,第一版, 2004, pp: 220-221.
    [2]吴道圣.金钗石斛引种人工栽培试验总结报告.浙江林业科技, 1998, 18(1): 29-32.
    [3]郑晓珂,曹新伟.金钗石斛的研究进展.中国新药杂志, 2005, 14(7): 827-830.
    [4] Wang JH, Luo JP, Zha XQ, Feng BJ. Comparison of antitumor activities of different polysaccharide fractions from the stems of Dendrobium nobile Lindl. Carbohydrate Polymers, 2010, 79(1): 114-118.
    [5] Luo AX, He XJ, Zhou SD, YJ, Luo AS, Chun Z. Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl. Carbohydrate Polymers, 2010, 79(4): 1014-1019.
    [6] Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Analytical Biochemistry, 1973, 54(2): 484–489.
    [7] Blakeney AB, Harris PJ, Henry RJ, Stone BA. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydrate Research, 1983, 113(2): 291-299.
    [8] Tomoda M, Ichikawa M, Shimizu N. The major pectin from the foots of Angelica acutilobba. Chemical and Pharmaceutical Bulletin, 1986, 34(12): 4992-4996.
    [9] Needs PW, Selvendran RR. Avoiding oxidative degradation during sodium hydroxydimethyloidine-mediated carbohydrate methylation in dimethyl sulfoxide. Carbohydrate Research, 1993, 245: 1-10.
    [10] Sweet DP, Shapiro RH, Albersheim P. Quantitative analysis by various GLC response-factor theories for partially methylated and partially ethylated alditol acetates. Carbohydrate Research, 1975, 40(2): 217-225.
    [11] Deters A, Dauer A, Schnetz E, Fartasch M, Hensel A. High molecular compounds (polysaccharides and proanthocyanidins) from Hamamelis virginiana bark: influence on human skin keratinocyte proliferation and differentiation and influence on irritated skin. Phytochemistry, 2001, 58(6): 949-958.
    [12] Strasser GR, Amadb R. Pectic substances from red beet(Beta vulgaris conditiva). Part I. Structural analysis of rhamnogalacturonan I using enzymic degradation and methylationanalysis. Carbohydrate Polymers, 2001, 44: 63-70.
    [13] Maness NO, Ryan JD, Mort AJ. Determination of the degree of methyl esterification of pectins in small samples by selective reduction of esterified galacturonic acid galactose. Anal Biochemistry, 1990, 185(2): 346-352.
    [14] Hua YF, Zhang M, Fu CX, Chen ZH, Chan GYS. Structural characterization of a 2-O-acetylglucomannan from Dendrobium officinale stem. Carbohydrate Research, 2004, 339(13): 2219-2224.
    [15] Ewa K, Nina AK, George V, Agnieszka K, Alexander S, Yuriy AK. Structure of the O-polysaccharide from the lipopolysaccharide of Hafnia alvei strain PCM 1546. Carbohydrate Research, 2003, 338(20): 2153-2158.
    [16] Capek P, Alfoldi J, Liskova D. An acetylated galactoglucomannan from Picea abies L. Karst. Carbohydrate Research, 2002, 337(11): 1033-1037.
    [17] Roswitha S, Pierre N, Se′bastien JF, Monica F, Sylviane R, Robert JR. Purification and characterisation of a galactoglucomannan from kiwifruit (Actinidia deliciosa). Carbohydrate Research, 2001, 331(3): 291-306.
    [18] Corsaro MM, Evidente A, Lanzetta R, Lavermicocca P. Structural determination of the phytotoxic mannan exopolysaccharide from Pseudomonas syringae pv. ciccaronei. Carbohydrate Research, 2001, 330(2), 271-277.
    [19] Li?i?árováI, MatulováM, Capek P, MachováE. Human pathogen Candida dubliniensis: A cell wall mannan with a high content ofβ-1,2-linked mannose residues. Carbohydrate Polymers, 2007, 70(1): 89-100.
    [20] Du XJ, Zhang JS, Yang Y, Ye LB, Tang QJ. Structural elucidation and immuno-stimulating activity of an acidic heteropolysaccharide (TAPA1) from Tremella aurantialba. Carbohydrate Research, 2009, 344(5): 672-678.
    [21] Zha XQ, Luo JP, Luo SZ, Jiang ST. Structure identification of a new immunostimulating polysaccharide from the stems of Dendrobium huoshanense. Carbohydrate Polymers, 2007, 69(1): 86-93.
    [22] Martinez M, Leon de Pinto G, Alvarez S, González de Troconis N, Ocando E, Rivas C. Composition and properties of Albizia lebbeck gum exudate. Biochemical Systematics and Ecology, 1995, 23(7-8): 843-848.
    [23] Paula RCM, Santana SA, Rodrigues JF. Composition and rheological properties of Albizia lebbeck gum exudate. Carbohydrate Polymers, 2001, 44(2): 133-139.
    [24] Suárez ER, Kralovec JA, Noseda MD, Ewart HS, Barrow CJ, Lumsden MD, Grindley T. Isolation, characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohydrate Research, 2005, 340(8): 1489-1498.
    [25] Zab?otni A, Perepelov A V, Knirel Y A, Sidorczyk Z. Structure of the O-polysaccharide of Proteus mirabilis OC (CCUG 10702) from a new proposed Proteus serogroup O75. Carbohydrate Research, 2005, 340(11): 1908-1913.
    [26] Ye H, Wang K, Zhou CH, Liu J, Zeng XX. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chemistry, 2008, 111(2): 428-432.
    [27] Wang XS, Zheng Y, Zuo JP, Fang JN. Structural features of an immunoactive acidic arabinogalactan from Centella asiatica. Carbohydrate Polymers, 2005, 59(3), 281-288.
    [28] Bao JY, Wang XS, Fang JN, Li XY. Structural features of a pectic arabinogalactan with immunological activity from the leaves of Diospyros kaki. Carbohydrate Research, 2003, 338(12): 1291-1297.
    [29]郑斯卓,葛小军,李小琼,金徽,唐彦萍.金钗石斛多糖含量测定条件和提取工艺的优化.中华中医药学刊, 2008, 26(12): 2676-2677.
    [30]刘文,熊耀康.微波辅助提取金钗石斛多糖的工艺研究.中华中医药学刊, 2009, 27(6): 1315-1317.
    [31]孙卓然,刘圆,李晓云,刘超.石斛不同种、不同药用部位中多糖含量测定.时珍国医国药, 2009, 20(8): 1886-1888
    [32]吴庆生,丁亚平,徐玲,杨道麒.金钗石斛茎的不同部位中有效成分分析及其分布规律研究.中国中药杂志, 1995, 20(3): 148-149.
    [33]赵永灵,王世林,李晓玉.兜唇石斛多糖的研究.云南植物研究, 1994, 16(4):392-396.
    [34]陈云龙,何国庆,华允芬,张铭.细茎石斛多糖的提取分离纯化和性能研究.中国药学杂志, 2003, 38(7): 494-497.
    [35] Hsieh YSY, Chien C, Liao SKS, Liao SF, Hung WT. Structure and bioactivity of the polysaccharides in medicinal plant Dendrobium huoshanense. Bioorganic & Medicinal Chemistry, 2008, 16(11): 6054-6068.
    [36] Luo AX, He XJ, Zou SD. In vitro antioxidant activities of a water-soluble polysaccharide derived from Dendrobium nobile Lindl. International Journal of Biological Macromolecules, 2009, 45(4): 359-363.
    [37] Fan YJ, He XJ, Zhou SD. Composition analysis and antioxidant activity of polysaccharide from Dendrobium denneanum. Journal of Biological Macromolecules, 2009, 45(2): 169-173.
    [38]陈璋辉,陈云龙,吴涛.细茎石斛多糖DMP4a-1的结构特性及免疫活性研究.中国药学杂志, 2005, 40(23): 1781-1784.
    [39]陈云龙,何国庆,华允芬.细茎石斛多糖的提取分离纯化和性能分析.中国药学杂志,2003, 38 (7): 494-497.
    [40]徐程,陈云龙,张铭.细茎石斛多糖DMP2a-l的结构分析.中国药学杂志, 2004, 39 (12): 900-902.
    [1]严宏.白内障基础研究和展望.第四军医大学学报, 2006, 27 (13): 1153-1155.
    [2]白金丽,温淑湘.金钗石斛提取物抗白内障的体外实验研究.云南中医中药杂志, 2009, 30(09): 57-59.
    [3]李德馨,王思玲,苏德森.白内障的发病机制与药物治疗.沈阳药科大学学报, 2002, 190 (4): 300-307.
    [4] Lin Y. Comparative study on preventing avoidable blindness in China and in Nepal. Chinese Medical Journal, 2007, 120(4): 280-283.
    [5] Vinson JA. Oxidative press on cataracts. Pathophysiology, 2006, 13(3): 151-162.
    [6]姚小萍,白内障.中国中医药出版社, 2005, 12-14.
    [7] Perry RE, Swamy MS, Abraham EC. Progressive changes in lens crystallin glycation and high-molecular-weight aggregate formation leading to cataract development in steptozotocin-diabetic rats. Experimental Eye Research, 1987, 44: 269-282.
    [8] Nagai R. Citric acid inhibits development of cataract, proteinuria and ketosis in Steptozotocin-diabetic rats. Biochemical and Biophysical Research Communications, 2010,393(1): 118-122.
    [9] Yadav SP, Biswas NR, Grover JK. Anti- cataract activity of Pterocarpus marsupium bark and Trigonella foenum-graecum seeds extract in alloxan diabetic rats. Journal of Ethnopharmacology, 2004, 93(23): 289-294.
    [10] Poulsom R, Mirrlees DJ. The effects of an aldose reductase inhibitor upon the sorbitol pathway, fructose-1-phosphate and lactate in the retina and nerve of steptozotocin-diabetic rats. Experimental Eye Research, 1983, 36(5): 751-760.
    [11] Toh T, Morton J, Coxon J, Elder MJ. Medical treatment of cataract. Clinical and Experimental ophthalmology, 2007, 35(7): 664-671.
    [12]美国眼科学会编.临床眼科指南(第十册):成人白内障.中华医学会眼科学分会编译.人民卫生出版社, 2006, P: 255-307.
    [13] Lu M, Cho E, Tayloy A, Hankinson SE, Willett WC, Jacques PC. Prospective study of dietary fat and risk of cataract extraction among US women. American Journal of Epidemiology, 2005, 161(10): 948-959.
    [14] Watkins R. Foundations of a solution to cataract blindness. Clinical and Experimental Optometry, 2002, 85(2): 59-60.
    [15]中华人民共和国卫生部药典委员会.中华人民共和国药典.北京:化学工业出版社, 2010, pp: 85-87.
    [16]郑晓珂,曹新伟.金钗石斛的研究进展.中国新药杂志, 2005, 14(7): 827-830.
    [17]铃木秀干.中药金石斛碱的研究.药学杂志(日). 1932, 52(12): 1049.
    [18] Chen KK, Chen AL. The alkaloid of Chin-shih-hu. Journal of Biological Chemistry, 1935, 111(3): 653–665.
    [19] Wang JH, Luo JP, Zha XQ, Feng BJ. Comparison of antitumor activities of different polysaccharide fractions from the stems of Dendrobium nobile Lindl. Carbohydrate Polymers, 2010, 79(1): 114-118.
    [20] Luo AX, He XJ, Zhou SD, YJ, Luo AS, Chun Z. Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl. Carbohydrate Polymers, 2010, 79(29): 1014-1019.
    [21] Luo AX, He XJ, Zhou SD, YJ, Luo AS, Chun Z. In vitro antioxidant activities of a water-soluble polysaccharide derived from Dendrobium nobile Lindl extracts. International Journal of Biological Macromolecules, 2009, 45(4): 359-363.
    [22]李菲,黄琦,李向阳,吴芹,石京山.金钗石斛提取物对肾上腺素所致血糖升高的影响.遵义医学院学报, 2008, 31(01): 11-12.
    [23]鲍丽娟,王军辉,罗建平. 4种石斛水提物对人宫颈癌HelaS3细胞和肝癌HepG2细胞的抑制作用.安徽农业科学, 2008, (36): 15968-15970.
    [24]杨涛,梁康,侯纬敏.四种中草药对大鼠半乳糖性白内障相关酶活性的影响.生物化学杂志, 1991, 7(6):731-736.
    [25]杨涛,梁康,侯纬敏.四种中草药成分对醛糖还原酶和脂类过氧化的抑制作用.生物化学杂志, 1992, 8(02):169-173.
    [26]杨涛,粱康,张昌颖.四种中草药对大鼠半乳糖性白内障防治效用的研究.北京医科大学学报, 1991, 23(2):97-99.
    [27]杨涛,粱康,侯伟敏.四种中草药对白内障形成中晶状体脂类过氧化水平及脂类含量的变化.生物化学杂志, 1992, 8(01): 164-167.
    [28]龙艳,魏小勇,詹宇坚,李熙灿,徐传磊,徐勤.金钗石斛提取物抗白内障的体外实验研究.广州中医药大学学报, 2008, 25(04): 345-349.
    [29]魏小勇,龙艳,詹宇坚,李熙灿,徐勤,徐传磊.金钗石斛提取物抗白内障的体外实验研究.现代中药研究与实践, 2008, 22(02): 27-31.
    [30]魏小勇,龙艳.金钗石斛生物碱抗糖性白内障作用及蛋白质组学效应的实验研究.天然产物研究与开发, 2008, 20(04): 617-621.
    [31]魏小勇,龙艳.金钗石斛生物碱对糖性白内障大鼠诱导型一氧化氮合酶基因的调控.解剖学研究, 2008, 30(03): 177-180, 205.
    [32] Trousdale MD, Dunkel EC, Nesburn AB. Effect of flurbiprofen on herpes simplex keratitis in rabbits. Investigative Ophthalmology & Visual Science, 1980; 19(3): 267-270.
    [33] Sakthivel M, Elanchezhian R. Prevention of selenite-induced cataractogenesis in Wistar rats by the polyphenol, ellagic acid. Experimental Eye Research, 2008, 86(2): 251-259.
    [34] Marsili S, Salganik RI, Albright CD. Cataract formation in a strain of rats selected for high oxidative stress. Experimental Eye Research, 2004, 79(5): 595-612.
    [35] Shinohara T, White H, Mulhern ML, Maisel H. Cataract: Window for systemic disorders. Medical Hypotheses, 2007, 69(3): 669-677.
    [36] ?zmen B, ?zmen D, Erkin E, Güner. Lens superoxide dismutase and catalase activities in diabetic cataract. Clinical Biochemistry, 2002, 35(1), 69-72.
    [37] Ou Y, Geng P, Liao GY, Zhou Z, Wu WT. Intracellular GSH and ROS levels may be related to galactose-mediated human lens epithelial cell apoptosis: Role of recombinant hirudin variant III. Chemical-Biological Interactions, 2009, 179(2-3): 103-109.
    [38] Taylor A, Davies KJA. Protein oxidation and loss of protease activity may lead to cataract formation in the aged lens. Free Radical Biology and Medicine, 1987, 3(6): 371-377.
    [39] Luo JP, Deng YY, Zha XQ. Mechanism of polysaccharides from Dendrobium huoshanense on streptozotocin-induced diabetic cataract. Pharmaceutical Biology, 2008, 46(4): 243-249.
    [40] Liu IM, Tzeng TF, Liou SS, Chang CJ. The amelioration of streptozotocin diabetes-induced renal damage by Wu-Ling-San (Hoelen Five Herb Formula), a traditional Chinese prescription. Journal of Ethnopharmacology, 2009, 124(2): 211-218.
    [41]张树政,朱正美,王克夷.糖生物学基础.科学出版社, 2010, pp: 1-537.
    [42]赵晓燕,王长云.分子修饰在多糖构效关系研究中的应用.海洋湖沼通报, 2000, 3(3): 10-13.
    [43] Yang JG, Shelat NY, Bush CA, Cisar JO. Structure and Molecular Characterization of Streptococcus pneumoniae Capsular Polysaccharide 10F by Carbohydrate Engineering in Streptococcus oralis. The Journal of Biological Chemistry, 2010, 285(31): 24217-24227.
    [44]张树政.糖生物学与糖生物工程.北京.清华大学出版社, 2002, pp: 8-74.
    [1] Huang ZP, Huang YA, Li XB, Zhang LN. Molecular mass and chain conformations of Rhizoma Panacis Japonici polysaccharides. Carbohydrate Polymers, 2009, 78(3): 596-601.
    [2] Yanaki T, Ito W, Tabata K, Kojima T, Norisuye T, Takano N, Hiroshi Fujita H. Correlation between the antitumor activity of a polysaccharide schizophyllan and its triple-helical conformation in dilute aqueous solution. Biophysical Chemistry, 1983, 17(4): 337-342.
    [3] Morris ER. Shear-thinning of random coil polysaccharides: Characterisation by two parameters from a simple linear plot. Carbohydrate Polymers, 1990, 13(1): 85-96.
    [4] Cesàro A, Paoletti S, Urbani R, Benegas J. Polyelectrolytic effects in semi-flexible carboxylate polysaccharides, Part 2. International Journal of Biological Macromolecules, 1989, 11(2): 66-72.
    [5] Palleschi A, Bocchinfuso G, Coviello T, Alhaique F. Molecular dynamics investigations of the polysaccharide scleroglucan: first study on the triple helix structure. Carbohydrate Research, 2005, 340(13): 2154-2162.
    [6] Lecourtier J, Muller GCG. Salt-induced extension and dissociation of a native double-stranded xanthan. International Journal of Biological Macromolecules, 1986, 8(5): 306-310.
    [7] Miyoshi K, Uezu K, Sakurai K. Inter-chain and arrayed hydrogen bonds inβ-1,3-D-xylan triple helix predicted by quantum mechanics calculation. Carbohydrate Polymers, 2006, 66(3): 352-356.
    [8] Lennart Piculell. Gelling polysaccharides. Current Opinion in Colloid & Interface Science, 1998, 3(6): 643-650.
    [9] Zhang L, Ding Q, Zhang P, Zhu R, Zhou Y. Molecular weight and aggregation behaviorin solution ofβ-D-glucan from Poriac ocos scleoritium. Carbohydrate Research, 1997, 303(9): 193-197.
    [10] Chen RZ, Meng FL, Liu ZQ, Chen RP, Zhang M. Antitumor activities of different fractions of polysaccharide purified from Ornithogalum caudatum Ait. Carbohydrate Polymers, 2010, 80(3): 845-851.
    [11] Bluhm TLB, Sarko A. Conformational studies of polysaccharide multiple helics. Carbohydrate Research, 1977, 54(1): 125-138.
    [12] Qian JY, Chen W, Zhang WM, Zhang H. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: A primary approach. Carbohydrate Polymers, 2009, 78(3): 620-625.
    [13] Bot A, Smorenburg HE, Vreeker R, Paques M, Clark AH. Melting behaviour of schizophyllan extracellular polysaccharide gels in the temperature range between 5 and 20°C. Carbohydrate Polymers, 2001, 45(4): 363-372.
    [14] Wang Y, Zhang M, Ruan D, Shashkov AS, Kilcoyne M, Savage AV, Zhang L. Chemical components and molecular mass of six polysaccharides isolated from the sclerotium of Poria cocos. Carbohydrate Research, 2004, 339(2): 327-334.
    [15] Wang J, Somasundaran P. Study of galactomannose interaction with solids using AFM, IR and allied techniques. Journal of Colloid and Interface Science, 2007, 309(2): 373-383.
    [16] Ogawa K, Tsurugi J, Watanabe T. Complex of gel-formingβ-1,3-D-glucan with Congo Red in alkaline solution. Chemistry Letters, 1972: 689-692.
    [17] Patel TR, Morris GA, EbringerováA, Vodeni?arováM, Velebny V, Ortega A. Global conformation analysis of irradiated xyloglucans. Carbohydrate Polymers, 2008, 74(4): 845–851.
    [18] Ioannis S, Chronakis, Johan B, Lennart P. Conformation and association ofκ-carrageenan in the presence of locust bean gum in mixed NaI/CsI solutions from rheology and cryo-TEM. International Journal of Biological Macromolecules, 1999, 25(4): 317-328.
    [19] Cody GD, Brandes J, Jacobsen C, Wirick S. Soft X-ray induced chemical modification of polysaccharides in vascular plant cell walls. Journal of Electron Spectroscopy and Related Phenomena, 2009, 170(13): 57-64.
    [20] Peng YF, Zhang LN. Characterization of a polysaccharide–protein complex from Ganoderma tsugae mycelium by size-exclusion chromatography combined with laser light scattering. Journal of Biochemical and Biophysical Methods, 2003, 56(1): 243-252.
    [21] Tao Y, Zhang L. Determination of molecular size and shape of hyperbranched polysaccharide in solution. Biopolymers, 2006, 83(4): 414-423.
    [22]吴佳,邓霄,张芸,汪兰,田斌强,谢笔钧.原子力显微镜技术在多糖研究中的应用.中国农业科学, 2008, 41(03): 3222-3228.
    [23]李国有,陈勇,王云起,廖问陶,蔡继业.原子力显微镜在多糖分子结构研究中的应用.现代仪器, 2006, 12 (05): 14-17.
    [24] Li H, Rief M, Oesterhelt F, Gaub HE, Zhang X, Shen J. Single-molecule force spectroscopy on polysaccharides by AFM– nanomechanical fingerprint ofα-(1,4)-linked polysaccharides. Chemical Physics Letters, 1999, 305(3-4): 197-201.
    [25] Jin Y, Zhang H, Yin Y, Nishinari K. Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM. Carbohydrate Research, 2006, 34(1): 90-99.
    [26] Gao FP, Zhang HZ, Liu LR, Wang YS, Jiang Q, Yang XD, Zhang QQ. Preparation and physicochemical characteristics of self-assembled nanoparticles of deoxycholic acid modified-carboxymethyl curdlan conjugates. Carbohydrate Polymers, 2008, 71(1): 606-613.
    [27] Wood PJ, Erfle JD, Teather RM. Use of complex formation between Congo Red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods in Enzymology, 1988, 160(7): 59-74.
    [28] Lee JS, Kumar RN, Rozman HD, Azemi BMN. Flow behaviour of sago starch-g-poly(acrylicacid) in distilled water and NaOH—effect of photografting. Carbohydrate Polymers, 2004, 56(3): 347-354.
    [29] Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol, 2002, 60(3): 258-74.
    [30] Demleitner S, Kraus J, Franz G. Synthesis and antitumour activity of derivatives of curdlan and lichenan branched at C-6. Carbohydrate Research, 1992, 226(2): 239-246.
    [31] Carlucci MJ, Ciancia M, Matulewicz MC, Cerezo AS, Damonte EB. Antiherpetic activity and mode of action of natural carrageenans of diverse structural types. Antiviral Research, 1999, 43(2): 93-102.
    [32] Wasser SP. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol. 2011, 89: (5)1323-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700