地质环境与巢湖富营养化控制机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对巢湖富营养化控制基础性研究较为不足的实际情况,结合流域地质环境和水环境现状,从信息不确定性角度,对巢湖富营养化控制机制做了较为系统的研究,提出了一些新的计算模型和评价模式。
     主要成果和结论如下:
     1.基于河流水环境系统的模糊性和不精确性,构建了带三角模糊参数的入湖河流水质模拟模糊模型。
     2.从多种不确定性共存或交叉存在的角度,建立了适用于巢湖等大型浅水湖泊环境容量计算的盲数模型。
     3.以通用土壤流失方程USLE为蓝本,建立了适用于江淮流域的土壤侵蚀量计算盲数模型。
     4.探讨了河口沉积物潜在生态风险问题,并以十五里河河口为例,运用未确知数学理论进行风险评价。
     5.分别以信息熵模糊物元模型和多智能体盲数模型,对巢湖流域生态环境质量状况进行评价,并获得一致的评价结论,即目前巢湖流域生态环境质量仅处于一般状态。
     6.对Fuzzy概率法进行改进,并将其用于巢湖水体富营养化评价。结果表明,2004年巢湖处于中营养化~中富营养化水平,且属于中富营养化的可能性最大,可能性达0.302(30.2%)。
     7.提出了巢湖富营养化治理的对策、措施。
Considering the insufficient basic researches on the control of eutrophication in Chaohu Lake, a systematical study for the control mechanism of lake eutrophication was conducted from the viewpoint of uncertain information, and several novel computing models and assessment methodologies were provided in the thesis. Results and conclusions drawn in this thesis can be summarized as follows:
     1. Based on the fuzziness, impreciseness and randomness of water environmental system, fuzzy arithmetic is utilized to simulate the fuzzy and imprecise relations in water quality modeling for rivers surrounding the Chaohu Lake.
     2. From the concomitancy of randomness, fuzziness, grey property and unascertainment of water environmental system, blind number theory in unascertained mathematics was applied for the calculation of water environmental carrying capacity in shallow lakes. On these grounds, a novel model with blind parameters, suitable for large and shallow lakes, was established for water environmental carrying capacity.
     3. A blind model for estimating the soil erosion and non-point source pollution loads of absorbed nitrogen and phosphorus was constructed by defining the parameters in traditional USLE model as blind numbers.
     4. The potential ecological risk analysis for the sediments in the mouth of rivers surrounding the Chaohu Lake, was conducted using unascertained number theory in the thesis. As a case, we concretely studied the potential ecological risk in the estuary of Shiwuli River.
     5. As for eco-environmental quality assessment of Chaohu Lake basin, two novel methodologies, namely information entropy fuzzy matter-element model and multiple-agent blind model, were utilized, and obtained the same ranks for the eco-environmental quality of Chaohu Lake basin.
     6. After improving the present Fuzzy-probability model, we attempted to introduce the improved model to the assessment of lake eutrophication. According to the improved model, we drew such a conclusion that Chaohu Lake was in the states from mesotropher to middle eutropher in the year of 2004.
     7. The ways and measures to control the eutrophication of Chaohu Lake were proposed in the end.
引文
[1] 殷福才,张之源.巢湖富营养化研究进展[J].湖泊科学,2003,15(4):377~384.
    [2] 何开丽.巢湖富营养化现状与治理对策[J].环境保护,2002,(4):22-24.
    [3] 金庆海,朱素菊,黄文钰,等.巢湖合肥地区洗衣粉排磷占入湖磷贡献率的研究[J].环境污染与防治,2001,23(6):320-322.
    [4] 王永华,钱少猛,徐南妮,等.巢湖东区底泥污染物分布特征及评价[J].环境科学研究,2004,17(6):22-26.
    [5] 毛战坡,单保庆,尹澄清,等.磷在农田溪流中的动态变化[J].环境科学,2003,24(6):1-8.
    [6] 曹德菊,岳永德,黄祥明,等.巢湖水体Pb,Cu,Fe污染的环境质量评价[J].中国环境科学,2004,24(4):509-512.
    [7] Xu Fu-liu, Tao Shu and Xu Zhuo-ran. The restoration of riparian wetlands and macrophytes in Lake Chao, a eutrophic Chinese lake: possibilities and effects [J]. Hydrobiologia, 1999,405:169-178.
    [8] Xu Fu-liu, Jφgensen S E, Tao Shu, et al. Modeling the effects of ecological engineering on ecosystem health of a shallow eutrophic Chinese lake. Ecological Modelling, 1999, 117: 239-260.
    [1] 雒文生,宋星原.水环境分析及预测[M].武汉:武汉水利电力大学出版社,2000:328-350.
    [2] Zielinski P A. Stochastic dissolved oxygen model[J]. Journal of Environmental Engineering,1988, 114 (1): 74-90.
    [3] Loucks D P, Lynn W R. Probabilistic models for predicting stream quality[J].Water Resources Research, 1996(3): 593-605.
    [4] 何理,曾光明.用模糊模拟技术研究水环境中的可能性风险[J].环境科学学报,2001,21(5):634-635.
    [5] Hercules M, Petro A and Jacques G. Modelling of water pollution in the Thermaios Gulf with fuzzy parameters[J]. Ecological Modelling, 2001, 142(1-2): 91-104.
    [6] Holger R M, Tarek S and Barbara J L. Forecasting Cyanobacterium Anabaena spp. in the river Murray, South Australia, using B-spline neuro-fuzzy models [J]. Ecological Modelling, 2001, 146(1-3): 85-96.
    [7] 陈治谏.河流水质模型参数模糊估计的研究[J].武汉水利电力学院学报,1987(6):20-27.
    [8] Ye Shou-ze. Mathematical modeling of river water quality under uncertain[J]. International Journal Hydroelectric Energy, 1989, 7(3): 200-210.
    [9] He Li, Zeng Guang-ming, Huang Guo-he, et al. Interval finite volume method for uncertainty simulation of two-dimensional river water quality[J]. Journal of Hydrodynamics, 2004, 16 (4): 455-463.
    [10] 李如忠,王超,汪家权,等.基于未确知信息的河流水质模拟预测研究[J].水科学进展,2004,15(1):36-40.
    [11] Cheng Ching-Hsue. Evaluating weapon systems using ranking fuzzy numbers[J]. Fuzzy Sets and Systems, 1999, 107(1): 25-35.
    [12] Chen Chen-tung. Extensions of the TOPSIS for group decision-making under fuzzy environment[J]. Fuzzy Sets and Systems, 2000, 114(1): 1-9.
    [13] Hsieh Chih-hsun, Chen Shan-huo. A model and algorithm of fuzzy product positioning[J]. Information Sciences, 1999, 121(1-2): 61-82.
    [14] Neumaier A. Interval methods for systems of equations [M]. Cambridge: Cambridge University Press, 1990.
    [15] Kwiesielewicz M. A note on the fuzzy extension of Saaty's priority theory [J]. Fuzzy Sets and Systems, 1998, 95(2): 161-172.
    [16] Dou C, Woldt W, Bogardi I, et al. Steady state groundwater flow simulation with imprecise parameters [J]. Water resources Research, 1995, 31 (10): 2709-2719.
    [17] Ress D A. Ddevelopment of fuzzy trigonometric functions to support design and manufacturing[D]. Department of Industrial Engineering, North Carolina State University, 1999.
    [18] Mehran H. Bridging the gap between probabilistic and fuzzy-parameter EOQ [J]. International Journal ofProductionEconomics, 2004, 91(2): 215-221.
    [19] 盛骤,谢式千,潘承毅.概率论与数理统计[M].第三版.杭州:浙江大学出版社,2001: 150-198.
    [20] Li Ru-zhong, ShigekiMasunaga, HongTian-qiu, etal. Fuzzy model fortwo-dimensionalfiver water quality simulmion undersudden pollutant discharged [J].Journal of Hydrodynamics, 2007, 19(4):
    [21] 余常昭.环境流体力学导论[M].北京:清华大学出版社,1992:176-178.
    [22] Chang Ni-bin, Chen H W and Ning S K. Identification of river water quality using the fuzzy synthetic evaluation approach [J]. Journal of Environmental Quality, 2001, 63(3): 293-305.
    [23] Ronald E G, Robert E Y. A parametric representation of fuzzy numbers and their arithmetic operators [J]. Fuzzy Sets and Systems, 1997, 91(2): 185-202.
    [24] Ronald E G, Robert E Y. Analysis of the error in the standard approximation used for multiplication of triangular and trapezoidal fuzzy numbers and the development of a new approximation [J]. Fuzzy Sets and Systems, 1997, 91(1): 1-13.
    [1] 张永良,刘培哲.水环境容量手册[M].北京:清华大学出版社,1991.
    [2] 卢宏伟,曾光明,张硕辅.三峡工程的运行对洞庭湖水环境容量的影响[J].环境工程,2004,22(1):61-63。
    [3] 王玉敏,周孝德,冯成洪,等.湖泊水环境承载力研究[J].水土保持学报,2004,18(1):179-184.
    [4] 李如忠,汪家权,王超,等.不确定性信息下河流纳污能力计算初探[J].水科学进展,2003,14(4):459-463.
    [5] 左其亭,吴泽宁,赵伟.水资源系统中的不确定性及风险分析方法[J].干旱区地理,2003,26(2):116-121.
    [6] 王光远.未确知信息的数学处理[J].哈尔滨建筑工程学院学报,1990,(4):1-10.
    [7] 张乾飞,王锦国,李雪红.大坝安全监控中的不确定性信息初探[J].河海大学学报,2002,30(5):113-117.
    [8] 刘开第,吴和琴,庞彦军,等.不确定性信息数学处理及应用[M].北京:科学出版社,1999.
    [9] 王宝森,刘开展,吴和琴.现行投资项目财务评价的局限性分析[J].数量经济技术经济研究,2000(2):73-74。
    [10] 朱海峰,程浩忠,张焰,等.利用盲数进行电网规划的潮流计算方法[J].中国电机工程学报,2001,21(8):74-78.
    [11] 蔡亮,向铁元,黄辉.发电系统可靠性评估的盲数模型和指标[J].电网技术,2003,27(8):29-32.
    [12] 李如忠,王超,汪家权,等.不确定性信息下河道型水库纳污能力计算初探[J].环境科学研究,2003,16(3):23-26.
    [13] 李如忠,钱家忠,汪家权.河流水质未确知风险评价理论模式研究[J].地理科学,2004,24(2):183-187。
    [14] 李如忠.河流水环境系统不确定性问题研究[博士论文].南京:河海大学环境科学与工程学院,2004.
    [15] 夏军.区域水环境及生态环境质量评价-多级灰关联评估理论及应用[M].武汉:武汉水利电力大学出版社,1999.
    [16] 殷福才,张之源.巢湖富营养化研究进展[J].湖泊科学,2003,15(4):377-384.
    [17] 吕俊杰,杨浩,陈捷,等.滇池水体BOD_5和COD_(Mn)空间变化研究[J].中国环境科学,2004,24(3):307-310。
    [18] 刘文祥,李喜俊,郭海燕.新疆博斯腾湖水环境容量研究[J].环境科学研究,1999,12(1):35-38.
    [19] 李如忠,洪天求.盲数理论在湖泊水环境容量计算中的应用[J].水利学报,2005,36(7):765-771.
    [1] 张之源,王培华,等.巢湖富营养化状况评价及水质恢复的探讨[J].环境科学研究,1999,12(5):45-48。
    [2] 孙莉宁.基于MARMF模型的流域非点源污染分析——以杭埠河-丰乐河流域为例[D].合肥:合肥工业大学资源与环境工程学院,2005.
    [3] 沈晋,沈冰,李怀恩,等.环境水文学[M].合肥:安徽科学技术出版社,1992.
    [4] 刘光.土壤侵蚀模型研究进展[J].水土保持研究,2003,10(3):73-76.
    [5] Kenneth G R, George R F, Glenn A W, et al. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation [M]. USDA Handbook, 1997.
    [6] Kenneth G R, George R F, Glenn A W, et al. RUSLE-Revised universal soil loss equation [J]. Journal of Soil and Water Conservation, 1991, 46(1): 30-33.
    [7] 李锐,杨勤科,赵永安.水土流失动态监测与评价研究现状与问题[J].中国水土保持,1999,(11):31-33.
    [8] 江忠善,王志强,刘杰.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(1):1-9.
    [9] 施为光.四川省清平水库流域非点源污染负荷计算[J].重庆环境科学,2000,22(2):33-36。
    [10] 王建云.利用通用流失方程计算星云湖流域污染负荷[J].环境工程,2001,19(4):54-56.
    [11] Ronald E G, Robert E Y. A parametric representation of fuzzy numbers and their arithmetic operators [J] .Fuzzy Sets and Systems, 1997, 91 (2): 185-202.
    [12] 刘开第,吴和琴,庞彦军,等.不确定性信息的数学处理及应用[M].北京:科学出版社,1999.
    [13] Walsh S J. Geographic information system for natural resource management [J]. Soil and Water Conservation, 1985, 40:202-205.
    [14] Christopher C, Chandra M. Application of geographic information systems in watershed management planning in Stlucia [J]. Computers and Electronics in Agriculture, 1998, 20:229-250.
    [15] Renschler C S, Marmaerts C, Diekkruger B. Evaluating spatial and temporal variability in soil erosion risk-rainfall erosivity and soil loss ratios in Andalusia, Spain [J]. Catena, 1999, 34:209-225.
    [16] Sivertun A, Prange L. Non-point source critical aera analysis in the Gisselo Watershed using GIS [J]. Environmental Modelling & Software, 2003, 18:887-898.
    [17] Shi Z H, Cai C F, Ding S W, et al. Soil conservation planning at the small watershed level using RUSLE with GIS [J]: a case study in the Three Gorge Area of China [J]. Catena, 2004,55:33-48.
    [18] 王晓辉.巢湖流域非点源N、P污染负荷估算及控制研究[D].合肥:合肥工业大学,2006.
    [19] Wischmeier W, Smith D. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains [M]. USDA Agriculture Handbook, 1965.
    [20] 陆雍森.环境评价[M].第二版.上海:同济大学出版社,1999:431-435.
    [21] 金相灿,屠清英.湖泊富营养化调查规范[M].第二版.北京:中国环境科学出版社,1990.
    [22] 李如忠,钱家忠,孙世群,等.不确定性信息下流域土壤侵蚀量计算[J].水利学报,2005,36(1):89-94.
    [23] V Novotny, G Chesters. Handbook ofnonpoint pollution: Sources and Management [M]. Van Nostrand Reinhold Company, 1981.
    [24] 杨志民.专著《不确定性信息数学处理及应用》的评介[J].科学通报,2000,45(16):1790-1791.
    [25] Mitra B, Scott H D, Dixon J C, et al. Application of fuzzy logic to the prodiction of soil erosion in a large watershed [J]. Geoderma, 1998, 86(3-4): 183-209.
    [26] Hercules M, Petro A and Jacques G. Modelling of water pollution in the Thermaios Gulf with fuzzy parameters [J]. Ecological Modelling, 2001, 142(1-2): 91-104.
    [27] Kentel E, Aral M M. 2D Monte Carlo versus 2D fuzzy Monte Carlo health risk assessment [J]. Stochastic Environmental Research and Risk Assessment, 2005, 19(1): 86-96.
    [28] 龚友运,李学银.概率与统计[M].武汉:华中科技大学出版社,2004.
    [29] 李如忠.基于模糊理论的流域土壤侵蚀量计算[J].环境科学与技术,2007,30(3):24-26.
    [30] Ronald E G, Robert E Y. Analysis of the error in the standard approximation used for multiplication of triangular and trapezoidal fuzzy numbers and the development of a new approximation[J]. Fuzzy Sets and Systems, 1997, 91(1): 1-13.
    [31] 刘开第,庞彦军,吴和琴,等.复盲数可信度的概念及BM_2模型[J].系统工程理论与实践,1999,19(9):86-92.
    [32] Silvert W. Ecological impact classification with fuzzy sets[J]. Ecological Modelling, 1997, 96(1-3): 1-10.
    [33] Appadoo S S, Thulasirarn R K, Bettor C R, et al. Fuzzy algebraic option pricing technique- a fundamental investigation [A]. The Annual Conference of Administrative Sciences Association ofCanada(ASAC), Quebec, Canada, June5-8, 2004.
    [34] Michael H. On the implementation of fuzzy arithmetical operations for engineering problems [A]. Proceedings of the 18th International Conference of the North American Fuzzy Information Processing Society-NAFIPS'99, New York, USA, 1999: 462-466.
    [35] David L O, Wu De-sheng. Simulation of fuzzy multi-attribute models for grey relationships [J]. European Journal of Operational Research, 2005 (in press).
    [36] 石博强,肖成勇.基于盲数的螺旋弹簧可靠性计算[J].农业机械学报,2003,34(4):98-99,104.
    [37] 孙峰,郝芳华.基于GIS的官厅水库流域非点源污染负荷计算研究[J].北京水利,2004,(2):16-18.
    [38] 黄金良,洪华生,张路平,等.基于GIS和USLE的九龙江流域土壤侵蚀量预测研究[J].水土保持学报,2004,18(5):79-83.
    [39] 史志华,张崇法,丁树文,等.基于GIS的汉江流域中下游农业面源氮磷负荷研究[J].环境科学学报,2002,22(4):473-477.
    [40] 董亮.GIS支持下西湖流域水环境非点源污染研究[D].杭州:浙江大学,2001.
    [1] 姚志刚,鲍征宇,高璞.洞庭湖沉积物重金属环境地球化学[J].地球化学,2006,35(6):629-638.
    [2] 周秀艳,王恩德,刘秀云,等.辽东湾河口底质重金属环境地球化学[J].地球化学,2004,33(3):286-290.
    [3] 贾振邦,周华,张宝权,等.应用地积累指数法评价太子河沉积物中重金属污染[J].北京大学学报(自然科学版),2000,36(4):525-530.
    [4] 弓晓峰,陈春丽,周文斌,等.鄱阳湖底泥中重金属污染现状评价[J].环境科学,2006,27(4):732-736.
    [5] Hilton J, Davison W, Ochsenbein U. A mathematical model for analysis of sediment coke data: implications for environment factor calculation and trace transport mechanisms[J]. Chemical Geology, 1985, 48(2): 281-291.
    [6] Angulo E. The Tomlinson pollution load index applied to heavy metal 'mussel-watch' data: a useful index to assess coastal pollution [J]. Science of the Total Environment, 1996, 187(1): 19-56.
    [7] 贾振邦,汪安,吴平.用脸谱图对太子河本溪市区段河流沉积物中重金属污染进行评价的研究[J].北京大学学报(自然科学版),1993,29(6):736-744.
    [8] 赵智杰,贾振邦,张宝权.应用脸谱图法与地累积指数法综合评价沉积物中重金属污染的研究[J].环境科学,1994,14(4):48-52.
    [9] 马德毅,王菊英.中国主要河口沉积物污染及潜在生态风险评价[J].中国环境科学,2003,23(5):521-525.
    [10] 程祥圣,流汉奇,张昊飞,等.黄浦江沉积物污染及潜在生态风险评价研究[J].环境科学,2006,15(4):682-686.
    [11] MOiler G. Index of geoaceumulation in sediments of the Rhine River [J]. Geojournal, 1969, 2(3): 108-118.
    [12] 刘开第,吴和琴,王念鹏,等.未确知数学[M].武汉:华中理工大学出版社,1997.
    [13] 刘开第,吴和琴,庞彦军,等.不确定性信息数学处理及应用[M].北京:科学出版社,1999.
    [14] FOrstner U, AhlfW, Calmano W, et al. Sediment criteria development [M]//Heling D, Rothe P, FOrstner U. Sediments and Environmental Geochemistry. Berlin: Springer-Verlag, 1990: 311-338.
    [15] 李如忠,洪天求,熊鸿斌,等.基于未确知数学理论的沉积物重金属污染评价模式[J].农业环境科学学报(录用待刊).
    [16] 国家海洋局.海洋监测规范[M].北京:海洋出版社,1991.
    [17] 刘路.巢湖十五里河河口污染物沉积特征及其溯源研究[D].合肥:合肥工业大学资源与环境工程学院,2006.
    [18] 王云,魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社,1995.
    [19] 赵一阳,鄢明才.中国浅海沉积物地球化学[M].北京:科学出版社,1994.
    [20] FOrstner U. Contaminated sediments: Lectures on environmental aspects of particle- associated chemicals in aquatic systems [C]// Lecture Notes I Earth Sciences (vol.21). Berlin: Springer-Veriag, 1989: 107—109.
    [21] 李如忠,王超,汪家权,等.基于未确知信息的河流水质模拟预测研究[J].水科学进展,2004,15(1):36-40.
    [22] 李如忠,洪天求,钱家忠,等.基于盲数的沉积物重金属污染评价潜在生态风险评价方法[J].生态环境,2007,(5).
    [1] 谢志仁,刘庄.江苏省区域生态环境综合评价研究[J],中国人口、资源与环境,2000,11(3):85-88。
    [2] 盖美,唐洁.镜泊湖流域生态环境综合评价[J].长春科技大学学报,1999,29(1):74-77.
    [3] 刘春莉,李祚泳.生态环境质量物元可拓评价及实例分析[J].城市环境与城市生态,2003,16(4):62-64.
    [4] Chen Shou-yu, Xiong De-qi. Fuzzy set theories and methods for municipal environmental quality assessment [A]. Proceeding of Interational Conference on City Development, Beijing, 1993.
    [5] 夏军.区域水环境及生态环境质量评价——多级灰关联评估理论及应用[M].武汉:武汉水利电力大学出版社,1999.
    [6] 吴开亚,李如忠,孙世群,等.区域生态环境的未确知测度评价模型及应用[J].环境科学研究,2004,17(2):22-25.
    [7] 张斌,雍歧东,肖芳淳.模糊物元分析[M].北京:石油出版社,1997:2-52.
    [8] 刘开第,吴和琴,庞彦军.综合处理专家意见的MABM方法[J].数学的实践与认识,2001,31(4):474-477.
    [9] 姜丹.信息原理[M].合肥:中国科技大学出版社,1987.
    [10] 王广月.深基坑支护决策的信息熵模糊层次分析模型[J].岩土力学,2004,25(5):737-739
    [11] LI Ru-zhong, HONG Tian-qiu, QIAN Jia-zhong. Information entropy fuzzy matter-element model and its application to regional eco-environmental quality assessment [J]. Journal of systems Science and Information (U.K.), 2006, 4(4): 649-659.
    [12] 李如忠.巢湖流域生态环境质量评价初步研究[J].合肥工业大学学报(自然科学版),2001,24(5):987-990.
    [13] 韦鹤平.环境系统工程[M].上海:同济大学出版社,1993.
    [14] 李如忠,钱家忠,汪家权.区域水资源可持续利用的未确知测度评价[J].中国农村水利水电,2004(12):43-46.
    [15] 刘开第,庞彦军,孙光勇,等.城市环境质量的未确知测度评价[J].系统工程理论与实践,1999(12):52-58.
    [16] 刘开第,庞彦军,姚立根,等.大气环境质量评价的未确知测度模型[J].环境科学,2000,21(3):11-15.
    [17] WU Kai-ya, HU Shu-heng, SUN Shi-qun. Application of fuzzy optimization model in ecological security pre-warning [J].Chinese Geographical Science, 2005, 15(1): 29-33.
    [18] 刘开第,吴和琴,庞彦军,等.未确知数学[M].武汉:华中理工大学出版社,1997.
    [19] 刘开第,吴和琴,庞彦军,等.不确定性信息数学处理及其应用[M].北京:科学出版社,1999.
    [20] CHENG Hao-zhong, ZHU Hai-feng, MARIESA L C, et al. Flexible method for power network planning using the unascertained number [J]. Electric Power Systems Research, 2004, 68(1): 41-40.
    [21] 丁丽,顾冲时,孙杰,等.未确知数学在堤防工程安全评价中的应用[J].水电能源科学,2005,23(4):29-31.
    [22] 黄红女,华锡生,翁静君.基于盲信息理论的土石坝安全评判方法的研究及应用[J].长江科学院院报,2004,21(5):59-62.
    [23] 李如忠,洪天求.盲数理论在湖泊水环境容量计算中的应用[J].水利学报,2005,36(7):765-771.
    [24] 李如忠,钱家忠,汪家权.河流水质未确知风险评价的理论模式研究[J].地理科学,2004,24(2):183-187
    [25] CHEN Chen-tung. Extension of the TOPSIS for group decision-making under fuzzy environment [J]. Fuzzy Sets and Systems, 2000, 114 (1): 1-9.
    [26] FORMAN E, PEN1WATI K Aggregating individual judgments and priorities with the Analytic Hierarchy Process [J]. European Journal of Operational Research, 1998, 108(2): 165-169.
    [27] OLCER A I, ODABASI A Y. A new fuzzy multiple attributive group decision making methodology and its application to propulsion/manoeuvring system selection problem[J]. European Journal of Operational Research, 2005, 166(1): 93-114.
    [28] YEH Chung-hsing, DENG Hepu, CHANG Yu-hern. Fuzzy multicriteria analysis for performance evaluation of bus companines [J]. European Journal of Operational Research, 2000, 126(3): 459-473.
    [29] 李如忠.基于灰关联理论的流域生态环境评价[J].合肥工业大学学报(自然版),2002,25(3):464-467.
    [30] WANG Hai-yan. Assessment and prediction of overall environmental quality of Zhuzhou City, Hunan Province, China[J].Journal of Environmental Management, 2002, 66(1): 329-340.
    [31] 吴开亚,李如忠,陈晓剑.区域生态环境评价的灰色关联投影模型[J].长江流域资源与环境,2003,12(5):473-478.
    [32] 吴良刚,高阳,张金隆.确定事例特征权值的方法研究[J].系统工程理论与实践,2000(10):89-92.
    [33] SAATY T L. The Analytic Hierarchy Process [M]. New York: McGraw-Hill Book Co., 1980: 45-79.
    [34] LI Ru-zhong. Multi-agent blind model and its application to regional eco-environmental quality assessment [J]. Chinese Geographical Science, 2006, 16 (3): 249-254.
    [35] 金菊良,洪天求,李如忠.巢湖流域生态环境质量动态综合评价的客观赋权法[J].水力发电学报,2005,24(5):99-103.
    [1] 金相灿,屠清瑛.湖泊富营养化调查规范[M].(第二版).北京:中国环境科学出版社,1990:286-302.
    [2] Xu Fu-liu, Tao Shu, Dawson R W, et al. A GIS-based method of lake eutrophication assessment[J]. Ecological Modelling, 2001, 144 (2-3): 231-244.
    [3] 张思冲,张雪萍,廖永丰.营养度指数法在寒地湖泊富营养化评价中的应用[J].哈尔滨工业大学学报,2003,35(4):416-419.
    [4] Bernard P, Antoine L and Bernard L. Principal component analysis: an appropriate tool for water quality assessment and management-application to a tropical lake system[J]. Ecological Modelling, 2004, 178 (3-4): 295-311.
    [5] 冯玉国.湖泊富营养化灰色评价模型及其应用[J].系统工程理论与实践,1996,(8):43-47,53.
    [6] 龚绍琦,黄家柱,李云梅,等.基于GIS下的太湖水质富营养化模糊综合评价[J].环境科学,2005,26(5):34-37.
    [7] 谢平,黎红秋,叶爱忠.基于经验频率曲线的湖泊富营养化随机评价方法及其验证[J].湖泊科学,2004,16(4):371-376.
    [8] 刘春凤,翟瑞彩.基于模糊数学的水质分析[J].天津大学学报,2003,36(1):87-91.
    [9] 李祚泳,丁晶,彭荔红.环境质量评价原理与方法[M].北京:化学出版社,2004:94-103.
    [10] 刘章军,叶燎原.基于模糊概率的多层砖房震害预测[J].地震研究,2007,30(1):99-104.
    [11] 李建新,胡刚.基于模糊概率的股价波动分析模型[J].系统工程理论与实践,2006,26(9):33-42.
    [12] 王建花,钱家忠,李如忠,等.Fuzzy概率法的改进及其应用[J].系统工程理论与实践,2007,27(5):173-176.
    [13] 冯吉燕,刘志斌,荣跃.Fuzzy概率法在地下水环境质量评价中的应用[J].露天采矿技术,2006,(6):51-53.
    [14] 秦伯强,杨柳燕,陈非洲,等.湖泊富营养化发生机制与控制技术及其应用[J].科学通报,2006,51(16):1857-1866.
    [15] 水利部水利水电规划设计总院.全国水资源保护综合规划技术细则[R].北京:水利部水利水电规划设计总院,2002:35-36.
    [16] 殷福才,张之源.巢湖富营养化研究进展[J].湖泊科学,2003,15(4):377-384.
    [17] 田春.巢湖东半湖浮游植物分布特征及富营养化评价[D].合肥:安徽农业大学生命科学学院,2005.
    [18] 马建华,季凡.水质评价的模糊概率综合评价法[J].水文,1994(3):21-25.
    [1] 殷福才,张之源.巢湖富营养化研究进展[J].湖泊科学,2003,15(4):377~384.
    [2] 何开丽.巢湖富营养化现状与治理对策[J].环境保护,2002(4):22~24.
    [3] 秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193~202.
    [4] 李如忠.巢湖水环境生态修复探讨[J].合肥工业大学学报(社会科学版),2002,16(5):130~133.
    [5] 曹德菊,岳永德,黄祥明,等.巢湖水体Pb,Cu,Fe污染的环境质量评价[J].中国环境科学,2004,24(4):509~512.
    [6] 屠清瑛,顾丁锡,徐卓然,等.巢湖富营养化的研究[M].合肥:中国科学技术大学出版社,1991.
    [7] 金庆海,朱素菊,黄文钰,等.巢湖合肥地区洗衣粉排鳞占入湖鳞贡献率的研究[J].环境污染与防治,2001,23(6):320~322.
    [8] 王永华,钱少猛,徐南妮,等.巢湖东区底泥污染物分布特征及评价[J].环境科学研究,2004,17(6):22~26.
    [9] 李如忠,汪家权,钱家忠.巢湖流域非点源营养物控制对策研究[J].水土保持学报,2004,18(1):119~121.
    [10] 郭慧光,阎自申.滇池富营养化及面源控制问题思考[J].环境科学研究,1999,12(5):43-44.
    [11] 秦敬东.大力发展沼气改善巢湖水质[J].中国沼气,2001,19(3):42~44.
    [12] Yin C Q et al. Amulti-pond system as a protective zone for the management of lakes in China[J]. Hydrobiologia, 1993, 251:321~329.
    [13] Yah W J, Yin C Q, Zhang S. Nutrient budgets and biogeochemistry in an experimental agricultural watershed in South-eastern China [J]. Biogeochemistry, 1999, 45: 1~19.
    [14] 毛战坡,单保庆,尹澄清,等.磷在农田溪流中的动态变化[J].环境科学,2003,24(6):1~8.
    [15] 王超,王沛芳,唐劲松,等.河道沿岸芦苇带对氨氮的削减特性研究[J].水科学进展,2003,14(3):311~317.
    [16] 张之源,王培华,张崇岱.巢湖富营养化状况评价及水质恢复探讨[J].环境科学研究,1999,12(5)45~48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700