高墩混凝土连续刚构桥地震易损性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁结构的地震易损性曲线揭示了桥梁损伤概率与地面运动强度之间的关系,它对震后响应计划、工程抢修、经济损失估计以及震后交通系统的功能评估等有重要的意义。高墩混凝土连续刚构桥是一种非规则桥梁,在一些地震易发地区的主干线上被广泛采用,其地震易损性的研究具有重要的意义。本文主要完成了以下几方面的工作:
     1、对桥梁抗震性能评估和桥梁地震易损性分析的流程进行了梳理,系统归纳了理论地震易损性分析中最重要的几个步骤,如地震波的选择和处理、损伤指标的选择、有限元分析方法、易损性曲线绘制方法等。
     2、研究了高墩混凝土连续刚构桥高阶模态和动轴力效应等地震力学行为。结合震害调查和理论计算确定了主墩和过渡墩支座为该桥在地震作用下的易损损伤位置,提出了一种可以考虑动轴力效应对桥墩延性影响的曲率损伤指标以评定主墩在地震中的损伤程度。
     3、对比了谱加速度和地面峰值加速度这两种地面运动强度指标对高墩混凝土连续刚构桥地震易损性分析的适用性,结果表明采用谱加速度分析的结果具有更小的离散性,更适合这类较长周期结构的地震易损性分析。
     4、对主墩进行了地震易损性分析,并绘制了地震易损性曲线。结果表明:主墩具有良好的抗震性能;在纵桥向地震作用下墩底相对于墩顶更易损,但差距不明显;主墩在进入严重破坏状态后,可能会随着地震强度增大迅速进入完全破坏状态;墩底在横桥向地震作用下相对于纵桥向表现得更易损。
     5、采用位移损伤指标对过渡墩支座进行地震易损性分析,并绘制了地震易损性曲线,结果表明:在不考虑支座横向限位装置和抗震挡块的情况下,支座在横桥向的地震作用下比纵桥向损伤概率更高,且这种差异十分明显;支座很可能在整体结构尚未进入强非线性阶段就已经损坏。
     6、初步探讨了采用裂缝宽度指标评定钢筋混凝土桥墩的地震损伤的方法,并进行了实力分析,得出主要结论和采用曲率指标接近。
Seismic fragility curve of the bridge structure reveals the relationship between the damage probability of bridges and ground motion intensity; it is very important for the response plan after the earthquake, engineering repairs, estimating economic loss and performance assessment of transport systems in the post-earthquake. Concrete continuous rigid bridge with high piers is a kind of irregular bridge, and it is widely used in some trunk lines of the earthquake-prone areas. Its seismic vulnerability study is of great significance. The following work has been done in this thesis:
     (1) The process of the bridge seismic vulnerability analysis is sorted and the most important steps of the analysis of seismic vulnerability such as the selection and processing of seismic waves, the damage index selection, finite element analysis methods and the plotting methods of the vulnerability curve are systematically summarizes.
     (2) Seismic mechanical behavior of concrete continuous rigid bridge with high piers such as higher order modes effect and dynamic axial force effect are researched. The main piers and bearings of the transition piers are selected as the most vulnerable location under the earthquake according to both the damage investigations and theoretical calculations. A curvature damage index with the dynamic axial force effect considered is proposed to assess the damage degree of main piers under earthquake.
     (3) The spectral acceleration and peak ground acceleration are compared as ground motion intensity indicators used in the seismic fragility analysis of the concrete continuous rigid bridge with high piers. The results show that the results with spectral acceleration as ground motion indicator have smaller discrete, so it is more suitable for the seismic fragility analysis of the structures with longer period.
     (4) Seismic fragility analysis of the main pier has been performed, and the seismic vulnerability curves have been plotted. The results show that:the main piers have good seismic performance; the bottoms of the piers are more vulnerable than the top under the earthquake of the longitudinal direction of the bridge, but the difference is minor; Main Pier under serious damage state will quickly go to the complete damage state as the intensity of ground motion increased; the bottoms of main piers are more vulnerable under the earthquake of the transverse direction of the bridge than the longitudinal one.
     (5) Displacement damage index is used to perform the seismic vulnerability analysis of the transverse piers bearings and seismic fragility curves are also plotted. The results showed that:bearings are vulnerable under the earthquake of the transverse direction of the bridge than the longitudinal one if the devices which restrain the lateral displacement of the bearings and the anti-knock block are ignored, and this difference is obvious; bearings may have been damaged before the overall structure entered the strongly nonlinear stage.
     (6) The method of damage degree assessment of the reinforced concrete bridge piers under earthquake as the crack width with damage index, and example has been given. The main conclusions are close to which get from a curvature index as damage index.
引文
[1]C.A. Conrell, H.Krwaiknle, Progress and Challenges in Seismic Performance Assessment, http://peer.berkeley.edu/news/2000spring/performance.htlm.
    [2]陆本燕.基于性能抗震设计理论的桥梁结构性能量化指标研究[D].长安大学,2011.
    [3]J.P.Moehle. Displcement-basee design of RC structures subjected to earthquakes.
    [4]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001
    [5]赵永峰.精细化延性抗震设计理论[D].浙江大学,2008.
    [6]裘民川.日本神户地震建筑震害的浅析与启示[J].建筑结构,1995,09:40-44.
    [7]彭天波,李建中,范立础.能力设计方法在双层高架桥梁抗震设计中的应用[J].世界桥梁,2009,01:12-15.
    [8].J. Bignell, J. LaFave. Analytical fragility analysis of southern Illinois wall pier supported highway bridges [J]. Analytical Fragility Analysis of Southern,2010,39:709-729.
    [9]S.Masanobu, M.Q. Feng, L.Jongheon. Statistical analysis of fragility curves[J] Journal of engineering mechanics,2000(12) 1224-1231.
    [10]H. Hwang, J. R. Huo. Generation of Hazard-Consistent Ground Motions [J]. Soil Dynamics and Earthquake Engineering,1994,13 (6):377-386.
    [11]S. Fukushima, Y. Kai, K.Yashiro, Study on the fragility of system[C] structure with brittle elements in its stories. Proceedings of the 11th World Conference on Earthquake Engineering. Pergamon, EIsever science ltd., Oxford, United Kingdom,1996,Paper NO.333.
    [12]K.R. Karim, F. Yarnazaki. Eeffet of earthqukae ground motions onr fragility curves of HighWay Bridge piers based on numerical simulation [J]. Earthquake Engineering and Structural Dynamics.2001,30(12):1839-1856
    [13]K.R. Karim, F. Yarnazaki. A simplified method of constructing fragility curves for highway bridges[J]. Earthquake Engng Struct. Dyn.2003; 32:1603-1626
    [14]Singhal A, Kiremidjian AS. Method for probabilistic evaluation of seismic structural damage. Journal of Structural Engineering 1996; 122(12):1459-1467.
    [15]H.Hwang,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析[J].土木工程学报,2004,06:47-51.
    [16]冯杰.桥梁结构地震易损性分析研究[D].西南交通大学,2010.
    [17]M.Shinouzka, M.Q.Feng, H.Kim.nadKim.Nonlinear Statie Porceduer for Fragility Cuvre DeveloPment[J].JoumalofEngineeringMeehnaies,2000(12):1287-1295.
    [18]D. Cardone, G. Perrone, S. Sofia. A performance-based adaptive methodology for the seismic evaluation of multi-span simply supported deck bridges [J]. Bull Earthquake Eng,2011,9:1463-1498.
    [19]张菊辉.基于数值模拟的规则梁桥墩柱的地震易损性分析[D].同济大学,2006.
    [20]黄明刚.钢筋混凝土连续梁桥的地震易损性、危险性及风险分析[D].哈尔滨工业大学,2009.
    [21]谷音,黄怡君,卓卫东.高墩大跨连续刚构桥梁地震易损性分析[J].地震工程与工程振动,2011,31:91-97.
    [22]李立峰,吴文朋,黄佳梅,王连华.板式橡胶支座地震易损性分析[J].湖南大学学报(自然科学版),2011,11:1-6.
    [23]G. Jayadipta, E.P.Jamie, Aging Considerations in the Development of Time-Dependent Seismic Fragility Curves[J]. Journal of Structure Engineering,2010:1497-1511
    [24]刘小林.大跨高墩连续刚构桥延性抗震分析[D].华中科技大学,2006.
    [25]李睿,董明.考虑P-A效应的高墩抗震计算[J].云南工业大学学报,1999,01:63-68+72.
    [26]周国良.高墩及大跨桥梁的地震反应特性研究[D].中国地震局地球物理研究所,2004.
    [27]李建中,宋晓东,范立础.桥梁高墩位移延性能力的探讨[J].地震工程与工程振动,2005,01:43-48.
    [28]梁智垚.桥梁高墩位移延性能力计算方法研究[J].工程抗震与加固改造,2005,05:57-62.
    [29]梁智垚.非规则高墩桥梁抗震设计理论研究[D].同济大学,2007.
    [30]谷音,卓卫东.基于IDA和纤维模型的高墩大跨连续刚构桥梁地震反应分析[J].土木工程与管理学报,2011,03:235-240.
    [31]叶爱君,管仲国,范立础.桥梁抗震(第2版)[M]北京:人民交通出版社,2011.
    [32]陈永祁,刘锡荟,龚思礼.拟合标准反应谱的人工地震波[J].建筑结构学报,1981,04:34-43.
    [33]白峻昶,靳金平.时程分析用地震波选取的探讨[J].山西建筑,2007,03:62-63.
    [34]林淋,孙景江.不同地震动参数与地震烈度相关性对比研究[J].地震工程与工程振动,2011,01:6-10.
    [35]王亚勇.结构抗震设计时程分析法中地震波的选择[J].工程抗震,1988,04:15-22.
    [36]李吉涛,杨庆山.地震波基线漂移的处理方法[J].北京交通大学学报,2010,01:95-99.
    [37]袁棪.基于MATLAB的地震反应谱计算方法的比较[D].西安建筑科技大学,2012.
    [38]郭震山,袁万城,范立础.桥墩的抗震性能与变形-能量双重破坏准则[A].中国土木工程学会桥梁及结构工程学会、广东省公路学会、广东虎门技术咨询公司、广东省公路工程总公司.中国土木工程学会桥梁及结构工程学会第十二届年会论文集(下册)[C].中国土木工程学会桥梁及结构工程学会、广东省公路学会、广东虎门技术咨询公司、广东省公路工程总公司:,1996:6.
    [39]王克海,李茜,韦韩.国内外延性抗震设计的比较[J].地震工程与工程振动,2006,03:70-73.
    [40]G.W. Housner. Limit design of structure to resist earthquake[C]. Proceeding of the fisrt world conference on earthquake engineering. Berkeley,California:Earthquake Engineering Research Institute,1956,1-12.
    [41]Y.J. Park, A.H. Ang, Mechanistic seismic damage model for reinforced concerete[J], Journal of Structural Engineering ASCE, No.4,1985,722-739.
    [42]H.H.M. Hwang, J.B. Jerigan. Evaluation of Seismic Damage to Memphis Bridges and Highway Systems[J]. Journal of Bridge Engineering, No.4,ASCE, November,2000:322-330.
    [43]龚思礼.建筑结构设计系列手册—建筑抗震设计手册(第二版)[S].北京:中国建筑工业出版社,2003
    [44]K.R. Mackie, B.G. Nielson. Uncertainty Quantification in Analytical Bridge Fragility Curves[C].Lifeline Earthquake Engineering in a Multihazard Environment,2009,88-99
    [45]何晗欣,刘健新.能力谱方法在桥梁抗震性能评估中的适用性[J].长安大学学报(自然科学版),2009,04:48-52
    [46]R.克拉夫,J.彭津,王光远.结构动力学[M].北京:高等教育出版社,2007
    [47]刘章军.基于随机振动理论的抗震分析方法研究进展[J].地震工程与工程振动,2006,04:47-51.
    [48]聂利英,李建中,范立础.弹塑性纤维梁柱单元及其单元参数分析[J].工程力学,2004,03:15-20.
    [49]齐虎,孙景江,林淋OPENSEES中纤维模型的研究[J].世界地震工程,2007,04:48-54.
    [50]重庆交通科研设计院.JTG/T B02-01-2008公路桥梁抗震设计细则[S].北京:人民 交通出版社,2008.
    [51]黄宗明,白绍良,赖明.结构地震反应时程分析中的阻尼问题评述[J].地震工程与工程振动,1996,02:95-105.
    [52]Caltrans,SeismieDesignCriteria,Vesrionl 1.2, Sacramento,Caliofmia:Caliofnria DePartment of TransPortation(CALTRANS),Deeember2001.
    [53]D.H Yael, S.Frieder. Performance Evaluation Database for Concrete Bridge Components and Systems under Sumulated Seismic Loads. Pacific Earthquake Engineering Research Center, PEER Report 1999/11.
    [54]中交公路规划设计院.《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)[S].北京:人民交通出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700