HMS为载体的光化学传感器检测水中重金属离子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济的快速发展,水资源污染问题日益严重。在众多水污染中,重金属污染占了相当大的比例。重金属是一种危害巨大的污染物,它在生物体内长期积累,不易降解,产生的毒性严重危害到生态环境和人类生命健康。传统的重金属离子检测方法有原子吸收光谱法、原子发射光谱法、原子荧光光谱法和电感耦合等离子体—质谱法等,这些方法都存在样品预处理复杂、操作耗时、仪器昂贵等缺点,难以满足现场快速检测的要求。
     近年来,光化学传感器的研究受到了广泛关注,它作为一种新的重金属离子检测手段,具有不需要预处理、成本低、灵敏度高、选择性好等优点。作为光化学传感器载体的介孔分子筛具有比表面积大、孔道规则有序、表面带有羟基、合成工艺简单、热稳定性高等优点。将发光分子固载在介孔分子筛上制备出兼具发光分子及介孔分子筛二者优点的新型光化学传感器,可以满足实际重金属离子检测的需要。
     本文将发光分子4-(2-吡啶偶氮)间苯二酚(PAR)固载在经过氮位-三甲氧基硅基丙基-氮,氮,氮位-三甲基氯化铵(TMAC)功能化的介孔分子筛HMS上,制得一种新型的对重金属离子具有检测作用的光化学传感器HMS-TMAC-PAR。采用X射线衍射、傅里叶变换红外光谱、热重分析、元素分析、N2物理吸附和紫外可见漫反射光谱对此材料进行表征,并对材料的比色识别性质、选择性、灵敏性和重复使用性进行了研究。结果表明,在碱性条件下,HMS-TMAC-PAR对重金属离子具有选择性,Fe3+Cd2+Ni2+、Zn2+Pb2+Co2+Hg2+和Cu2+等重金属离子使HMS-TMAC-PAR水溶液的颜色从浅黄色变到橘黄色或是浅紫色;而在强酸性条件下,HMS-TMAC-PAR对Cu2+具有选择性,只有Cu2+使HMS-TMAC-PAR水溶液颜色发生变化。在pH=12时,HMS-TMAC-PAR对水中Cu2+具有较高的灵敏性,检测限可达0.81ppb,并且经过EDTA处理后可以重复使用。
With the rapid development of the global economy, the problem of water pollution is growing severely. Heavy metals pollution takes a fairly large proportion on water pollution. Heavy metals, which are a great hazard of pollutants, can accumulate chronically in vivo and is not easy to be degraded. The toxicity of heavy metals severely endanger the ecological environment and human health. Conventional detection methods for heavy metal ions, including atomic absorption spectrometry (AAS), atomic emission spectrometry (AES), atomic fluorescence spectrometry (AFS) and inductively coupled plasma mass spectrometry (ICP-MS), etc, have disadvantages of sophisticated pretreatment procedures, time-consuming, expensive instruments and are difficult to meet the on-site requirement for rapid detection.
     In recent years, there has been growing interest in the development of optical chemosensor, as a new detection method for heavy metal ions, which has advantages of no pretreatment, low cost, high sensitivity and good selectivity. Mesoporous molecular sieves as the hosts of optical chemosensor have advantages of high surface areas, uniform pore size, surface with hydroxyl, simple synthesis and high thermal stability. The novel optical chemosensors based on luminescent molecules immobilizing on mesoporous molecular sieves have the advantages of both to meet the needs of practical detection for heavy metal ions.
     In this paper, a novel optical chemosensor (HMS-TMAC-PAR) for heavy metal ion detection had been prepared by immobilizing the luminescent molecule 4-(2-pyridylazo)resorcinol (PAR) on the functionalized HMS via N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TMAC). The successful fabrication of this material was confirmed by extensive characterizations using XRD, FT-IR, TG, elemental analysis, N2 physical adsorption and UV-vis, meanwhile its colorimetric properties, selectivity, sensitivity and reusability were also investigated. The results showed that HMS-TMAC-PAR responded selectively to heavy metal ions, such as Fe3+, Cd2+, Ni2+, Zn2+, Pb2+, Co2+, Hg2+and Cu2+with a color change from light yellow to orange or light purple in alkaline solutions, while under strongly acidic conditions HMS-TMAC-PAR responded selectively to Cu2+and showed a color change only for Cu2+. At pH 12, HMS-TMAC-PAR had a high sensitivity that maked it possible to detect Cu2+ in aqueous solution with a detection limit of 0.81 ppb and HMS-TMAC-PAR could be used repeatedly by treatment with a solution of EDTA.
引文
[1]邵敏,赵美萍.环境化学[M].北京:中国科学出版社,2001.
    [2]WANG Q, KIM D, DIONYSIOU D D, et al. Sources and remediation for mercury contamination in aquatic systems-a literature review [J]. Environ. Pollut., 2004,131(2):323-336.
    [3]廖自基.环境中微量重金属元素的污染及迁徙[M].北京:科学出版社,1989.
    [4]王绍文,姜凤有.重金属废水治理技术[M].北京:冶金工业出版社,1993.
    [5]陈集,饶小桐.仪器分析[M].重庆:重庆大学出版社,2002.
    [6]汪尔康.分析化学[M].北京:北京理工大学出版社,2002.
    [7]陈立春.仪器分析[M].北京:中国轻工业出版社,2002.
    [8]严凤霞,王筱敏.现代光学仪器分析选论[M].上海:华东师范大学出版社,1992.
    [9]LIANG Z Q, WANG C X, YANG J X, et al. A highly selective colorimetric chemosensor for detecting the respective amounts of iron(Ⅱ) and iron(Ⅲ) ions in water [J]. New J.Chem.,2007,31:906-910.
    [10]MENG X M, ZHU M Z, GUO Q X. A novel highly selective fluorescent chemosensor for Hg(Ⅱ) in fully aqueous media [J]. Chin. Chem. Lett.,2007,18:1209-1212.
    [11]JIANG Z T, DENG R R, TANG L, et al. A new fluorescent chemosensor detecting Zn2+ and Cu2+ in methanol/HEPES buffer solution [J]. Sens. Actuators B, 2008,135:128-132.
    [12]SHENG R L, WANG P F, LIU W M, et al. A new colorimetric chemosensor for Hg2+ based on coumarin azine derivative [J]. Sens. Actuators B,2008,128:507-511.
    [13]SHENG R L, WANG P F, GAO Y H, et al. Colorimetric test kit for Cu2+ detection [J]. Org. Lett.,2008,21:5015-5018.
    [14]WU G H, WANG D X, WU D Y, et al. Highly sensitive optical chemosensor for the detection of Cu2+ using a Rodamine B spirolatam [J]. J.Chem. Sci., 2009,121:543-548.
    [15]BAE S, SON Y A, KIM S H, et al. Benzothiazole-based smisquaraine as clorimetric cemosensor for Hg2+ [J]. Fibers and Polymers,2009,10:403-405.
    [16]CHEN X Q, JOU M J, LEE H Y, et al. New fluorescent and colorimetric chemosensors bearing rhodamine and binaphthyl groups for the detection of Cu2+ [J]. Sens. Actuators B,2009,137:597-602.
    [17]TANG L J, LI Y, NANDHAKUMAR R J, et al. An unprecedented rhodamine-based fluorescent and colorimetric chemosensor for Fe3+ in aqueous media [J]. Monatsh. Chem.,2010,141:615-620.
    [18]WANG S, GWON S Y, KIM A H, et al. A highly selective and sensitive colorimetric chemosensor for Fe2+ based on fluoran dye [J]. Spectrochimica Acta. Part A, 2010,76:293-296.
    [19]SOLER A,SANCHEZ C,LEBEAU B, et al,Chemical strategies to design textured materials:from microporous and mesoporous Oxides to nanonetworks and hierarchical structures [J]. Chem.Rev.,2002,102:4093-4138.
    [20]CORMA A. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem.Rev.,1997,97:2373.
    [21]KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieve synthesized by a liquid-crystal template mechanism [J]. Nature, 1992,359(6397):710-712.
    [22]BECK J S, VARTULI J C, KRESGE C T, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc. 1992,114 (27):10834-10843.
    [23]HUO Q S, MARGOLESE D I, Stucky G D, et al. Generalized synthesis of periodic surfactant/inorganic composite materials [J]. Nature,1994,368:317-321.
    [24]HUO Q, LEON R, PETROFF P M, et al. Mesostructure design with gemini surfactants: supercage formation in a three-dimensional hexagonal array [J]. Science, 1995,268:1324-1327.
    [25]ZHAO D Y, FENG J L, HUO Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279:548-552.
    [26]TANEV P T, PINNAVAIA T J. A neutral templating route to mesoporous molecular sieve [J]. Science,1995,267:865-867.
    [27]BAGSHAW S A, PROUZET E, PINNAVAIA T J. Templating of mesoporous molecular-sieve by nonionic polyethylene oxide surfactants [J]. Science,1995,269:1242-1244.
    [28]RYOO R, KIM J M, KO C H, et al. Disordered molecular sieve with branched mesoporous channel network [J]. J.Phys. Chem.,1996,100:17718-17721.
    [29]HAMMOND W, PROUZET E, MAHANTI S D, et al. Structure factor for the periodic walls of mesoporous MCM-41 molecular sieves [J]. Microporous Mesoporous Mater. 1999,27(1):19-25.
    [30]陈君华,王飞,丁志杰,等.六方中孔硅分子筛的合成与表征[J].南京林业大学学报(自然科学版),2008,32(6):13-18.
    [31]温树林,马希骋,刘茜,等.材料科学与微观结构[M].北京:科学出版社,2007.
    [32]GALLIS K W, LANDRY C C. Synthesis of MCM-48 by a phase transformation Process [J]. Chem.Mater,1997,9:2035-2038.
    [33]WU C G, BEIN T. Microwave synthesis of molecular sieve MCM-41 [J]. Chem. Commun., 1996,8:925-926.
    [34]YANG P D, ZHAO D Y, MARGOLESE D I, et al. Generalized synthesis of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998,396:152-155.
    [35]任黎雯,杨良准,华春芳,等.介孔二氧化钛微球的合成与表征[J].化学研究,2008,19(3):1-4.
    [36]LIN W Y, CHEN J S, SUN Y, et al. Bimodel mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate Gel [J]. J. Chem. Soc. Chem. Commun.,1995,2367-2368.
    [37]MACLACHLAN M J, COOMBS N, OZIN G A. Non-aqueous supramolecular assembly of mesostructured metal germainium sulphides from (Ge4S10)(4-)clusters [J]. Nature,1999,397:681-684.
    [38]FIROUZI A, ATEF F, OERTLI A G, et al. Alkaline lyotropic silicate-surfactant liquid crystals [J]. J. Am. Chem. Soc.,1997,119:3596-3610.
    [39]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [40]TATINENI B, MANICKAM S,HIDEYUKI M. Naked eye detection of cadmium using inorganic-organic hybrid mesoporous material [J]. Anal. Bioanal. Chem. 2006,384:488-494.
    [41]LEE M H, LEE S J, JUNG J H, et al. Luminophore-immobilized mesoporous silica for selective Hg2- sensing [J]. Tetrahedron,2007,63:12087-12092.
    [42]ISMAIL A A. A selective optical sensor for antimony based on hexagonal mesoporous structures [J]. J.Colloid Interface Sci.,2008,317:288-297.
    [43]EL-SAFTY S A, PRABHAKARAN D, ISMAIL A A, et al. Three-dimensional wormhole and ordered mesostructures and their applicability as optically ion-sensitive probe templates [J]. Chem. Mater.,2008,20:2644-2654.
    [44]EL-SAFTY S A. Organic-inorganic hybrid mesoporous monoliths for selective discrimination and sensitive removal of toxic mercury ions [J]. J. Mater. Sci.2009,44:6764-6774.
    [45]ZHOU P, MENG Q T, HE G J, et al. Highly sensitive fluorescence probe based on functional SBA-15 for selective detection of Hg2- in aqueous media [J]. J. Environ.Monit.,2009,11:648-653.
    [46]WANG X Y, WANG P, DONG Z H, et al. Highly sensitive fluorescence probe based on functional SBA-15 for selective detection of Hg2-[J]. Nanoscale. Res. Lett. 2010,5:1468-1473.
    [47]祝淑芳,倪文,张铭金,等.介孔分子筛材料合成及应用研究的现状及进展[J].岩石矿物学杂志,2006,25(4):327-334.
    [48]伏再辉,陈君华,陈远道,等.含过渡金属HMS的合成和催化性能[J].物理化学学报,2000,16(5):410-415.
    [49]LIU Y Y, MURATA K, INABA M, et al. Syntheses of Ti-and Al-containing hexagonal mesoporous silicas for gas-phase epoxidation of propylene by molecular oxygen [J]. Applied Catalysis A:General,2006,309:91-105.
    [50]KE I S, LIU S T. Synthesis and catalysis of tungsten oxide in hexagonal mesoporous silicas [J]. Applied Catalysis A:General,2007,317:91-96.
    [51]王雪梅,杜新贞,李春兰,等.苯基改性的介孔分子筛SBA—15的合成与表征[J].环境科学与技术,2008,31(12):17-20.
    [52]MURIEL A E, ADAM F L, KARAEN W. High activity, templated mesoporous SO2-/ZrO2/HMS catalysts with controlled acid site density forα-pinene isomerisation [J]. Microporous Mesoporous Mater.,2005,80:301-310.
    [53]ANA R S, KAREN W, JAMES H C, et al. Covalent attachment of chirl manganese (III) salen complexes onto functional ized hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes [J]. Microporous Mesoporous Mater.,2006,91:128-138.
    [54]DAI Z H, LIU S Q, JU H X, et al. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix [J]. Biosens. Bioelectron,2004,19:861—867.
    [55]K Z,程广禄,上野景平,等.有机分析试剂手册[M].北京:地质出版社,1985.
    [56]简媛.介孔分子筛HMS的合成及表征[D].天津:天津大学化工学院,2007.
    [57]陈君华.六方介孔硅HMS的合成、改性及性能研究[D].南京:南京林业大学,2009.
    [58]WEI Q, NIE Z R, HAO Y L, et al. Effect of synthesis conditions on the mesoscopical order of mesoporous si lica SBA-15 functional ized by amino groups [J]. J Sol-Gel Sci Technol,2006,39:103-109.
    [59]YAN Z, L I G T, MU L, et al. Pyridine-functionalized mesoporous silica as an efficient adsorbent for the removal of acid dyestuffs [J]. J. Mater. Chem., 2006,16:1717-1725.
    [60]EL-SAFTY S A, ISMAIL A A, MATSUNAGA H, et al. Optical nanosensor design with uniform pore geometry and large particle morphology [J]. Chem. Eur.J. 2007,13:9245-9255.
    [61]王雪梅.功能化介孔材料的合成及其在固相微萃取中的应用[D].兰州:西北师范大学化学化工学院,2009.
    [62]CHEN H G, SHI J L, CHEN H R, et al. Strong visible photoluminescence of TEEDPS-modified silica MCM-41 materials [J]. Appl. Phys. B,2003,77:89-91.
    [63]曹雨诞.HMS介孔分子筛的表面功能化及其碱催化性能研究[D].南京:南京师范大学化学与环境科学学院,2002.
    [64]SING K S W, EVERETT D H, HAUL R A, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure. Appl. Chem.,1985,57:603-619.
    [65]赵丹,秦伟平,张继森,等.罗丹明6G/MCM—41纳米复合物的发光蓝移[J].发光学报,2003,24(6):637-641.
    [66]LI G W, ZHANG L H, LI Z W, et al. PAR immobilized colorimetric fiber for heavy metal ion detection and adsorption [J]. J. Hazard. Mater.,2010,177:983-989.
    [67]戚秀菊.4—(2—吡啶偶氮)—间苯二酚共振散射光谱研究[J].石家庄师范专科学校学报,2002,4(4):39-40.
    [68]TOSCHITAKE I. Acid-base property and metal chelate formation of 4-(2-pyridylazo) resorcinol [J]. Presented partly at the 13 th'Annual Meeting of the Chemical Society of Japan,Tokyo, April,1960[C].
    [69]ALBERTO N A, RUI C C C, JULIAN A C. Colorimetric determination of copper in aqueous samples using a flow injection system with a pre-concentration poly(ethylenimine) column [J]. Talanta,1999,50:337-343.
    [70]EL-SAFTY S A, ISMAIL A A, MATSUNAGA H, et al. Optical nanoscale pool-on-surface design for control sensing recognition of multiple cations [J]. Adv. Funct. Mater.,2008,18:1485-1500.
    [71]LEE S J, LEE S S, LEE J Y, et al. A Functionalized Inorganic Nanotube for the selective detection of copper(Ⅱ) ion [J]. Chem. Mater,2006,18:4713-4715.
    [72]KIM H J, LEE S J, JUNG J H, et al. Detection of Cull by a chemodosimeter-functionalized monolayer on mesoporous silica [J]. Adv. Mater., 2008,20:3229-3234.
    [73]MENG Q T, ZHANG X L, HE C, et al. Multifunctional mesoporous silica material used for detection and adsorption of Cu2+ in aqueous solution and biological applications in vitro and in vivo [J]. Adv. Funct. Mater.,2010,20:1903-1909.
    [74]JERONIMO P C A, ARAUJO A N, MONTENEGRO M. C. B. S. M, et al. Direct determination of copper in urine using a sol-gel optical sensor coupled to a multicommutated flow system [J]. Anal. Bioanal. Chem.,2004,380:108-114.
    [75]CORDOVA M L F, MOLINA-DIAZ A, PASCUAL-REGUERA M I, et al. Determination of trace amounts of copper with 4-(2-pyridylazo)resorcinol by solid phase spectrophotometryFresenius [J]. J. Anal. Chem.,1994,349(10-11):722-727.
    [76]ARAUJO A N, COSTA R C C, ALONSO-CHAMARRO J. Colorimetric determination of copper in aqueous samples using a flow injection system with a pre-concentration poly(ethylenimine) column [J]. Talanta,1999,50(2):337-343.
    [77]MALCIK N, CAGLAR P, NARAYANASWAMY R. Investigations into optical sensing of cupric ions using several immobilized reagents [J]. Quim. Anal.,2000,19:94-98.
    [78]BALAJI T, SASUDHARAN M, MATSUNAGA H. Naked eye detection of cadmium using inorganic-organic hybrid mesoporous material [J]. Anal. Bioanal. Chem., 2006,384:488-494.
    [79]EL-SAFTY S A, ISMAIL A A, MATSUNAGA H, et al. Uniformly mesocaged cubic Fd3m monoliths as modal carriers for optical chemosensors [J]. J. Phys. Chem. C, 2008,112:4825-4835.
    [80]ZENKI M, IWADOU Y, YOKOYAMA T. Flow-injection analysis of copper(Ⅱ) with PAR in the presence of EDTA [J]. Anal.Sci.,2002,18:1077-1079.
    [81]GAO L, WANG J Q, HUANG L, et al. Novel inorganic-organic hybrid fluorescence chemosensor derived from SBA-15 for copper cation [J]. Inorg. Chem., 2007,46:10287-10293.
    [82]LEE S J, BAE D R, HAN W S, et al. Different morphological organic-inorganic hybrid nanomaterials as fluorescent chemosensors and adsorbents for Cu(Ⅱ) ions [J]. Eur. J. Inorg. Chem.,2008,10:1559-1564.
    [83]LEE M H, LEE S J, JUNG J H, et al. Luminophore-immobilized mesoporous silica for selective Hg2- sensing [J]. Tetrahedron,2007,63:12087-12092.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700