稀土镁合金NZ30K激光焊接及接头性能改善研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在镁合金工业化应用过程中,焊接接头质量是关键问题之一。论文研究镁稀土合金NZ30K与激光的相互作用机理;在非线性、大的温度梯度、快速加热冷却条件下,激光工艺参数对焊缝成形影响和对激光焊接接头组织的影响及变化规律;研究焊接接头焊接态,热处理态组织与性能之间对应关系,探讨其机理。研究成果不但具有重要的理论意义,同时解决了稀土镁合金保证焊接质量的技术难题,为工业化生产和应用提供了技术支撑。
     本文研究了CO_2激光与镁稀土合金NZ30K的相互作用机理,计算NZ30K合金表面对于入射激光的吸收率。利用光谱仪及高速摄影机采集并观察焊接过程中等离子体的谱线信号及等离子体形态,估算等离子体温度,分析镁稀土合金焊接过程中等离子体的特性。试验结果表明,常温下镁稀土合金对于入射CO_2激光的吸收率为0.036。使用高的激光功率,对镁合金表面进行毛化处理可以增加镁稀土合金NZ30K对于CO_2激光的吸收率。侧吹保护气体氦气流量对于激光等离子体的影响显著。对于内径6mm的侧吹气体喷嘴,等离子体温度随侧吹气体流量增加呈现先减少后增加的趋势,当气体流量30L/min时,对等离子体的冷却效果最好。研究了多个焊接参数(激光功率、焊接速度、离焦量等)对镁稀土合金焊接成形的影响。镁稀土合金NZ30K激光焊接过程中当热输入量过大时会在焊缝中心位置产生热裂纹。10mm镁稀土合金板材在实验条件下当热输入量超过160J/mm时则产生热裂纹。热裂纹主要是由镁稀土合金中在晶界偏聚的低熔点脆性物Mg12Nd和激光焊接时焊缝受到的拉应力共同作用引起的。采用高功率CO_2激光器通过合适的工艺参数焊接能够实现镁稀土合金NZ30K的良好连接,焊接接头表面成形连续致密,没有裂纹、气孔等缺陷。
     利用OM、SEM、TEM等手段分析镁稀土合金NZ30K激光焊接接头的微观组织并测试了接头的力学性能。揭示镁稀土合金激光焊接工艺参数、焊接接头组织及力学性能之间的对应关系。焊缝组织由大量细小等轴晶组成,晶界处主要为Mg12Nd,焊接接头无明显的软化区存在。当热输入量为84J/mm时焊缝强度达到母材强度的80%。未熔透和气孔是导致焊缝抗拉强度降低的主要原因。
     热处理对于镁稀土合金NZ30K激光焊接接头组织和性能具有重要的影响。采用不同的工艺参数对得到的焊缝组织进行热处理,利用透射电镜观察研究焊缝典型时效处理后的组织,并对不同热处理后的焊接接头力学性能进行测试,揭示焊缝中稀土析出相的时效析出过程及对焊接接头的强化机制。采用理论计算和实验结果相结合的方法研究了不同形貌析出物对于NZ30K激光焊接焊缝组织强化作用的大小。通过实验发现,焊缝时效处理后组织中有大量不同形貌的析出物。镁稀土合金NZ30K激光焊接焊缝时效沉淀析出过程应为Mg(SSSS)→G.P.区→β″(DO_(19))→β′(fcc)。β″与基体形成共格界面,而β′与基体形成半共格界面。通过理论计算得到焊缝组织时效之后不同形貌析出物导致的强化作用的大小,它们的比值为△τ棱:△τ杆:△τ球:△τ片=3.57:3.14:1.86:1。对于镁稀土合金NZ30K激光焊接焊缝组织,在较高的析出相体积分数下,垂直于基面的棱柱面片状析出相的强化效果最好,而平行于基面的片状析出相强化效果最弱。析出物强化对于热处理后焊接接头强度的增加起主要作用,在200℃时效8小时后接头强度达到最大,抗拉强度可达273MPa,比未热处理的焊接接头强度增加了70%。
     采用浸泡腐蚀和电化学测试方法研究不同状态下的镁稀土合金NZ30K激光焊接焊缝组织的腐蚀性能,分析产生不同腐蚀速率的原因,建立NZ30K焊缝腐蚀机理模型,揭示稀土元素在提高NZ30K激光焊接焊缝组织耐蚀性能中的作用。实验结果表明,焊缝耐腐蚀性能优于母材的耐腐蚀性能。焊缝组织固溶处理和时效处理之后的耐腐蚀性能比未热处理的焊缝组织耐腐蚀性能好。镁稀土合金NZ30K激光焊接焊缝组织中由于稀土元素Nd的存在,增加了α-Mg相的耐蚀能力,同时由于焊缝组织中包含大量细小的等轴晶,晶界处连续分布的Mg12Nd相可以阻碍腐蚀过程的进行,降低整个焊缝组织的腐蚀速度。
The welding technique of Mg and its alloy can’t meet the demands of manufacturingat present and it has been the main problem which limits the application of magnesiumalloy structural components. The mechanism of interaction between CO_2laser and NZ30Kalloy is studied. Spectral analysis equipment and high speed camera are used to investigatethe plasma. The microstructure and mechanical properties of laser welded joints underdifferent heat treatments had been tested and analyzed. The method of combiningtheoretical calculations and experimental results was used to study the strengthening roleof different morphologies precipitateds in the laser welded NZ30K alloy. The corrosionmechanism of the rare earth element Nd in improving the corrosion resistance of laserwelded NZ30K joints is revealed. Therefore, research on the weldability of Mg-Rare alloyis of great significance in theoretical study and industrial application.
     The mechanism of interaction between laser and materials is studied. The rate ofabsorption of the magnesium alloy surface for the laser is calculated. Spectral analysisequipment and high speed camera are used to investigate the plasma. In order to calculatethe temperature of the plasma, the method of relative intensity of two spectral lines withthe same ion is applied. The influencing factors of the welding forming were investigatedsuch as the laser power、 welding speed、 laser focal position and so on. Thecorrespondence between laser welding parameters, weld joint microstructure andmechanical properties of Mg-Rare alloy is studied. Using the high power CO_2laser theMg-Rare earth alloy NZ30K can be welded with good joint appearance under the properwelding parameters, where joint is full penetrated and free of macro defects in the fusionzone. If the heat input is too large during the laser welding, the solidification cracking willappear in the welding joint of Mg-Rare alloy. The cracks are mainly caused by thecombined effect of tensile stress and low melting point eutectic Mg12Nd.
     The microstructure and the mechanical properties of laser welding joints of Mg-Rare earth alloy are observed and tested. Due to the high rate of cooling in laser welding, thefusion zone of joint is made up of fine equiaxed grain. There is no obvious soft zone in thejoint of NZ30K. The FZ mainly consists of α-Mg as base and Mg12Nd which distributesalong the grain boundary. The results of mechanical property experiments show that thetensile-strength of NZ30K is about80%of that of base metal when the heat input is84J/mm.
     The microstructure and mechanical properties of laser welded joints under differentheat treatments had been tested and analyzed. The precipitation sequence in laser weldedNZ30K alloy during aging treatment has been investigated using transmission electronmicroscopy (TEM). The results indicated that the heat treatment plays an important role inthe mechanical strength of laser welded joint of NZ30K. The microstructure of samplesafter the solution treatment as well as aging treatment is different from that of theas-received welded joint. For solution treatment, although the microstructure is muchdifferent from that of as-received welded joint, the solution strengthening effect is notobvious. The precipitation in laser welded NZ30K alloy follows the sequence of Mg(SSSS)→G.P.→β″(DO19)→β′(fcc).The ratio of different strengthening is△τ棱:△τ杆:△τ球:△τ片=3.57:3.14:1.86:1. The prismatic shape of precipitates perpendicular to the basal planeis the most important factor that enhances aging treatment strengthening. The flack shapeof precipitates parallel to the basal plane is the worst important factor. There are lots ofprecipitates in the fusion zone after the aging treatment, which will significantly enhancethe tensile strength of the welding joint. After aging treatment at200℃×8h, the UTS oflaser welded NZ30K joint is the highest.
     The corrosion behavior of laser welded joints in different regions and under differentheat treatment had been investigated. The corrosion mechanism of the rare earth elementNd in improving the corrosion resistance of laser welded NZ30K joints is revealed. It isfound that the corrosion resistance of fusion zone is better than that of the base metal andthe corrosion resistance of NZ30K is better than that of AZ31. After appropriate heat treatment the corrosion resistance of laser welded NZ30K can be significantly improved.The electrochemical activity of Mg-Rare earth compounds Mg12Nd phase is low, soMg12Nd solid solution containing rare earth can improve the corrosion resistance. Mg12Ndphases are basically continuous distribution along the grain boundaries in the smallequiaxed grains of fusion zone. Therefore, barriers produced by Mg12Nd phases can bequickly formed on the surface and the corrosion rate of the alloy will be reduced.
引文
[1]师昌绪,李恒德,王淀佐,李依依,左铁镛.加速我国金属镁工业发展的建议.材料导报2001;15.
    [2]曾荣昌,柯伟,徐永波,韩恩厚,朱自勇. Mg合金的最新发展及应用前景.金属学报2001;37.
    [3]石雅静,李全安,任文亮,张兴渊, Ya-jing S, Qua-nan LI, Wen-liang R, Xing-yuan Z.耐热镁合金的开发与研究现状.轻合金加工技术2009;37.
    [4]王荣贵, Ronggui W.我国变形镁合金开发的现状与发展.山西冶金2009;32.
    [5] Yang Z, Li JP, Zhang JX, Lorimer GW, Robson J. Review on Research and Development ofMagnesium Alloys. Acta Metallurgica Sinica (English Letters)2008;21:313.
    [6]谢建昌,李全安,李建弘,张兴渊, Jian-chang X, Qua-nan LI, Jian-hong LI, Xing-yuan Z.耐热镁合金及其开发思路.铸造技术2008;29.
    [7]颜永年,李茂盛,林峰,吴任东,张人佶, Yongnian Y, Maosheng LI, Feng L, Rendong WU,Renji Z.变形镁合金的研究热点概述.清华大学学报(自然科学版)2007;47.
    [8]王渠东,丁文江.镁合金及其成形技术的国内外动态与发展.世界科技研究与发展2004;26.
    [9]张静,潘复生,李忠盛.耐热镁合金材料的研究和应用现状.铸造2004;53.
    [10]余琨,黎文献,王日初,马正青.变形镁合金的研究、开发及应用.中国有色金属学报2003;13.
    [11]何良菊,李培杰.中国镁工业现状与镁合金开发技术.铸造技术2003;24.
    [12] Bayani H, Saebnoori E. Effect of rare earth elements addition on thermal fatigue behaviors ofAZ91magnesium alloy.2009;27:255.
    [13]李建弘,李全安,谢建昌,王小强,张兴渊, Jianhong LI, Quan'an LI, Jianchang X, XiaoqiangW, Xingyuan Z.稀土耐热镁合金的开发与应用.材料导报2007;21.
    [14] ZENG R, ZHANG J, HUANG W, DIETZEL W, KAINER KU, BLAWERT C, KE W. Review ofstudies on corrosion of magnesium alloys. T Nonferr Metal Soc2006;16:s763.
    [15]杜文博,吴玉锋,聂祚仁,苏学宽,左铁镛, Du Wenbo, Yufeng W, Zuoren N, XueKuan S,Tieyong Z.稀(碱)土在镁合金中的作用及应用现状.稀有金属材料与工程2006;35.
    [16]余强国,翁国庆, Qiang-guo YU, Guo-qing W.镁稀土合金的发展、应用及开发.稀有金属与硬质合金2006;34.
    [17]刘海峰,侯骏,刘耀辉,佟国栋,孟健,许晓峰, Haifeng L, Jun H, Yaohui L, Guodong T, JianM, Xiaofeng X.含稀土抗蠕变压铸镁合金的开发.中国稀土学报2005;23.
    [18]余琨,黎文献,李松瑞,谭敦强, Kun Y, Wenxian L, Songrui L, Dunqiang T.含镁稀土合金的研究与开发.特种铸造及有色合金2001.
    [19] Hao XF, Song G. Spectral Analysis of the Plasma in Low-Power Laser/Arc Hybrid Welding ofMagnesium Alloy. Ieee T Plasma Sci2009;37:76.
    [20] Kolodziejczak P, Kalita W. Properties of CO2laser-welded butt joints of dissimilar magnesiumalloys. J Mater Process Tech2009;209:1122.
    [21] Liang GL, Zhou G, Yuan SQ. Study on hybrid heat source overlap welding of magnesium alloyAZ31B. Mat Sci Eng A-Struct2009;499:93.
    [22] Yu ZH, Yan HG, Gong XS, Quan YJ, Chen JH, Chen Q. Microstructure and mechanicalproperties of laser welded wrought ZK21magnesium alloy. Mat Sci Eng A-Struct2009;523:220.
    [23] Liu LM, Hao XF. Improvement of laser keyhole formation with the assistance of arc plasma in thehybrid welding process of magnesium alloy. Opt Laser Eng2009;47:1177.
    [24]单际国,雷祥,谭稳达,张红军,陈武柱,任家烈. AZ31B变形镁合金CO_2激光焊接模式及焊缝成形特点.焊接学报2008.
    [25]全亚杰,陈振华,黎梅,俞照辉,龚晓叁. AM60变形镁合金薄板激光焊接接头的组织与性能.中国有色金属学报2007.
    [26]全亚杰,陈振华,俞照辉,龚晓叁. AZ31镁合金激光焊接头中的缺陷分析.热加工工艺2007.
    [27]谭稳达,单际国,雷祥,张婧,陈武柱. CO_2激光焊接工艺对AZ31B变形镁合金焊缝表面成形的影响.焊接2007.
    [28]王红英,李志军,陈斐明. AZ31镁合金薄板的CO_2激光焊接接头性能.焊接2006.
    [29]王红英,李志军. AZ61镁合金CO_2激光焊接工艺.焊接2006.
    [30]王红英,李志军. AZ61镁合金激光焊接接头的组织与性能.中国有色金属学报2006.
    [31]王红英,李志军.焊接工艺参数对镁合金CO_2激光焊焊缝表面成形的影响.焊接学报2006:64.
    [32]王红英,李志军,梁雪峰,徐虎.镁合金激光焊接技术的研究现状与应用.焊接2005.
    [33] Song G, Liu LM, Chi MS, Wang JF. Investigations on laser-TIG hybrid welding of magnesiumalloys. MAGNESIUM-SCIENCE, TECHNOLOGY AND APPLICATIONS2005;488-489:371.
    [34] Ignat S, Sallamand P, Grevey D, Lambertin M. Magnesium alloys (WE43and ZE41)characterisation for laser applications. Appl Surf Sci2004;233:382.
    [35]王继锋,刘黎明,宋刚.激光焊接AZ31B镁合金接头微观组织特征.焊接学报2004:15.
    [36]宋刚,刘黎明,王继锋,许德胜.变形镁合金AZ31B的激光焊接工艺研究.应用激光2003.
    [37]郭永强,孙荣禄.镁合金激光焊接技术的研究现状与发展.激光杂志2008:11.
    [38] Cao X, Jahazi M, Immarigeon JP, Wallace W. A review of laser welding techniques formagnesium alloys. J Mater Process Tech2006;171:188.
    [39]胡学安,徐道荣.镁合金的焊接方法及其工艺要素.轻合金加工技术2006:9.
    [40]徐杰,刘子利,沈以赴,刘仕福.镁合金焊接的研究与发展.宇航材料工艺2006:21.
    [41]孙德新,孙大千,李金宝,李明高,殷世强.镁合金焊接技术的研究进展及应用.材料导报2006:122.
    [42]刘红伟,周琦,朱军.镁合金焊接的研究现状及进展.兵器材料科学与工程2005:68.
    [43]冯吉才,王亚荣,张忠典.镁合金焊接技术的研究现状及应用.中国有色金属学报2005:165.
    [44]丁文斌,蒋海燕,曾小勤,姚寿山.镁合金焊接技术研究进展.轻合金加工技术2005:1.
    [45]王红英,李志军,梁雪峰,徐虎.镁合金激光焊接技术的研究现状与应用.焊接2005:9.
    [46] Weisheit A, Galun R, Mordike BL. CO2laser beam welding of magnesium-based alloys. WeldingJournal1998;77.
    [47] Marya M, Edwards GR. Factors controlling the magnesium weld morphology in deep penetrationwelding by a CO2laser. J Mater Eng Perform2001;10:435.
    [48] Dhahri M, Masse JE, Mathieu JF, Barreau G, Autric M. Laser welding of AZ91and WE43magnesium alloys for automotive and aerospace industries. Adv Eng Mater2001;3:504.
    [49] Dhahri M, Masse JE, Mathieu JF, Barreau G, Autric ML. CO laser welding of magnesium alloys.Proceedings of SPIE, vol.3888. Proceedings of the SPIE: High-Power Lasers in Manufacturing,2000.p.725.
    [50] Quan Y, Chen Z, Yu Z, Gong X, Li M. Characteristics of laser welded wrought Mg-Al-Mn alloy.2008;59:1799.
    [51] Quan YJ, Chen ZH, Gong XS, Yu ZH. Effects of heat input on microstructure and tensileproperties of laser welded magnesium alloy AZ31.2008;59:1491.
    [52] Coelho RS, Kostka A, Pinto H, Riekehr S, Ko鏰k M, Pyzalla AR. Microstructure and mechanicalproperties of magnesium alloy AZ31B laser beam welds.2008;485:20.
    [53] Huang RS, Liu LM, Song G. Infrared temperature measurement and interference analysis ofmagnesium alloys in hybrid laser-TIG welding process.2007;447:239.
    [54] Liu L, Dong C. Gas tungsten-arc filler welding of AZ31magnesium alloy.2006;60:2194.
    [55] Wang HY, Li ZJ. INVESTIGATION OF LASER BEAM WELDING PROCESS OF AZ61MAGNESIUM-BASED ALLOY.2006;19:287.
    [56] Song G, Liu L, Wang P. Overlap welding of magnesium AZ31B sheets using laser-arc hybridprocess.2006;429:312.
    [57] Kouadri A, Barrallier L. Texture characterisation of hexagonal metals: Magnesium AZ91alloy,welded by laser processing. Materials Science and Engineering: A2006;429:11.
    [58] Zhu J, Li L, Liu Z. CO2and diode laser welding of AZ31magnesium alloy. Appl Surf Sci2005;247:300.
    [59] Liming L, Jifeng W, Gang S. Hybrid laser-TIG welding, laser beam welding and gas tungsten arcwelding of AZ31B magnesium alloy.2004;381:129.
    [60] Coelho RS, Kostka A, Pinto H, Riekehr S, Kocak M, Pyzalla AR. Microstructure and mechanicalproperties of magnesium alloy AZ31B laser beam welds. Materials Science and Engineering A2008;485:20.
    [61]单际国,张婧,郑世卿,陈武柱,任家烈.压铸镁合金激光焊气孔形成原因的实验研究.金属学报2009:1006.
    [62] Liu L, Song G, Liang G, Wang J. Pore formation during hybrid laser-tungsten inert gas arcwelding of magnesium alloy AZ31B--mechanism and remedy. Materials Science and Engineering A2005;390:76.
    [63] Zhao H, Debroy T. Pore formation during laser beam welding of die-cast magnesium alloyAM60B—mechanism and remedy. Welding journal2001;80:204.
    [64] Haferkamp H, von Alvensleben F, Burmester I, Niemeyer M. The characteristics of laser beamwelded magnesium alloys. ICALEO'971997;83.
    [65] Shan JG, Zhang J, Zheng SQ, Chen WZ, Ren JL. EXPERIMENTAL STUDY ON THE REASONOF PORE FORMATION IN LASER WELDING OF DIE-CAST MAGNESIUM ALLOY. ACTAMETALLURGICA SINICA2009;45:1006.
    [66]单际国,张婧.镁合金激光焊气孔问题研究现状与展望.2009:34.
    [67] Chen TJ, Jiang XD, Ma Y, Li YD, Hao Y. Microstructural evolution and phase transformationsduring partial remelting of AZ91D magnesium alloy refined by SiC. J Alloy Compd2010;497:147.
    [68] Zhen ZS, Hort N, Huang YD, Utke O, Petri N, Kainer KU. Hot tearing behaviour of binaryMg-1Al alloy using a contraction force measuring method. Int J Cast Metal Res2009;22:331.
    [69]武小娟,王忠堂,钱芳,常荣辉.镁合金薄板焊接性能研究.轻合金加工技术2009;37.
    [70]刘金华,王文先,张红霞,李晋永,许并社, Jin-hua L, Wen-xian W, Hong-xia Z, Jin-yong LI,Bing-she XU. AZ31B镁合金TIG焊焊接裂纹的产生及其特征分析.兵器材料科学与工程2008;31.
    [71] Lang B, Sun DQ, Xuan ZZ, Qin XF. Hot cracking of resistance spot welded magnesium alloy. IsijInt2008;48:77.
    [72]吴金杰,马天凤,李兴霞, Jinjie WU, Tianfeng MA, Xingxia LI.镁合金点焊焊接裂纹分析.热加工工艺2008;37.
    [73] Yamamoto M, Gerlich A, North TH, Shinozaki K. Mechanism of cracking in AZ91friction stirspot welds. Sci Technol Weld Joi2007;12:208.
    [74] Yamamoto M, Gerlich A, North TH, Shinozaki K. Cracking in the stir zones of Mg-alloy frictionstir spot welds. J Mater Sci2007;42:7657.
    [75] Zhou W, Long TZ, Mark CK. Hot cracking in tungsten inert gas welding of magnesium alloyAZ91D. Mater Sci Tech-Lond2007;23:1294.
    [76] Yamamoto M, Gerlich A, North TH, Shinozaki K. Mechanism of cracking in AZ91friction stirspot welds. Sci Technol Weld Joi2007;12:208.
    [77] Zheng WC, Li SS, Tang B, Zeng DB, Guo XT. Effect of rare earths on hot cracking resistantproperty of Mg-Al alloys. J Rare Earth2006;24:346.
    [78] Zheng WC, Li SS, Tang B, Zeng DB, Guo XT. Effect of rare earths on hot cracking resistantproperty of Mg-Al alloys. J Rare Earth2006;24:346.
    [79]刘政军,苏允海,李永奎,曹杰,张桂清,尹义君,曾谢波,罗君, Zheng-jun L, Yun-hai SU,Yong-kui LI, Jie C, Gui-qing Z, Yi-jun Y, Xie-bo Z, Jun L.镁合金焊接热裂纹机理的研究.热加工工艺2006;35.
    [80] Al-Kazzaz H, Medraj M, Cao X, Jahazi M. Nd:YAG laser welding of aerospace grade ZE41Amagnesium alloy: Modeling and experimental investigations.2008;109:61.
    [81] Cao X, Xiao M, Jahazi M, Immarigeon JP. Continuous wave Nd: YAG laser welding of sand-castZE41A-T5magnesium alloys. Mater Manuf Process2005;20:987.
    [82]过增元,赵文华,物理学.电弧和热等离子体:科学出版社,1986.
    [83] Hanif M, Salik M, Baig MA. Spectroscopic Studies of the Laser Produced Lead Plasma. PlasmaScience and Technology2011;13:129.
    [84] Ahmed JB, Fethi F. Spectroscopic study of laser-induced plasma in aqueous media. Opt Commun2009;282:1607.
    [85] Jandaghi M, Parvin P, Torkamany MJ, Sabbaghzadeh J. Measurement of the composition changein Al5754alloy during long pulsed Nd: YAG laser welding based on LIBS. Journal of Physics D: AppliedPhysics2009;42:205301.
    [86]顾小燕.电弧等离子体辐射在焊接过程检测上的应用研究., vol.硕士.太原:中北大学,2009.
    [87] Mirapeix J, Cobo A, Fernandez S, Cardoso R, Lopez-Higuera JM. Spectroscopic analysis of theplasma continuum radiation for on-line arc-welding defect detection. Journal of Physics D: Applied Physics2008;41:135202.
    [88] Shaikh NM, Hafeez S, Kalyar MA, Ali R, Baig MA. Spectroscopic characterization of laserablation brass plasma. J Appl Phys2008;104:103108.
    [89] Dadras S, Torkamany MJ, Sabbaghzadeh J. Spectroscopic characterization of low-nickel copperwelding with pulsed Nd: YAG laser. Opt Laser Eng2008;46:769.
    [90] Ancona A, Sibillano T, LugaráPM. Optical plasma spectroscopy as a tool for monitoring laserwelding processes. Journal of Achievements in Materials and Manufacturing Engineering2008;31:402.
    [91] Schlenvoigt HP, Haupt K, Debus A, Budde F, J ckel O, Pfotenhauer S, Schwoerer H, Rohwer E,Gallacher JG, Brunetti E. A compact synchrotron radiation source driven by a laser-plasma wakefieldaccelerator. Nature Physics2007;4:130.
    [92] Lober R, Mazumder J. Spectroscopic diagnostics of plasma during laser processing of aluminium.Journal of Physics D: Applied Physics2007;40:5917.
    [93] Sibillano T, Ancona A, Berardi V, Schingaro E, Basile G, Mario Lugar P. A study of the shieldinggas influence on the laser beam welding of AA5083aluminium alloys by in-process spectroscopicinvestigation. Opt Laser Eng2006;44:1039.
    [94] Zhang Y, Li L, Zhang G. Spectroscopic measurements of plasma inside the keyhole in deeppenetration laser welding. Journal of Physics D: Applied Physics2005;38:703.
    [95] Tu J, Miyamoto I, Inoue T. Characterizing keyhole plasma light emission and plasma plumescattering for monitoring20kW class CO2laser welding processes. J Laser Appl2002;14:146.
    [96] Lacroix D, Jeandel G, Boudot C. Spectroscopic characterization of laser-induced plasma createdduring welding with a pulsed Nd: YAG laser. J Appl Phys1997;81:6599.
    [97] Beck M, Berger P, Hugel H. The effect of plasma formation on beam focusing in deep penetrationwelding with CO2lasers. Journal of Physics D: Applied Physics1995;28:2430.
    [98] Li J, Song Y. Spectral information of arc and welding automation. WELDING IN THE WORLD1994;34:317.
    [99] Junyue L, Fushui W, Yonglun S, Longliang R. Measurement of hydrogen in a welding arc.Welding International1988;2:1122.
    [100]李俊岳,宋永伦.电弧光谱信息及其在焊接过程测控上的应用.机械工程学报1993;29:1.
    [101]宋永伦.焊接电弧等离子体的光谱诊断法及其应用的研究[D].天津大学博士学位论文1990.
    [102] Griem HR. Principles of plasma spectroscopy. Proceedings of the Physical Society2005;1.
    [103] Griem HR. Plasma spectroscopy: New York: McGraw-Hill,1964.
    [104]苏跃珍.熔化极气体保护焊电弧的光谱诊断[D]:硕士学位论文., vol.硕士:天津大学,1988.
    [105]李桓,李俊岳.钨极氩—氮电弧的高热特性.焊接学报1993;14:125.
    [106]张刚.激光深熔焊接光致等离子体温度测量的试验研究[D]., vol.硕士:湖南大学,2004.
    [107]李志勇,王威,王旭友,李桓.激光-MAG复合焊等离子体辐射分析.焊接学报2010:21.
    [108] Li Z, Wang W, Wang X, Li H. A study of the radiation of a Nd: YAG laser–MIG hybrid plasma.Optics&Laser Technology2010;42:132.
    [109] Zhiyong L, Lijun Y, Ying G, Huan L, Wei W. Analysis of the hybrid pulsed MAG-YAG laserplasma with synchronization of multiple signals. J Laser Appl2010;22:106.
    [110] Li and Z, Wang Y, Wang W, Wang X. Analysis on the interaction between laser and MIG plasma.Int J Appl Electrom2010;33:527.
    [111]王慧敏,陈振华,严红革,刘应科.镁合金的热处理.金属热处理2005;30.
    [112]程晓农,汝金明,莫纪平,许晓静.固溶-大应变-后续热处理态AZ31镁合金的组织和性能.稀有金属材料与工程2009;38.
    [113]许娟,李鹏飞,郭锋.热处理对AZ91D镁合金相结构的影响.材料热处理学报2011.
    [114]张志俊.热处理对Mg-Nd—Gd—Zr镁稀土合金组织与性能的影响.材料热处理技术2009.
    [115]何上明. Mg_Gd_Y_Zr_Ca_合金的微观组织演变_性能和断裂行为研究.博士.上海:上海交通大学.
    [116] Penghuai F, Liming P, Haiyan J, Jianwei C, Chunquan Z. Effects of heat treatments on themicrostructures and mechanical properties of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy. Materials Science andEngineering A2008;486:183.
    [117]郭揲,王快社,王文,王峰,王文礼.焊后热处理对镁合金搅拌摩擦焊接接头的影响.稀有金属材料与工程2011;40.
    [118]贾素秋.镁合金的腐蚀行为与防护., vol.博士:吉林大学,2006.
    [119] ZENG R, ZHANG J, HUANG W, Dietzel W, Kainer KU, Blawert C, KE W. Review of studieson corrosion of magnesium alloys. ransactions of Nonferrous Metals Society of China2006;16:s763.
    [120] Ghali E, Dietzel W, Kainer KU. General and localized corrosion of magnesium alloys: A criticalreview. J Mater Eng Perform2004;13:7.
    [121]余刚,刘跃龙. Mg合金的腐蚀与防护.中国有色金属学报2002;12:1087.
    [122]吴振宁,李培杰.镁合金腐蚀问题研究现状.铸造2001;50:583.
    [123]周婉秋,单大勇.镁合金的腐蚀行为与表面防护方法.材料保护2002;35:1.
    [124] Makar GL, Kruger J. Corrosion of magnesium. Int Mater Rev1993;38:138.
    [125] Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater1999;1:11.
    [126] Makar GL, Kruger J. Corrosion studies of rapidly solidified magnesium alloys. J Electrochem Soc1990;137:414.
    [127] Gulbrandsen E, Tafto J, Olsen A. The passive behaviour of Mg in alkaline fluoride solutions.Electrochemical and electron microscopical investigations. Corros Sci1993;34:1423.
    [128]白力静,张华,袁颖,杨欣,王爱娟. β-Mg17Al12相含量对AZ91镁合金腐蚀行为的影响.西安理工大学学报2011;27:31.
    [129]曾荣昌,明勇,黄伟九,韩恩厚,柯伟.镁合金AZ91D焊接组织及腐蚀行为研究.材料导报2004;18.
    [130]张清,李全安,文九巴,张兴渊.稀土在镁合金腐蚀防护中的应用.腐蚀科学与防护技术2007;19:119.
    [131]段汉桥,王立世,蔡启舟,张诗昌,魏伯康.稀土对AZ91镁合金耐腐蚀性能的影响.中国机械工程2003;14:1789.
    [132]王喜峰,齐公台.混合稀土对AZ91镁合金在NaCl溶解中的腐蚀行为影响.材料开发与应用2002;17:34.
    [133]张勇,许越.稀土铈对AZ91镁合金表面腐蚀性能的影响.哈尔滨工业大学学报2002;34:376.
    [134] Chang JW, Guo XW, Fu PH, Peng LM, Ding WJ. Effect of heat treatment on corrosion andelectrochemical behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy. Electrochim Acta2007;52:3160.
    [135] Chang JW, Fu PH, Guo XW, Peng LM, Ding WJ. The effects of heat treatment and zirconium onthe corrosion behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy. Corros Sci2007;49:2612.
    [136]陆建,倪晓武,贺安之.高功率激光与材料相互作用机理研究进展.激光技术1996;20.
    [137]陆建,倪晓武,贺安之.激光与材料相互作用物理学.北京:机械工业出版社,1996.
    [138]李立钧.现代激光加工及其装备.北京:北京理工大学出版社,1993.
    [139]段爱琴,陈俐,国莉. YAG激光焊接5A90铝锂合金金属蒸汽/等离子体特征.稀有金属材料与工程2009;38:160.
    [140] Fabbro R, Slimani S, Doudet I, Coste F, Briand F. Experimental study of the dynamical couplingbetween the induced vapour plume and the melt pool for Nd–Yag CW laser welding. J. Phys. D: Appl.Phys.2006;39:394.
    [141]王家金.激光加工技术.北京:中国计量出版社,1992.
    [142]王春明.基于多传感器的激光焊接质量实时诊断及其理论基础.武汉:华中科技大学,2005.p.135.
    [143] Okamoto H. Mg-Nd (Magnesium-Neodymium). Journal of phase equilibria1991;12:249.
    [144]刘金华,王文先,张红霞,李晋永,许并社. AZ31B镁合金TIG焊焊接裂纹的产生及其特征分析.兵器材料科学与工程2008;31:50.
    [145]周振丰,张文钺.焊接冶金与金属焊接性.北京:机械工业出版社,1987.
    [146]陈伯蠡.焊接工程缺欠分析与对策:机械工业出版社,1998.
    [147]吴金杰,马天凤,李兴霞.镁合金点焊焊接裂纹分析.热加工工艺2008;37:85.
    [148]杨再贵.镁合金TIG焊裂纹形成机理及气孔敏感性研究[D]., vol.硕士.重庆:重庆大学,2005.
    [149]周尧和,杜壮麒.凝固技术.北京:机械工业出版社,1998.
    [150]徐洲,姚寿山.材料加工原理.北京:科学出版社,2002.
    [151]于尔靖,郝传勇.铝锂合金焊缝凝固组织特征.焊接学报1996;17:1.
    [152]赵熹华,姜以宏.薄件点焊熔核凝固组织分析.焊接学报1994;15:89.
    [153]赵熹华,姜以宏.点焊熔核―柱状+等轴‖组织形成机理分析.金属科学与工艺1989;1.
    [154] Qian M, Das A. Grain refinement of magnesium alloys by zirconium: Formation of equiaxedgrains. Scripta Mater2006;54:881.
    [155] Qian M, Zheng L, Graham D, Frost MT, StJohn DH. Settling of undissolved zirconium particlesin pure magnesium melts. Journal of Light Metals2001;1:157.
    [156] Poirier DR, Geiger GH. Transport phenomena in materials processing: Minerals, Metals&Materials Society,1994.
    [157] Stanford N, Barnett MR. The origin of―rare earth‖texture development in extruded Mg-basedalloys and its effect on tensile ductility. Materials Science and Engineering: A2008;496:399.
    [158]付彭怀. Mg-Nd-Zn-Zr合金微观组织、力学性能和强化机制的研究., vol.博士.上海:上海交通大学,2008.
    [159]王祝堂.铝合金及其加工手册.长沙:中南工业大学出版社,2005.
    [160]邓永瑞,许洋,固态相变,赵青,物理学.固态相变:冶金工业出版社,1996.
    [161]贾树卓,徐春杰,郭学锋,郑水云,张忠明,吕涛.热处理对原位自生Mg2Si/Mg-Al基复合材料组织与性能的影响.材料热处理学报2007;27:25.
    [162]金云学,张二林.热处理对Ti—6Al—2C合金中TiC枝晶形貌的影响.材料工程2001:18.
    [163]冯端.金属物理学:相变:科学出版社,1990.
    [164] Mabuchi M, Higashi K. Strengthening mechanisms of Mg---Si alloys. Acta Mater1996;44:4611.
    [165] Underwood EE. Quantitative stereology. READING1970;READING.
    [166] Villars P, Calvert LD, Pearson WB. Pearson's Handbook of Crystallographic Data forIntermetallic Phases. Volumes1,2,3. Ohio: ASM,1985.
    [167] He SM, Zeng XQ, Peng LM, Gao X, Nie JF, Ding WJ. Precipitation in a Mg-10Gd-3Y-0.4Zr(wt.%) alloy during isothermal ageing at250°C. J Alloy Compd2006;421:309.
    [168] Antion C, Donnadieu P, Perrard F, Deschamps A, Tassin C, Pisch A. Hardening precipitation in aMg-4Y-3RE alloy. Acta Mater2003;51:5335.
    [169]波特,伊斯特林,李长海,余永宁,材料学.金属和合金中的相变:冶金工业出版社,1988.
    [170]曹明盛.物理冶金基础:冶金工业出版社,1985.
    [171] Kelly PM. The effect of particle shape on dispersion hardening. Scripta Metallurgica1972;6:647.
    [172] Smola B, Stul ková I, Von Buch F, Mordike BL. Structural aspects of high performance Mgalloys design. Materials Science and Engineering: A2002;324:113.
    [173] Bettles CJ, Gibson MA, Venkatesan K. Enhanced age-hardening behaviour in Mg–4wt.%Znmicro-alloyed with Ca. Scripta Mater2004;51:193.
    [174] Gao X, Nie JF. Characterization of strengthening precipitate phases in a Mg–Zn alloy. ScriptaMater2007;56:645.
    [175] Nie JF, Muddle BC. Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy.Acta Mater2000;48:1691.
    [176] Celotto S. TEM study of continuous precipitation in Mg-9wt%Al-1wt%Zn alloy. Acta Mater2000;48:1775.
    [177] Nie JF. Effects of precipitate shape and orientation on dispersion strengthening in magnesiumalloys. Scripta Mater2003;48:1009.
    [178] Avedesian MM, Baker H. Magnesium and magnesium alloys: Asm Intl,1999.
    [179] Jog CS, Sankarasubramanian R, Abinandanan TA. Symmetry-breaking transitions in equilibriumshapes of coherent precipitates. J Mech Phys Solids2000;48:2363.
    [180]刘平,康布熙.快速凝固Cu—Cr合金时效析出的共格强化效应.金属学报1999;35:561.
    [181] Li ZC, Zhang H, Liu L, Xu YB. Growth and morphology of [beta] phase in an Mg-Y-Nd alloy.Mater Lett2004;58:3021.
    [182]宋光铃.镁合金腐蚀与防护:化学工业出版社,2006.
    [183]杨武,金属腐蚀,中国腐蚀与防护学会.金属的局部腐蚀:化学工业出版社,1997.
    [184] Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions. Housto,1974.
    [185]丁文江.镁合金科学与技术.上海:科学出版社,2006.
    [186]曹楚南.腐蚀电化学原理.北京:化学工业出版社,2008.
    [187]王凤平,康万利,敬和民.腐蚀电化学原理方法及应用.北京:化学工业出版社,2008.
    [188]余琨.稀土变形镁合金组织性能及加工工艺研究.博士.长沙:中南大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700