大口径衍射光学元件的离子束刻蚀及相关问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
衍射光学元件广泛应用于红外成像系统、光谱分析以及其他现代光学系统。随着激光技术的发展,激光器中的重要元件——大口径衍射光学元件的制作成了重要的究课题。现在大口径衍射光学元件的制作主要采用全息曝光和离子束刻蚀相结合的方法。表征大口径衍射光学元件性能的主要因素包括均匀性、衍射效率以及激光损伤阈值。如何通过离子束刻蚀技术提高大口径衍射光学元件的性能,得到均匀性更好、衍射效率更高以及高激光损伤阈值的光栅是制作工艺中的重点研究内容。
     本文的研究内容定位于离子束刻蚀技术,重点关注的是刻蚀的均匀性以及多层介质膜脉冲压缩光栅(PCG)的离子束刻蚀情况。近来,随着高功率激光器的不断发展,衍射光学元件的口径不断增大,对离子束刻蚀提出了更高的要求。目前,国内大口径元件的制作已经取得了重要进展,基于大口径光学元件的大型激光器也已建成出光。大口径衍射光学元件的离子束刻蚀课题受到了国家863课题重大项目的资助,作者在导师组的指导下从事了课题的研究工作。作者的主要工作有以下几个方面:
     1.提高离子束刻蚀均匀性
     对于大尺寸衍射光学元件而言,尺寸的增加给全面积均匀性带来了更大的挑战。整个工艺流程中都对均匀性有着很高的要求。我们使用的离子源束流密度均匀性在需要的工作尺度范围内达不到要求,而样品所处的工作台又只在短轴方向(即横向)扫描,所以,离子束流密度沿着长轴方向(即纵向)的均匀性修正显得极为重要。
     离子束流的均匀性主要和气体流量分布、离子源参数设置以及束阑形状有关系。本文的工作重点在于调整束阑形状改变束流均匀性。首先是制作整体束阑,其次是制作分离式石墨条束阑,最后通过样品的纵向平移来提高离子束刻蚀的均匀性。具体修正内容包括纵向束流密度分布的测量与定位、横向束流密度分布曲线的测量以及积分、纵向束流密度分布的修正。
     2.多层介质膜脉冲压缩光栅的离子束刻蚀
     多层介质膜脉冲压缩光栅的离子束刻蚀包括两个部分:初始光刻胶掩模的定性判断与修正;离子束刻蚀中的图形转移情况。
     首先,由于全息曝光得到的光刻胶掩模的部分区域可能有残余底膜存在,残余底膜不仅影响图形转移精度而且影响刻蚀均匀性,故而需要判断掩模情况,并对可以修正的掩模进行等离子体灰化修正掩模形状。本论文中的等离子体灰化实验是在我室自行研制的大尺寸衍射光栅灰化装置上进行的。初始光刻胶掩模到底情况,主要通过光学显微镜和原子力显微镜的观察结果进行判断。实验中对于小尺寸的实验片还采用了扫描电镜(肖特基场发射扫描电子显微镜)看其断面轮廓的方法,来了解掩模具体情况。
     通过大量的统计结果,得到定性的判断,即要求掩模高度>300nm,占空比>0.3,全面积衍射效率>80%且均匀。本论文中,基于现有的测量仪器,设计了一个新的光路来更精确的测量脉冲压缩光栅的衍射效率。该光路消除了激光器中808 nm光源的影响,并削弱了光源中TM偏振的影响,减少了探测器疲劳以及光源波动带来的衍射效率测量误差。
     其次,为了得到更好的刻蚀选择比,以降低光刻胶掩模加工难度,选用对光刻胶具有保护作用的CHF3作为工作气体。我们通过对小样品刻蚀前后的扫描电镜照片进行统计,得到了离子束刻蚀中的图形转移情况的定性结论。
The diffractiive optical components are widely used in many applications,including IR Imaging Systems , spectrometer and other modern optical system. Withthe development of the laser technique, the using of large aperture diffractive opticalcomponents which are a important part of the laser are more and more abroad. It ismade by lithography and ion beam etching. The reasearch of how to get betteruniformity of the diffraction efficiency in whole aperture, high diffraction efficiencyand high laser damage threshold is very important problem. How to improve theperformance of the large aperture diffractive optical elements by ion beam etchingprocess is a important research too.
     The main contents of this paper is the research of ion beam etching technology,which focuses on the etching uniformity and pulse compression gratings diffractionefficiency measurements and others. Recently, with the continuous development ofhigh power laser, the aperture of diffractive optical element is also need to beimproved and a more hard requirements of ion beam etching is needed. How toimprove the uniformity and diffraction efficiency of the large aperture opticalcomponents is urgently needed. Until now, a important progress of the manufacturefor large aperture diffraction optical components has been made, and high powerlaser used these optical components has been built. The object of the ion beametching of the large aperture diffractive optical elements is supported by of the 863national project funding, The author’s work is done under the guidance of the teachergroup. The main work is shown following:
     1. Improve the uniformity of ion beam etching
     For large-aperture diffraction optical components, the increased size broughtgreater challenges to the entire area uniformity of the components. The wholemanufacture process has a very high requirement on uniformity too. The ion sourcewe used has no good uniformity, and the sample plate is scanning on the minor axisonly. So, ion beam current uniformity along the major axis is important parametersfor the type of ion source usce in this paper.
     The relationship between ion beam current density uniformity and gas flowdistribution, the ion source parameter and the shape of ion beam channel is studiedin this paper. This paper mainly focuses on the relationship between ion beam current density uniformity and the shape of the beam channel. The modificationinclude the measurement of longitudinal beam density and orientation, themeasurement of transverse beam density distribution curve and integration,modification of longitudinal beam density distribution.
     First, a whole beam channel was made; Second, production of a separategraphite beam channel; third, moving the sample in the long axis to get a much moregood etching uniformity.
     2. Etching of the Multilayer Dielectric Gratings for Pulse Compressor
     The etching of the Multilayer Dielectric Gratings for Pulse Compressor consiststwo parts: the judgments of initial photoresist mask and the modification; the graphictransfers during the ion beam etching.
     First, the photoresist mask is produced by holographic exposure, and someresidual photoresist is existed in the bottom of groove. So we need to judge thesituation of the mask, and to modify the the shape of the mask by plasma ashing. Theexperiment of plasma ashing used in this paper is done on the photoresist descumsystem for by large diffraction grating which is developed by our team. We use theoptical microscope to check the residual photoresist film both before and afterashingt. Atomic Force Microscopy is used to detect the height and duty cycle of thephotoresist mask. Sample with mall size can also uses Schottky Field EmissionScanning Electron Microscope to see the section and received the results of theashing .
     Through a large number of statistical results, a qualitative judgments is received,which called mask a high degree of > 300nm, duty cycle > 0.3, the whole area of thediffraction efficiency > 80% and uniform. This paper used the existed measuringinstruments, designed a new system to get more accurate measurement of thediffraction efficiency. This optical system eliminate the stray light such as the lightwith wavelength 808nm, reduce the TM polarization in the laser , eliminate theeffect of light source fluctuations and also reduce the effect of photodetector fatigueduring a long time irradiation.
     Second, In order to reduce the Difficulty of photoresist mask processing, we useCHF3which has a good Etching selectivity to photoresist and the SiO2film as thework gas. A qualitative judgments for graphic transfer of ion beam etching isreceived through the picture before and after etching which is get from the SchottkyField Emission Scanning Electron Microscope.
引文
1. Wood, Phil. Mag. Sept. (1902); Feb. (1912).
    2. Rayleigh, Phil. Mag. July (1907)).
    3. R.W. Wood, Phys. Rev. 48, 928 (1935).
    4. Wood. W. Physics Optics New York: Macmillan, 1974, 37~38
    5. Smith Robin W ,et al. Electron beam writing of binary and optical writing of blazeddiffractive optical elements[J]SPIE, 1989, 1052:77.
    6. A. Salin, Use of mask making technology in producing high quality, low cost passive opticaldevices, Proc. SPIE 1989,1088: 527–537.
    7. R. Ruthen. Scientific American. June,1991:1.
    8. W. B. Veldkamp, T J. Mchugh. Binary optics[J] Scientific American. 1992:266(5):92-97.
    9. Thomas J S, Donald C O. Gray-scale masks for diffractive optics fabrication[J] .Appl Opt,1995, 34(32) :7507~7517 .
    10.任延同,付永启.衍射光学元件制作技术及未来展望[J]光学精密工程5卷(2期).1997.04.
    11. Wang M R, Su H. Laser direct -write gray-level mask and one-step etching for diffractivemicrolens fabrication[J] .Appl Opt, 1998, 37(10) :7568~7576 .
    12. NEVO Y,NIR D,WACHTEL S. Use of diffractive elements toimprove IR optical systems[J] .Proceedings of SPIE,InfraredTechnology and Applications XXVIII. 2003,4820 :744-750 .
    13. Rajesh Menon,Amil Patel,Moon Euclid E,et al. An alpha-prototype system forzone-plate-array lithography[J] Journal of VacuumSciences and Technology B. 2004,22(16) :3032-3037 .
    14. VOELKEL R,EISNER M,WEIBLE K J. Micro-optics:manufa-cturing and characterization[J] .Proceedings of SPIE,OpticalFabrication,Testing,and Metrology II. 2005, 5965 :1-9 .
    15. Heniy I Smith,Amil Patel. a low-cost complement orcompetitor toscanning-electron-beamlithography [J] Microelectronic Engineering, 2006, 83 :956-961 .
    16.魏茂新,王建琨.电子束曝光显影轮廓的计算机模拟[J].微细加工技术, 1987,(Z1)
    17. B. Loechel, R Demmeler, M. Rothe, and W. Bruenger. Application of optical lithography forhigh aspect ratio microstructures [J]J .Vac. Sci. Technol. B, 1996, 14(6) :4179-4183 .
    18. Gerhard Gross , M Isaacson. Ion projection lithography : Status of the MEDEA project andUnited States/European Cooperation[J] .J Vac Sci Technol, 1998, B16(5) :3150 .
    19. C W Gwyn , R Voss, C Unbach, et al. Extreme ultravoilet lithography [J].J Vac Sci Technol.1998, B16(6) :3142 .
    20. S D Berger, J M Gibson, R M Camarda, et al. Projection electron-beam lithography: A newapproach[J] .J Vac Sci Technol, 1998, B9(6) :2996 .
    21.刘明,陈宝钦,刘小伟,尉林鹏,吴德馨.电子束和接触式曝光机的混合曝光技术[J].微细加工技术, 2002,(01)
    22.刘世杰,杜惊雷,肖啸,唐雄贵,彭钦军,刘建莉,郭永康。光刻中驻波效应的影响分析[J].微纳电子技术, 2004,(02) .
    23. G. Y. Jung, S. Ganapathiappan, X. Li, D. A. A. Ohlberg, D. L. Olynick, Y. Chen,W.M.Tong,R.S. Williams. Fabrication of molecular-electronic circuits by nanoimprint lithographyat low temperatures and pressures[J]. Applied Physics A, 2004,78(8) .
    24. G.Y. Jung,W. Wu,S. Ganapathiappan,D.A.A. Ohlberg,M. Saif Islam,X. Li,D.L. Olynick,H.Lee,Y. Chen,S.Y. Wang,W.M. Tong,R.S. Williams. Issues on nanoimprint lithography with asingle-layer resist structure[J]. Applied Physics A, 2005,81(7) .
    25. Borrelli N F,Morse D L,Bellman R H,et al. Photolytictechnique for producing microlenses inphotosensitive glass[J] .Applied Optics, 1985, 24 (16) :2520-2525 .
    26.江泽流.干法刻蚀在亚微米制版中的应用研究[J].微细加工技术, 1988,(02)
    27.李建中.半导体器件工艺中干法刻蚀技术的进展[J].微细加工技术, 1993,(03)
    28. PEARTON S J, ABERNATHY C R, REN F, et al. Dry and wet etching characteristics of InN,AlN and GaN deposited by electron cyclotron resonance molecular beam epitaxy [J]. J VacSci Technol, 1993, A 11:1772.
    29. BUTTARI D, CHINI A, PALACIOS T, et al . Origin of etch delay time in Cl2 dry etching ofAlGaN/GaN structures[J]. Appl Phys Lett,2003,83(23):4779-7481.
    30.敬小成,姚若河,吴纬国.二氧化硅干法蚀刻参数的优化研究[J].半导体技术,2005,(06)
    31. P.K. Mozumder, and G.G. Barma. Statistical Feedback control of a plasma etch process[J].IEEE trans Semiconductor Manufacturing, 1994, 7 (1) :1-11 .
    32.来五星,廖广兰,史铁林,杨叔子.反应离子刻蚀加工工艺技术的研究[J].半导体技术,2006,(06)
    33.孙静,康琳,刘希,赵少奇,吉争鸣,吴培亨,郝西萍.反应离子刻蚀与离子刻蚀方法的研究与比较[J]低温物理学报, 2006,(03)
    34.吴振宇,汪家友,杨银堂,徐新艳.电子回旋共振等离子体的刻蚀技术[J].真空电子技术, 2004,(02)
    35.辛煜,宁兆元,叶超,许圣华,甘肇强,黄松,陈军,狄小莲. HfO2在CHF3,Ar和H2的感应耦合等离子体中的刻蚀行为[J].真空科学与技术, 2004,(04)
    36. Fu EG, Carter J. , Martin M. et al, Ar-ion-milling-induced structural changes of Cu50Zr45Ti5metallic glass[J] Nuclear Instruments & Methods In Physics Research Section B-BeamInteractions With Materials And Atoms, 2010, 268(6): 545-549.
    37. G. Nagy, M. Levy, R. Scarmozzino et al. Carbon nanotube tipped atomic force microscopyfor measurement of <100 nm etch morphology on semiconductors[J] Appl. Phys. Lett. 73,529 (1998)
    38. Lee Robert E. Microfabrication by ion beam etching[J] .J Vac Sci Technol, 1979,16(2) :164-170 .
    39. seliger R L, Fleming W P. Focused ion beams in microfabrication[J] .J Appl . Phys, 1987,45(3) :1416~1422 .
    40. Hines D S, Williams K E. Pattering of wave guides in LiNbO3 using ion beam etching andreactive ion beam etching [J].J Vac Sci Technol A, 2002, 20(3) :1072-1075 .
    41. Laermer F, Urban A Challenges. Developments and Applications of Silicon Deep ReactiveIon Etching[J] Microelectronic Engineering, 2003, 67-68 :349-355 .
    42. Morgan,B,Waits,CM,Krizmanic,J,Ghodssi,R. Development of a deep silicon phase fresnellens using gray-scale lithography and deep reactive ion etching[J] .J Microelectromech Syst,2004, 13 :113~120 .
    43. Kiyohara, S, Miyamoto I, Kitazawa K, et al. Ion beam assisted chemical etching of singlecrystal diamond chips[J] Nuclear Instruments & Methods In Physics Research SectionB-Beam Interactions With Materials And Atoms, 1997, 121(1-4): 510-513.
    44.曹召良,陆广,王吉增,杨柏,卢振武,李凤有,任智斌,刘玉玲.亚微米尺寸元件的离子束刻蚀制作[J].光子学报, 2003,(06)
    45. Kawabata Y, Taniguchi J, Miyamoto I, XPS studies on damage evaluation of single-crystaldiamond chips processed with ion beam etching and reactive ion beam assisted chemicaletching[J] Diamond And Related Materials, 2004, 13(1) : 93-98.
    46.刘明等,微细加工技术[M]北京:化学工业出版社,2004.08
    47.刘金声,离子束技术及应用[M]北京:国防工业出版社,1995.03
    48. Solak HH, David C, Gobrecht J et al,Sub-50 nm period patterns with EUV interferencelithography[J]Microelectronic Engineering,2003,67-8: 56-62.
    49.张斌,王鸣,聂守平,谈苏庆.菲涅尔波带片的设计与制作[J]激光杂志, 2003, (01) .
    50. L Rayleigh, On the scattering of light by small particles[J]Philosophical Magazine, 1871
    51.刘战存,衍射光栅发展历史的回顾[J]物理实验,1997,19(1):48-49
    52.中井武彦,小川秀树.积层型回折光学素子の研究と光学系への使用方法[J]日本写真学会志,2002 ,65 (3) :1802185.
    53. Andrew Wood, Mane-SI Laure Lee, Simone Cassette, Infrared Hybrid Optics With HighBroadband Efficiency[C]SPIE, 58740G:1212.
    54.白剑,马韬,沈亦兵,等,多层衍射光学元件的特性分析[J]红外与激光工程,2006 ,35 :44247.
    55. Fan Changjiang, Wang Zhaoqi,Wu Huanbao,et al . The design of infrared dual-banddouble-layer harmonic diffractive optical system[J] Acta Optica Sinca ,2007 ,7(27) :126621270.
    56.裴雪丹,崔庆丰,冷家开,董辉.多层衍射光学元件设计原理与衍射效率的研究[J].光子学报, 2009,(05)
    57. M. C. Hutley. Diffraction grating. New York: Academic Press, 1982. 13-55.
    58. Arieli Y, Ozeri S, et al. Design of a diffractive optical element for wide spectralbandwidtch[J] Opt. Lett., 1998,23(11):823-824.
    59. Fu Y Q, Ngoi K A B, Ong N S. Diffractive optical elements with continuous relief fabricatedby focused ion beam for monomode fiber coupling[J] Opt. Exp., 2000,7(3):141-147.
    60. Liu J S, et al. Iteractive algorithm for the design of diffractive phase elements for laser beamshaping[J] Opt. Lett., 2002, 27(16): 1463-1465.
    61.吴建宏,李朝明,陈新荣等.脉冲压缩光栅光学拼接方法研究[J]激光技术, 2005,(04) .
    62.柴立群,杨李茗,许乔.用于ICF驱动器的取样光栅的矢量分析与计算[J]强激光与粒子束,2002,(02) .
    63.刘全,吴建宏.取样光栅镀膜减反技术研究[J]强激光与粒子束, 2007, (01) :75-78.
    64.刘全,吴建宏,李朝明.取样光栅的设计及衍射行为研究[J]光学学报, 2009,29(7):
    1943-1946.
    65.李燕青,郝德阜.衍射光栅制造技术的发展[J].长春理工大学学报,2003,26(1):66-68
    66. Advanced Optical Components & Technology. Multilayer Dielectric-Reflection DiffractionGrating @ONLINE. June 2009. url:https://lasers.llnl.gov/programs/psa/pdfs/gratings/multilayer.pdf//www.test.org/doe/.
    67. T Jitsuno, S Motokoshi, T Okamoto, et al,“Development of 91 cm size gratings and mirrorsfor LEFX laser system”, J. Phys.: Conf. Ser. 112, 032002, 1-4 (2008).
    68. Gordeev S V, Turukhano B G. Investigation of the interference field of two spherical wavesfor holographic recording of precision radial diffraction gratings.[J]Opt. Lasertechnol.,1996.(28):255-261.
    69.左言磊,魏晓峰,朱启华,刘红婕,王逍,黄征,郭仪,应纯同. 1700线/mm镀金光栅的拼接理论和实验研究[J]物理学报, 2007,(09).
    70.李朝明;吴建宏;陈新荣等.脉冲压缩光栅光学拼接方法研究[J]光学学报,2009(07)
    71. Lijiang Zeng,Lifeng L.Method of making mosaic gratings by using a two-color heterodyneinterferometer containing a reference grating[J]Optics Letters,2006.32(2):152-4.
    72. Lijiang Zeng, Z.,Lifeng L.Optical mosaic gratings made by consecutive, phase-interlocked,holographic exposures using diffraction from latent fringes[J]OpticsLetters,2007.32(9):1081-3
    73. Lei Shi, Lijiang Zeng, Lifeng Li.Fabrication of optical mosaic gratings with phase andattitude adjustments employing latent fringes and a red-wavelength dual-beaminterferometer[J]Optics Express,2009.17(14):21530-43
    74.任延同.离子刻蚀技术现状与未来发展[J].光学精密工程, 1998,(02)
    75.赵丽华,周名辉,王书明,李锦标,霍彩虹,周晓黎.离子束刻蚀[J].半导体技术,1999,(01)
    76.春文.离子束刻蚀[J].国外科学仪器, 1985,(05)
    77.雷震寰.离子束刻蚀超高频石英谐根器晶片的初步研究[J].压电晶体技术, 1979,(01):19-22
    78.雷震寰.离子束刻蚀设备的初步建成及石英晶体的试刻蚀[J].压电晶体技术,1979,(04):43-47
    79.雷震寰.离子束刻蚀设备的研制及试验[J].山东半导体技术, 1979,(03):1-9
    80.雷震寰. SD—3离子束刻蚀试验机[J].山东大学学报(理学版), 1981,(01)
    81. LK—2型离子束刻蚀机[J].微细加工技术, 1983,(02)
    82.孟宪光,尤大纬. LSK—500型离子束刻蚀机通过成果鉴定[J].电工电能新技术,1983,(03)
    83. RIBE-5型反应离子束刻蚀机,真空1993/01
    84.徐朝银等,KZ-400离子束刻蚀装置的研制[J]真空科学与技术学报,2006,26(1)
    85.林华.介质膜光栅:光刻胶掩模占宽比和离子束刻蚀槽深的监控[D]清华大学, 2005.
    86. J. Waldorf. Large area ion and plasma beam sources[J]Nuclear Instruments and Methods inPhysics Research Section B, 1996,113, p: 8-15.
    87. Veeco Teams, 6×66 cm RF Ion Source [M] Technical Manual, p:15, 2002.
    88.徐朝银等,KZ-400大型离子束刻蚀装备的研制[J]真空科学与技术学报,2006,26(1).
    89.董晓浩. X射线光束线仪器与条形射频源离子束刻蚀设备研制若干问题研究[D].中国科学技术大学, 2007.
    90.高飞. KZ-400离子束刻蚀装置的优化设计[D].中国科学技术大学, 2005.
    91. D. Siegfried, et al. Radio frequency linear ion beam source with 6cm×66cm beam[J]Review Of Scientific Instruments, 2000,71(2).
    92. L. Stafford, J. Margot. Energy dependence of ion-assisted chemical etch rates in reactiveplasmas[J]Applied Physics Letters 87,071502(2005).
    93.王旭迪等,HfO2薄膜的离子束刻蚀特性研究[J]光学精密工程,Vol.15,No.5,2004
    94. J P Ducommun,et al. Evolution of Well-defined Surface Contour Submitted to IonBombardment : Computer Simulation and Experimental Investigation [J].JMater.Sci,1975,10:52-62
    95. Wei-Xi Chen, et al. ion beam etching of InGaAs, InP, GaAs, Si, and Ge[J] J. Vac. Sci.Technol. B4(3),1986
    96. Banqiu Wu,Thermodynamic study of photomask plasma etching [J] Proceedings of SPIE,2004
    97. Corinna Plehnert, et al. Reactive ion beam etching of lithium tantalate and its application forpyroeledctric infrared detectors[J]Surface and Coatings Technology74-75(1995)932-936
    98. S. Gnanarajan,“Using masks to obtain uniform ion etch rates”,Review of ScientificInstruments. 73(4), 1853-1855(2002).
    99. N. Savvides,“Correction masks for large-area ion beam etching and figuring of optics”, J.Appl. Phys. 99, 094912/7, (2006).
    100. Veeco Teams, 6×66 cm RF Ion Source [M] Technical Manual, p:15, 2002.
    101. Robert E. Lee, Microfabrication by ion-beam etching[J] Journal of Vacuum Science andTechnology, 1979,16(2).
    102. Peter Sigmund. Theory of Sputtering.I.Sputtering Yield of Amorphous and PolycrystallineTargets[J]Physical Review,1969,184(2).
    103. I.V.Katadjiev,et al. Precision modeling of the mask--substrate evolution during ionetching.[J] Journal of Vacuum Science& Technology A, 1988, 6(4).
    104. David Humbird and David B. Graves, Fluorocarbon plasma etching of silicon: Factorscontrolling etch rate[J] Journal Of Applied Physics, 2004, 96 (1).
    105. Wang Xudi, et al. Reactive ion beam etching of HfO2film using Ar/CHF3gas chemistries[J]Proceedings of SPIE. 5636,576(2005).
    106. Banqiu Wu,Thermodynamic study of photomask plasma etching [J] Proceedings of SPIE,
    2004.
    107. John C. Amold, Herbert H. Sawin. Simulation of surface topography evolution duringplasma etching by method of characteristics[J]J. Vac. Sci. Technol. A12(3),1994.
    108. Da Zhang, Shahid Rauf, Terry Sparks. Modeling of Photoresist Erosion in Plasma EtchingProcesses[J] IEEE Transactions On Plasma Science, Vol. 30, No. 1, February 2002.
    109. H. W. Lehmann, et al. Redeposition-A Serious problem in RF sputter etching of structureswith micron meter dimensions [J] J. Vac. Sci. Technol. Vol. 14, No. 1, 1977.
    110. J. C. Moreno-Marin, et al. Second effects in ion milling [J] J. Vac. Sci. Technol.B4(1),1986
    111. J.Murray. ICF Quarterly Report April–June,1997(7-3)[R]. Lawrence Livermore NationalLaboratory (LLNL), Livermore, 1997: UCRL- LR- 105821-97-3
    112. R.E.English, C.W.Laumann, J.L.Miller. Optical system design of the national ignitionfacility[R]. Technical Report, Lawrence Livermore National Laboratory (LLNL), Livermore,1998.6: UCRL-JC-129758
    113.范缜元,贺贤士。惯性约束核聚变能能源与激光驱动器大自然探索[J].1999(01)
    114. K.Mima,罗山.惯性聚变能研究现状[J].激光与光电子学进展, 2004,(01)
    115.陈清海,郭良福,陈德怀,力一峥,赖贵友,周丕璋,李明中,梁樾,李网生,李炜.用于神光Ⅲ原型装置20kJ能源系统的研制[J].光学与光电技术, 2007,(05)
    116. NEAUPORT J., et al. Effect of electric field on laser induced damage threshold ofmultilayer dielectric gratings [J] OPTICS EXPRESS 15 : 12508 , 2007
    117. CANOVA F., et al. High-efficiency, broad band, high-damage threshold high-index gratingsfor femtosecond pulse compression [J] OPTICS EXPRESS 15 : 15324, 2007
    118. KITAGAWA Y., et al.Prepulse-free petawatt laser for a fast ignitor [J] IEEE Journal OfQuantum Electronics, 2004, 40 : 281 DOI 10.1109/JQE.2003.823043
    119. EDWARDS CB., et al. Vulcan Upgrade: a Petawatt Laser Facility for experiments at10(21)Wcm(-2) ECLIM 2000: 26th European Conference On Laser Interaction With Matter4424 : 63 2001
    120. Wang JP, Jin YX, Shao JD, et al. Optimization design of an ultrabroadband, high-efficiency,all-dielectric grating[J] OPTICS LETTERS, 35(2), p:187-189,2010
    121. PERRY MD. Petawatt laser pulses [J]OPTICS LETTERS ,24 : 160 , 1999
    122. PERRY MD. High-Efficiency Multilayer Dielectric Diffraction Gratings Optics Letters , 20 :940, 1995
    123. Pan KM, Cheng YW, Chen LY, et al. Polarization-Dependent Sidewall Light Diffraction ofLEDs Surrounded by Nanorod Arrays[J] IEEE PHOTONICS TECHNOLOGY LETTERS,21(22), p: 1683-1685 ,2009
    124. Madasamy P, Jander DR, Brooks CD, et al. Dual-Grating Spectral Beam Combination ofHigh-Power Fiber Lasers[J] IEEE JOURNAL OF SELECTED TOPICS IN QUANTUMELECTRONICS, 15( 2 ), p: 337-343, 2009
    125. Yashin VE. Research and development in the optics of solid-state lasers with high peakradiation power at the S. I. Vavilov State Optical Institute[J] JOURNAL OF OPTICALTECHNOLOGY, 76(4), p: 211-222, 2009
    126. Hallam J, Chelkowski S, Freise A, et al. Coupling of lateral grating displacement to theoutput ports of a diffractive Fabry-Perot cavity[J] JOURNAL OF OPTICS A-PURE ANDAPPLIED OPTICS, 11(8), 2009
    127.徐向东,洪义麟,霍同林,周洪军,陶晓明,傅绍军.同步辐射Laminar光栅的研制[J]光学技术,2001,27(5).
    128. Ying Liu, et al, Reactive ion beam etching of multilayer diffraction gratings with SiO2 asthe top layer, Proc. of SPIE Vol. 6832 68322O-1~5,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700