亚表面缺陷和杂质诱导光增强的模拟及其检测和控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为高功率激光系统的透射和衍射元件的体材料,熔石英在惯性约束聚变领域获得了广泛应用,并因此获得了广泛的研究。由于玻璃态石英的体材料缺陷和杂质极少,激光诱导损伤(LID)不容易在体内发生。相反,大多数的损伤发生在表面。目前,熔石英的表面损伤仍然是一个正在被广泛研究的突出问题,因为损伤点一旦发生,便会很快扩展,不仅会产生光学散射,而且会对下游元件施加额外的调制,从而极大地限制了光学元件的使用寿命。另一方面,由于昂贵的材料价格,又催生了损伤斑的修复工作,以利于元件的循环使用。
     本论文结合光学显微镜、原子力显微镜(AFM)、探针式轮廓仪等相关检测结果,利用时域有限差分(FDTD)方法系统模拟了亚表面划痕、损伤修复坑和杂质对入射激光的调制作用。在实验上,对溶胶-凝胶薄膜进行了激光预处理,同时,初步开展了膜面颗粒污染的激光清洗工作和有机污染膜厚的精确测定工作。主要结论如下:
     (1)根据研磨、抛光过程中碎裂的几何形貌,建立了熔石英亚表面的连续横向划痕、坑点状断点划痕、赫兹-锥型划痕(HCC)、拖尾的锯齿状划痕(TIC)的三维模型。使用FDTD模拟发现,对光场调制作用最强的是HCC,当其内界面与垂直方向的夹角θ约π/6时,可获得最大调制;当π/8<θ<π/4时,光强增强因子(LIEF)很容易突破100,且随着化学刻蚀的进行,调制有减弱趋势。连续横向划痕调制其次,当其宽深比值R取1~3时,可获最大调制,LIEFmax为18.49。断点划痕与TIC最弱,且相互接近,其LIEFmax分别为12.9和11.2。
     (2)当横向划痕表面镀上HfO_2/SiO_2多层高反膜,并用基频光在前表面辐照时,膜系的不平整处最容易形成光场增强区,且强区可延伸到基底内部。膜系的这类缺陷产生LIEF可超过30。当划痕宽度达5λ时,其调制与节瘤缺陷相当。
     (3)对于亚表面的损伤修复坑,FDTD研究指出镶嵌在亚表面内部的未修复裂纹对场的调制最显著,LIEFmax可达24.3。随着气泡数目的增多,调制有增强趋势。对于含有裂纹或气泡的修复坑,当裂纹或气泡位于近表面层3λ以内且靠近修复面边缘时,对场的调制最明显。使用不同的激光参数,修复坑将会带有不同程度的凸环和凹环。FDTD研究指出,当凹环坑将向凸环坑缓慢转化时,场调制先逐渐减小然后递增,即调制强弱依次为:凸环坑>凹环坑>高斯坑。
     (4)对于溶胶-凝胶减反射膜表面的石英颗粒污染,颗粒位于前表面比位于后表面可产生更大的光场增强,前表面颗粒的LIEFmax达77.5。元件内部的调制峰值呈衰减趋势,颗粒位于前、后表面的衰减长度分别约3λ和2λ。此外,球形颗粒可比椭球颗粒产生更大的调制。
     (5)对含有杂质的溶胶-凝胶SiO_2薄膜采用小光斑激光扫描预处理。预处理后,洁净薄膜的R:1损伤阈值变化不大,含非吸收性杂质的薄膜阈值有所增强,含吸收性杂质的薄膜阈值无显著变化且不足洁净样品的一半。
     (6)用激光冲击波清洗(LSC)来移除溶胶-凝胶薄膜表面的颗粒污染。相比于直接将激光辐照于样品表面的干式激光清洗,LSC具有更高的清洗效率,且清洗后被污染膜面的透射率能较好地恢复到污染前的水平。
     (7)椭圆偏振光谱法测试具有较好的准确性,有机膜厚的不均匀性是椭偏精确测定的最大障碍。AFM测试膜厚的关键在于所制备台阶的质量,台阶尺寸应在AFM测试量程之内。在AFM分析中,某点膜厚可采用单线台阶高度差,区域平均膜厚可采用台阶两侧像素中值作差。
     上述结果表明在常见亚表面缺陷和杂质中,HCC对光场的近场增强作用最为明显,其次是透明石英颗粒杂质。但是相关缺陷对远场的调制作用,以及对热致损伤的影响还有待考证。在实验上,LSC的参数变量(颗粒尺寸、激光能量、瞄准距离等)与清洗效率的关系需要具体量化,其理论研究和工艺研究也需要进一步开展和验证。在污染物的检测方面,亟需展开对污染物质的化学成分分析,然后利用椭偏仪动态监测污染物的沉积过程。
Being as bulk material in transmissive and diffractive optics for high-power lasersystems, research of vitreous silica has been motivated prominently by its ubiquity ininertial confinement fusion. Since the amorphous silica bulk material is manufacturedfree of impurities and defects, laser-induced damage (LID) events rarely occur insidethe bulk. Instead, most damage is found on the surfaces. Up to now, the surface damageof fused silica has been a predominate issue subjecting to extensive studies. Once adamage site initiates, it grows catastrophically under further irradiation. Moreover, itnot only generates the optical scattering, but also imposes added modulation on thedownstream optical devices. Thereby, it dramatically shorten the service lifetime ofoptics. On the other hand, produced from high-quality SiO_2, these components arerelatively expensive and it is of great interest in terms of damage repair and recycling.
     In this thesis, we detailedly investigated the light intensification around defects byusing finite-difference time-domain (FDTD) algorithm, associating with relevantexperimental results of optical microscope, atomic force microscope (AFM), and stylusprofilometer. The aforementioned defects are cracks in subsurface, repaired damagesites, and contaminants on anti-reflective film optics. In experimental department, laserconditioning of sol-gel SiO_2films, laser shockwave cleaning (LSC), and measuration oforganic film thickness have been investigated. Main conclusions are made as follows:
     (1) According to fracture geometry during grinding and polishing steps, subsurfacecracks can be divided into lateral crack, discontinuous crack, Hertzian-conical crack(HCC), trailing indent crack (TIC), et al. FDTD numerical studies show that lightintensity enhancement induced by HCC is the most remarkable of all. There will be ahighest modulation when inclination angle θ is around π/6. When θ ranges from π/8toπ/4, the light intensity enhancement factor (LIEF) can easily break through100, and themodulation follows a decreasing trend in further etching. The intensification induced bylateral crack is the second strong, and the LIEFmaxis18.49when the breadth depth ratioR belongs to the range of1~3. The modulations formed by discontinuous crack and TICare the weakest and close to each other, and the LIEFmaxare12.9and11.2, respectively.
     (2) The modulation of HfO_2/SiO_2high reflector deposited on lateral cracks hasbeen discussed when1053nm laser irradiates on the input surface. Results show thatthe catface of the reflectance coatings generate much larger intensity enhancement thanother sites. Moreover, the intensification extends to the substrate inside. The defectmentioned above can cause LIEF greater than30. When the crack width is larger than5λ, the modulation is equal to nodular defects.
     (3) As for repaired damage sites, it is shown that the unrepaired cracks cangenerate notable modulation, whose LIEFmaxreaches24.3. With increasing the numberof bubble in subsurface, a larger modulation acquired. When crack or bubble distributesin the near-surface area (<3λ) and close to the edge of crater ring, the field modulationis obvious. Damage sites irradiated by CO_2laser at different parameters give birth totwo nonideal craters, with raised rim as well as with concave rim. When the concaverim converts to the raised rim, the modulation undergoes decreasing firstly and thenincreasing. That is to say, the order of laser intensification power is: craters with a raisedrim> craters with a concave rim> ideal Gaussian craters.
     (4) The light intensity enhancement induced by particulate silica contaminants onanti-reflective film has been studied by utilizing the FDTD method. Result showsparticles on the input surface generate much larger intensity enhancement than on theoutput surface. Peak field modulation inside the component manifests an attenuationtrend, and the attenuation length are3λ and2λ for the input-and output-surface particlesrespectively. Comparing with the ellipsoidal structure, the spherical particles cangenerate larger ehancement. For irradiation under3ω laser, silica particles can causeLIEF as high as77.5.
     (5) The influence of sol-gel SiO_2films after raster scanning laser conditioning witha1064nm Nd:YAG pulsed laser has been investigated. The results show no obviouschange of the laser-induced damage threshold (LIDT,“R-on-1” regime) of clean films.Damage characteristics of transparent impurities films have been improved. The LIDTsof the samples contained absorbing impurities are less than half of the clean ones.
     (6) LSC has been used to remove the particulate contamination from SiO_2sol-geloptical film. Compared with dry laser cleaning (DLC), LSC with shockwave initiatedby plasma formation under a focused laser beam pulse has much better efficiency.Furthermore, it has been demonstrated that the transmittance of contaminated SiO_2film can restores to the non-contaminated after LSC.
     (7) The spectroscopic ellipsometry is a precision instrument in measuring filmthickness. The inhomogeneity of the film is the most notable obstacle for precisemeasurement. Thickness measured by AFM is mostly determined by the prepared steps.The step size should be within the range of the AFM. In AFM analysis, the thickness ofa point is corresponding to one-line step height difference. And the average thickness ofan area is corresponding to the median pixel value difference on both step sides.
     Above results indicate that the HCC can generate the most obvious lightintensification of all, followed by silica particles impurities. The theoretical simulationsand experimental investigations progress greatly and achieve the anticipative objectives.However, related defects in the far-field modulation, and thermal induced damage is yetto be verified. In the LSC experiments, dependences of the parameter variables (particlesize, laser energy, gap distance) and cleaning efficiency need to be quantified, andtheoretical research and technology research also need further development andvalidation. In addition, it is necessary to carry out the analysis of the chemicalcomposition in pollutants detection, and then take advantage of the ellipsometerdynamic monitoring the pollutant deposition process.
引文
[1] LLNL. Laser Inertial Fusion Energy (LIFE): Tackling the Global Energy Crisis [EB/OL].https://lasers.llnl.gov/about/missions/energy_for_the_future/life/, August2012
    [2] G. H. Miller, E. I. Moses, C. R. Wuest. The National Ignition Facility [J]. Opt. Eng.,2004,43(12):2841-2853
    [3] LLNL. NIF: The “Crown Joule” of Laser Science [EB/OL]. https://lasers.llnl.gov/about/nif/about.php, August2012
    [4] N. Bloembergen. Role of cracks, pores, and absorbing inclusions on laser induced damagethreshold at surfaces of transparent dielectrics [J]. Appl. Opt.,1973,12(4):661-664
    [5] A. Salleo, S. T. Taylor, M. C. Martin, et al. Laser-driven formation of a high-pressure phase inamorphous silica [J]. Nat. Mater.2003;2:796-800
    [6] M. A. Norton, L. W. Hrubesh, Z. Wu, et al. Growth of laser initiated damage in fused silica at351nm [R]. California: Lawrence Livermore National Laboratory,2001, UCRL-JC-139624
    [7] M. A. Norton, E. E. Donohue, M. D. Feit, et al. Growth of laser damage on the input surface at351nm [C]. Proc. SPIE,2007,6403:64030L
    [8]黄晚晴.大口径熔石英元件表面激光损伤特性研究[D].绵阳:中国工程物理研究院,2009,7
    [9]戴威. CO2激光抑制熔石英损伤增长研究[D].成都:电子科技大学,2011,15-16,42-51
    [10] A. Salleo. High-Power Laser Damage in Fused Silica [D]. Berkeley: University of California,2001,249
    [11]丁元法,张跃,张凡伟,等.石英玻璃热膨胀性能的高温分子动力学研究[J].稀有金属材料与工程,2007,36(s2):331-333
    [12]丁元法,张跃,张凡伟,等.石英玻璃高温分子动力学模拟中的势函数[J].物理化学学报,2008,24(5):788-792
    [13]丁元法,张跃,张大海,等.石英玻璃分子动力学模拟中的原子电荷转移与系综选择[J].物理化学学报,2010,26(6):1651-1656
    [14]丁元法.石英玻璃高温结构与性能的分子动力学研究[D].北京:北京航空航天大学,2010,61
    [15] Del Mar Ventures. Fused Silica (FS)[EB/OL]. http://www.sciner.com/Opticsland/FS.htm,August2012
    [16] T. I. Suratwala, P. E. Miller, J. D. Bude, et al. HF-based etching processes for improving laserdamage resistance of fused silica optical surfaces [J]. J. Am. Ceram. Soc.2011;94:416-428
    [17] J. Yoshiyama, F. Y. Genin, A. Salleo, et al. A study of the effects of polishing, etching, cleaving,and water leaching on the UV laser damage of fused silica [C]. Proc. SPIE,1998,3244:331-440
    [18] C. L. Battersby, L. M. Sheehan, M. R. Kozlowski. Effects of wet processing on laser-induceddamage of fused silica surfaces [C]. Proc. SPIE,1998,3578:446-455
    [19] D. W. Camp, M. R. Kozlowski, L. M. Sheehan, et al. Subsurface damage and polishingcompound affect the355nm laser damage threshold of fused surface [C]. Proc. SPIE,1998,3244:356-364
    [20]蒋勇,袁晓东,祖小涛,等.熔石英亚表面缺陷的研究进展[J].材料导报,2009,23(7):102-106
    [21] P. E. Miller, T. I. Suratwala, J. D. Bude, et al. Laser damage precursors in fused silica [C]. Proc.SPIE,2009,7504:75040X
    [22]蒋勇,袁晓东,向霞,等.熔石英亚表面缺陷原位表征及损伤阈值研究[J].光电子·激光,2010,21(10):1519-1523
    [23]陈猛,向霞,蒋勇,等.酸蚀与紫外激光预处理结合提高熔石英损伤阈值[J].强激光与粒子束,2010,22(6):1383-1387
    [24]陈猛.光学元件激光预处理技术研究[D].成都:电子科技大学,2010,50-51
    [25] Feit M D and Rubenchik A M. Laser intensity modulation by nonabsorbing defects [C]. Proc.SPIE,1997,2966(13):475-480
    [26] Feit M D, Rubenchik A M. Intrinsic laser-induced breakdown of silicate glasses [C]. Proc.SPIE,2002,4679(10):321-330
    [27] F. Y. Génin, A. Salleo, T. V. Pistor, et al. Role of light intensification by cracks in opticalbreakdown on surfaces [J]. J. Opt. Soc. Am. A2001;18:2607-2616
    [28]朱湘琴. FDTD在半空间及周期结构问题中的应用[D].西安:西安电子科技大学,2005,18-30
    [29]王毅,许乔,柴立群,等.熔石英表面划痕附近电磁场分布模拟分析[J].强激光与粒子束,2005,17(5):67-70
    [30]李莉,雷雨,肖邵球,等.光学材料亚表面缺陷处强激光电磁场分布的3维模拟[J].强激光与粒子束,2009,21(6):936-938
    [31]花金荣.熔石英亚表面缺陷诱导激光损伤的FDTD研究[D].成都:电子科技大学,2010,15-45
    [32]王凤蕊,黄进,刘红婕,等.激光诱导HF酸刻蚀后熔石英后表面划痕的损伤行为研究[J].物理学报2010,59(7):5122-5127
    [33] F. Y. Génin, M. D. Feit, M. R. Kozlowski, et al. Rear-surface laser damage on355-nm silicaoptics owing to Fresnel diffraction on front-surface contamination particles [J]. Appl. Opt.,2000,39(21):3654-3663
    [34] S. Palmier, J. L. Rullier, J. Capoulade, et al. Effect of laser irradiation on silica substratecontaminated by aluminum particles [J]. Appl. Opt.,2008,47(8):1164-1170
    [35] S. Mainguy, I. Tovena-Pécault, B. Le Garrec. Propagation of LIL/LMJ beams under theinteraction with contamination particles [C]. Proc. SPIE,2005,5991:59910G
    [36] T. Suratwala, L. Wong, P. Miller, et al. Sub-surface mechanical damage distributions duringgrinding of fused silica [J]. J. Non-Cryst. Solids,2006,352:5601-5617
    [37] L. Wong, T. Suratwala, M. D. Feit, et al. The effect of HF/NH4F etching on the morphology ofsurface fractures on fused silica [J]. J. Non-Cryst. Solids,2009,355:797-810
    [38]田东斌.熔石英亚表面划痕诱导激光损伤的初步研究[D].成都:电子科技大学,2008,25-27
    [39]田东斌,祖小涛,袁晓东,等.熔石英亚表面划痕激光诱导损伤阈值实验研究[J].强激光与粒子束,2007,19(9),1547-1550
    [40] Yong Jiang, Xiaodong Yuan, Xia Xiang, et al. Scratch types and damage thresholds of fusedsilica [C]. Proc. Symposium on Photonics and Optoelectronics (SOPO2010),2010:1-4
    [41] M. D. Feit, T. I. Suratwala, L. L. Wong, et al. Modeling wet chemical etching of surface flawson fused silica [C]. Proc. SPIE,2009,7504:75040L
    [42]郑直. HF酸刻蚀熔石英材料研究[D].成都:电子科技大学,2011,40-44
    [43]王丽梅.飞秒激光烧蚀硅的分子动力学模拟[D].长沙:国防科学技术大学,2008,4-5
    [44]王毅.亚表面缺陷诱导损伤的机理和实验技术研究[D].四川绵阳:中国工程物理研究院,2005,23-24,42-43
    [45]巫殷忠.飞秒激光在固体材料上制作微结构的研究[D].天津:天津大学,2008,10-15
    [46] S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, et al. Impact of substrate surface scratches on thelaser damage resistance of multilayer coatings [C]. Proc. SPIE,2010,7842:78421X
    [47]章春来. SiO2/ZrO2化学膜膜间渗透与激光辐照损伤的研究[D].成都:电子科技大学,2009,54-56
    [48] Xinbin Cheng, Zhengxiang Shen, Hongfei Jiao, et al. Laser damage study of nodules inelectron-beam-evaporated HfO2/SiO2high reflectors [J]. Appl. Opt.,2011,50(9): C357-C363
    [49] Xiaofeng Liu, Dawei Li, Yuan’an Zhao, et al. Further investigation of the characteristics ofnodular defects [J]. Appl. Opt.,2010,49(10):1774-1779
    [50] F. Y. Génin, C. J. Stolz. Morphologies of laser-induced damage in hafnia-silica multilayermirror and polarizer coatings [C]. Proc. SPIE,1996,2870:439-448
    [51] F. Y. Génin, C. J. Stolz, T. Reitter, et al. Effect of electric field distribution on themorphologies of laser-induced damage in hafnia-silica multilayer polarizers [C]. Proc. SPIE,1997,2966:342-352
    [52] F. Y. Génin, C. J. Stolz, M. R. Kozlowski. Growth of laser-induced damage during repetitiveillumination of HfO2/SiO2multilayer mirror and polarizer coatings [C]. Proc. SPIE,1997,2966:273-282
    [53] C. J. Stolz, L. M. Sheehan, S. M. Maricle, et al. Laser conditioning methods of hafnia silicamultilayer mirrors [C]. Proc. SPIE,1998,3264:105-112
    [54] L. Sheehan, M. Kozlowski, B. Tench. Full-aperture laser conditioning of multilayer mirrorsand polarizers [C]. Proc. SPIE,1995,2633:457-463
    [55] S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, et al. Searching for optimal mitigation geometries forlaser-resistant multilayer high-reflector coatings [J]. Appl. Opt.,2011,50(9): C373~C381
    [56] S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, et al. Modeling of light intensification by conical pitswithin multilayer high reflector coatings [C]. Proc. SPIE,2009,7504:75040M
    [57] C. J. Stolz, M. D. Feit, T. V. Pistor. Laser intensification by spherical inclusions embeddedwithin multilayer coatings [J]. Appl. Opt.,2006,45(7):1594-1601
    [58] C. J. Stolz, F. Y. Génin, T. V. Pistor. Electric-field enhancement by nodular defects inmultilayer coatings irradiated at normal and45°incidence [C]. Proc. SPIE,2004,5273:41-49
    [59] C. J. Stolz, S. Hafeman, T. V. Pistor. Light intensification modeling of coating inclusionsirradiated at351and1053nm [C]. Proc. OIC,2007: FB5
    [60]王颖,章岳光,刘旭,等.节瘤缺陷对中红外高反射膜电场增强影响的数值分析[J].物理学报,2007,56(11):6588-6591
    [61] Ying Wang, Yueguang Zhang, Xu Liu, et al. Gaussian profile laser intensification by nodulardefects in mid-infrared high reflectance coatings [J]. Opt. Commu.,2007,278:317-320
    [62] M. J. Matthews, I. L. Bass, G. M. Guss, et al. Downstream intensification effects associatedwith CO2laser mitigation of fused silica [C]. Proc. SPIE,2007,6720:67200A
    [63]周稳观,罗山.“国家点火装置”前景难测[J].激光与光电子进展,2000,37(11):1-4
    [64] X. Xiang, W. G. Zheng, X. D. Yuan, et al. Irradiation effects of CO2laser parameters on surfacemorphology of fused silica [J]. Chin. Phys. B,2011,20(4):044208
    [65]陈猛,袁晓东,吕海兵,等.光学元件激光预处理技术[J].光学技术,2010,36(1):79-83
    [66]祖小涛,袁晓东,向霞,等.一种熔石英光学损伤元件的修复方法[P].中国,发明专利,201010028095.X,2010年7月21日
    [67] K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell equationsin isotropic media [J]. IEEE Trans. Antennas Propagat.,1966, AP-14(3):302-307
    [68]葛德彪,阎玉波.电磁波时域有限差分方法(第二版)[M].西安:西安电子科技大学出版社,2006,1-147
    [69]吕英华.计算电磁学的数值方法[M].北京:清华大学出版社,2006,143-198
    [70]王秉中.计算电磁学[M].北京:科学出版社,2005,19-21,63-64,131-136
    [71]钟尔杰,黄廷祝.数值分析[M].北京:高等教育出版社,2004,1-15
    [72] W. Dai, X. Xiang, Y. Jiang, et al. Surface evolution and laser damage resistance of CO2laserirradiated area of fused silica [J]. Opt. Laser Eng.2011,49:273-280
    [73] H. Bercegol, P. R. Bouchut, L. Lamaignere, et al. The impact of laser damage on the lifetime ofoptical components in fusion lasers [C]. Proc. SPIE,2004,5273:312-324
    [74] P. Bouchut, P. Garrec, C. Pelle. Wet etching for the mitigation of laser damage growth in fusedsilica [C]. Proc. SPIE,2003,4932:103-111
    [75] L. W. Hrubesh, M. A. Norton, W. A. Molander, et al. Chemical etch effects on laser-inducedsurface damage growth in fused silica [C]. Proc. SPIE,2001,4374:553-559
    [76]花金荣,蒋晓东,祖小涛,等.熔石英亚表面横向划痕调制作用的3维模拟[J].强激光与粒子束,2010,22(7):1441-1444
    [77] J. E.Wolfe, S. R. Qiu, C. J. Stolz, et al. Laser damage resistant pits in dielectric coatingscreated by femtosecond laser machining [C]. Proc. SPIE,2009,7504:750405
    [78] P. Geraghty, W. Carr, V. Draggoo, et al. Surface damage growth mitigation on KDP/DKDPoptics using single-crystal diamond micro-machining ball end mill contouring [C]. Proc. SPIE,2006,6403:64030Q
    [79] M. Tricard, P. Dumas, J. Menapace. Continuous phase plate polishing using magnetor-heological finishing [C]. Proc. SPIE,2008,7062:70620V
    [80]张磊.溶胶-凝胶光学薄膜激光损伤机理研究[D].太原:中国科学院山西煤炭化学研究所,2007,139-141
    [81]梁丽萍.高损伤阈值ZrO2基光学薄膜制备的溶胶-凝胶化学基础[D].太原:中国科学院山西煤炭化学研究所,2007,4-8
    [82] D. H. Gill, B. E. Newnam, J. McLeod. Use of non-quarterwave-designs to increase the damageresistance of reflectors at532and1064nanometers [C]. Proc. SPIE,1977,509:260-270
    [83] S. V. Garnov, S. M. Klimentov, A. A. Said, et al. Laser damage of HR, AR-coatings,monolayers and bare surface at1064nm [C]. Proc. SPIE,1993,1848:162-181
    [84]花金荣,祖小涛,李莉,等.熔石英亚表面三维Hertz锥形划痕附近光强分布的数值模拟[J].物理学报,2010,59(4):2519-2524
    [85] F. R. Wang, H. J. Liu, J. Huang, et al. Simulation of light intensification induced by defects ofpolished fused Silica [J]. Chin. Phys. Lett.,2011,28(1):014206
    [86]张涛.折射率与介电常数之间的关系[OL].中国科技论文在线,http://www.paper.edu.cn/index.php/default/releasepaper/content/200509-45,2005-09-06
    [87]章春来,王治国,向霞,等.熔石英后表面坑点型划痕对光场调制的近场模拟[J].物理学报,2012,61(11):114210
    [88] C. L. Zhang, X. D. Yuan, X. Xiang, et al. Rear-surface light intensification by Hertzian-conical cracks in355-nm silica optics [J]. Chin. Phys. B,2012,21(9):094213
    [89]章春来,王治国,刘春明,等.横向划痕对光场调制的近场模拟[J].物理学报,2012,61(8):084207
    [90]章春来,刘春明,向霞,等.形状与位置对断点划痕场分布的影响研究[J].物理学报,2012,61(16):164207
    [91]尹伟.熔石英的真空损伤与损伤增长的研究[D].成都:电子科技大学,2009,31-32
    [92] L. W. Hrubesh, M. A. Norton, W. A. Molander, et al. Methods for mitigating surface damagegrowth in NIF final optics [C]. Proc. SPIE,2002,4679:23-33
    [93] L. Li, X. Xiang, X. T. Zu, et al. Numerical simulation of the modulation to incident laser by therepaired damage site in a fused silica subsurface [J]. Chin. Phys. B,2011,20(7):074209
    [94] L. Li, X. Xiang, X. T. Zu, et al. Incident laser modulation of a repaired damage site with a rimin fused silica rear subsurface [J]. Chin. Phys. B,2012,21(4):044212
    [95] A. D. McLachlan, F. P. Meyer. Temperature dependence of the extinction coefficient of fusedsilica for CO2laser wavelengths [J]. Appl. Opt.,1987,26(9):1728-1731
    [96] R. M. Brusasco, B. M. Penetrante, J. A. Butler, et al. Localized CO2-laser treatment formitigation of351-nm damage growth in fused silica [C]. Proc. SPIE,2002,4679:40-47
    [97] A. During, L. Lamaignère, P. Bouchut, et al. Integrated facility of UV and IR laser process toenhance laser damage resistance of large scale3ω optics[C]. Proc. SPIE,2004,5467:177-186
    [98] G. Guss, I. Bass, V. Draggoo, et al. Mitigation of growth of laser initiated surface damage infused silica using a4.6μm wavelength laser [C]. Proc. SPIE,2006,6403:64030M
    [99] Y. Jiang, X. Xiang, C. M. Liu, et al. Two localized CO2laser treatment methods for mitigationof UV damage growth in fused silica [J]. Chin. Phys. B,2012,21(6):064219
    [100] A. During, P. Bouchut, J. G. Coutard, et al. Mitigation of laser damage on fused silica surfaceswith a variable profile CO2laser beam [C]. Proc. SPIE,2006,6403:640323
    [101] R. M. Brusasco, B. M. Penetrante, J. A. Butler, et al. CO2-laser polishing for reductoin of351-nm surface damage initiation in fused silica [C]. Proc. SPIE,2002,4679:34-39
    [102] L. Gallais, P. Cormont, J. L. Rullier. Investigation of stress induced by CO2laser processingof fused silica optics for laser damage growth mitigation [J]. Opt. Express,2009,17(26):23488-23501
    [103]花金荣,李莉,向霞,等.熔石英亚表面杂质颗粒附近光场调制的三维模拟[J].物理学报,2011,60(4):044206
    [104] Yang S. T., Matthews M. J., Elhadj S., et al. Comparing the use of mid-infrared versusfar-infrared lasers for mitigating damage growth on fused silica [J]. Appl. Opt.,2010,49(14):2606-2616
    [105]章春来,刘春明,向霞,等.裂纹或气泡对熔石英损伤修复坑场调制的近场模拟[J].物理学报,2012,61(12):124214
    [106] Y. Jiang, C. M. Liu, C. S. Luo, et al. Mitigation of laser damage growth in fused silica with anon-evaporative technique [J]. Chin. Phys. B,2012,21(5):054216
    [107] J. Q. Xi, M. F. Schubert, J. K. Kim, et al. Optical thin-film materials with low refractive indexfor broadband elimination of Fresnel reflection [J]. Nat. photonics,2007,1:176-179
    [108] J. Q. Xi, J. K. Kim, E. F. Schubert. Silica nanorod-array films with very low refractive indices[J]. Nano lett.,2005,5(7):1385-1387
    [109] J. Q. Xi, J. K. Kim, E. F. Schubert, et al. Very low-refractive-index optical thin filmsconsisting of an array of SiO2nanorods [J]. Opt. Lett.,2006,31(5):601-603
    [110] J. K. Kim, J. Q. Xi, E. F. Schubert, et al. Omni-directional reflectors for light-emitting diodes
    [C]. Proc. SPIE,6134:61340D
    [111] L. Abelmann, C. Lodder. Oblique evaporation and surface diffusion [J]. Thin Solid Films,1997,305:1-21
    [112] F. T. Chi, L. H. Yan, H. W. Yan, et al. Ultralow-refractive-index optical thin films throughnanoscale etching of ordered mesoporous silica films [J]. Opt. Lett.,2012,37(9):1406-1408
    [113]章春来,郭袁俊,吕海兵,等.单层SiO2和ZrO2薄膜激光辐照损伤的对比[J].压电与声光,2011,33(1):115–118
    [114] F. T. Chi, L. H. Yan, H. B. Lv, et al. Effect of polyvinyl butyral on the microstructure andlaser damage threshold of antireflective silica films [J]. Thin Solid Films,2011,519:2483-2487
    [115] F. T. Chi, L. H. Yan, H. B. Lv, et al. Novel pathways for the preparation of silica antireflectivefilms: Improvement in mechanical property [J]. Mater. Lett.,2011,65:1095-1097
    [116]朱从善,汤家苗.二氧化硅增透膜的制备方法[P].中国,发明专利,97106405.9,1998年11月04日
    [117]孙予罕,张晔,吴东,等.高抗激光损伤阈值疏水增透二氧化硅膜的制备方法[P].中国,发明专利,00102468.X,2001年07月18日
    [118]刘瑞军,唐永兴,朱健强.二氧化硅晶体表面复合增透膜的镀制方法[P].中国,发明专利,200610025928.0,2006年10月11日
    [119]王毕艺,祖小涛,赵松楠,等. ZrO2/SiO2溶胶-凝胶薄膜膜层间的渗透行为[J].强激光与粒子束,2007,19(9):1497-1500
    [120]章春来,尹伟,祖小涛,等.氨处理抑制SiO2/ZrO2薄膜膜间渗透[J].原子能科学技术,2009,43(8):711-715
    [121] B. C. Stuart, M. D. Feit, S. Herman, et al. Nanosecond-to-femtosecond laser-inducedbreakdown in dielectrics [J]. Phys. Rew. B,1996,53(4):1749-1761
    [122] H. Bercegol, L. Lamaignèré, B. Le Garrec, et al. Self-focusing and rear surface damage in afused silica window at1064nm and355nm [C]. Proc. SPIE,2003,4932:276-285
    [123]花金荣,祖小涛,李莉,等.激光诱导光学材料后表面损伤的数值模拟[J].强激光与粒子束,2009,21(6):919-922
    [124]李笑,刘晓凤,赵元安,等.激光预处理对SiO2单层膜中缺陷的影响[J].中国激光,2010,37(6):1626-1630
    [125] H. Bercegol. What is laser conditioning? A review focused on dielectric multilayers [C]. Proc.SPIE,1998,3578:421-426
    [126] M. Poulingue, M. Ignat, J. Dijion. The effects of particle pollution on the mechanicalbehaviour of multilayered systems [J]. Thin Solid Films,1999,348(1-2):215-221
    [127] J. K. Murphy. Effects of surface and thin film anomalies on miniature infrared filters [C].Proc. SPIE,1980,246:64-82
    [128] C. R. Wolfe, M. R. Kozlowski, J. H. Campbell, et al. Permanent laser conditioning of thinfilm optical materials [P]. U.S. Patent,5472748, October5,1995
    [129] C. J. Stolz, L. M. Sheehan, S. M. Maricle, et al. A study of laser conditioning methods ofhafnia silica multilayer mirrors [C]. Proc. SPIE,1998,3578:144-153.
    [130] S. I. Kudryashov, S. D. Allen. Removal versus ablation in KrF dry laser cleaning ofpolystyrene particles from silicon [J]. J. Appl. Phys.,2002,92(9):5159-5162
    [131] D. R. Halfpenny, D. M. Kane. A quantitative analysis of single pulse ultraviolet dry lasercleaning [J]. J. Appl. Phys.,1999,86(12):6641-6646
    [132]叶亚云.光学元件表面的激光清洗技术研究[D].绵阳:中国工程物理研究院,2010,21-42
    [133] C. Cetinkaya, R. Vanderwood, M. Rowell. Nanoparticle removal from substrates withpulsed-laser induced plasma and shock waves [J]. J. Adhesion Sci. Technol.,2002,16(9):1201-1214
    [134] S. H. Lee, J. G. Park, J. M. Lee, et al. Si wafer surface cleaning using laser-induced shockwave: a new dry cleaning methodology [J]. Surf. Coat. Technol.,2003,169-170:178-180
    [135] J. M. Lee, S. H. Cho, T. H. Kim, et al. Nano-particle laser removal from silicon wafers [C].Proc. SPIE,2003,5063:441-444
    [136] H. Lim, D. Jang, D. Kim, et al. Correlation between particle removal and shock-wavedynamics in the laser shock cleaning process [J]. J. Appl. Phys.,2005,97:054903
    [137] C. Cetinkaya, M. D. Murthy Peri. Non-contact nanoparticle removal with laser inducedplasma pulses [J]. Nanotech.,2004,15:435-440
    [138] Y. F. Lu, Y. W. Zheng, W. D. Song. Laser induced removal of spherical particles from siliconwafers [J]. J. Appl. Phys.,2000,87(3):1534-1539
    [139] Y. J. Guo, X. T. Zu, X. D. Jiang, et al. Laser-induced damage mechanism of the sol-gelsingle-layer SiO2acid and base thin films [J]. Nucl. Instr. and Meth. in Phys. Res. B,2008,266:3190-3194
    [140]陈习权,祖小涛,郑万国,等.单层SiO2物理膜与化学膜激光损伤机理的对比研究[J].物理学报,2006,55(3):1201-1206
    [141] C. L. Zhang, X. B. Li, Z. G. Wang, et al. Laser cleaning techniques for removing surfaceparticulate contaminants on Sol-gel SiO2films [J]. Chin. Phys. Lett.,2011,28(7):074205
    [142] K. Yoshida, T. Yabe, H. Yoshida, et al. Mechanism of damage formation in antireflectioncoatings [J]. J. Appl. Phys.,1986,60(5):1545-1550
    [143] Y. Xu, L. Zhang, D. Wu, et al. Abrasion-resistant sol-gel antireflective films with a highlaser-induced damage threshold for inertial confinement fusion [J]. J. Opt. Soc. Am. B,2005,22(9):1899-1910
    [144]岳莉,吴位巍.单层增透膜的折射率和厚度的理论计算[J].云南大学学报(自然科学版),2005,27(5A):175-177
    [145]王家慧,王卫,葛四平,等.单层增透膜的反射光强问题[J].物理通报,2010,9:6-7
    [146]唐晋发,顾培夫,刘旭,等.现代光学薄膜技术[M].杭州:浙江大学出版社,2007,61-94
    [147] P. Miller, I. F. Stowers, J. R. Ertel. Qualification of target chamber vacuum systemscleanliness using sol-gel coatings [R]. California: Lawrence Livermore National Laboratory,2006, UCRL-TR-218169
    [148]廖乃镘.氢化非晶硅薄膜制备及其微结构和光电性能研究[D].成都:电子科技大学,2009,72-91
    [149] J. A. Zasadzinski, R. Viswanathan, L. Madsen, et al. Langmuir-Blodgett films [J]. Science,1994,263(5154):1726-1733
    [150] G. Gonella, O. Cavalleri, I. Emilianov, et al. Spectro-ellipsometry on cadmium stearateLangmuir–Blodgett films [J]. Materials Science and Engineering C.,2002,22:359-366
    [151] H. Zeng, F. Gao, S. H. Ma. Spectroscopic ellipsometer studies on new cyanine dye inLangmuir-Blodgett films [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2008,321:2-6
    [152]曾昊,高峰,马世红.新型花菁染料Langmuir-Blodgett膜的椭偏光谱研究[J].物理学报,2008,57(5):3113-3119
    [153] C. Wang, S. H. Ma, H. Zeng, et al. Spectroscopic ellipsometry on a novel cyanine dyes inLangmuir-Blodgett multilayers [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2006,(284-285):414-418
    [154]高峰.有机染料有序分子组装膜(LB膜)的光谱特性研究[D].上海:复旦大学,2007,25-33
    [155]王毕艺.溶胶-凝胶技术制备ZrO2/SiO2多层高反膜的研究[D].成都:电子科技大学,2008,11-16
    [156]胡洪义.椭偏法测量光学薄膜常数的研究与分析[D].西安电子科技大学,2009,7-42
    [157] H. Fujiwara. Spectroscopic Ellipsometry: Principles and Applications [M]. Chichester: JohnWiley&Sons,2007,1-7,177-184
    [158] S. Peters. SpectraRay II and Application Tutorial (Version: alpha0.24)[R]. Berlin: SENTECHInstruments GmbH, December,2009,35-57
    [159]熊丹.基于AFM与干涉光谱的薄膜厚度测试系统[D].杭州:浙江大学,2007,16-18
    [160] Y. W. Jung, J. S. Byun, Y. H. Cha, et al. Ellipsometric study on the optical property of UVexposed MEH-PPV polymer film [J]. Synthetic Metals.2010,160(7-8):651-654
    [161]张平.激光等离子体冲击波与表面吸附颗粒的作用研究[D].南京:南京理工大学,2007,34-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700