基于啁啾反转和拼接光栅的激光脉冲高效压缩技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能、高功率激光技术的发展使人们能够在实验室内创造出前所未有的极端物态条件,为诸多领域(如天体物理、材料科学、激光核聚变、高能量密度物理等)的研究工作提供了无与伦比的手段;另一方面,众多前沿科学领域的持续发展也不断地对激光的输出能量和峰值功率提出新需求,对其品质的要求也越来越高。当前高能、高功率激光技术面临的几大主要任务有:极高的输出能量及功率、极高的聚焦功率密度、极高的信噪比。
     目前在短脉冲激光技术领域实现高能量、高功率输出的主要手段是采用啁啾脉冲放大(CPA)技术,其基本工作模式是:“正色散展宽-能量放大-负色散压缩”。提供正色散的展宽器往往需要使用大口径透镜或大口径凹面镜,这些元件不仅加工困难、成本高,色差及像差的控制及装调精度要求都很高,在元件面形及调整精度满足不了要求时往往会使输出光束质量变差,影响最终的聚焦功率密度,而且,这些元件的有限通光口径往往还会成为限制系统带通的主要因素。
     另外,在目前的高能短脉冲激光装置中,限制装置输出能力的瓶颈是压缩光栅的损伤阈值,采用拼接的办法扩大光栅口径是提高系统输出能力的重要途径。但是,要保证拼接好的光栅能够等效地替代单块大光栅,拼接精度要求很高,环境振动对焦斑形态的影响往往很严重,拼接误差的实时监测及稳定性控制一直以来就是这一技术领域的难题,目前发展起来的一些监测及控制方法通常比较复杂、不利于实施,发展简捷的拼接误差控制方法既具有战略意义也具有实用价值。
     如何应对前述的挑战、找到一些可行的方法和措施解决其中的难点问题,正是本论文研究的主要任务。
     论文的主要内容及创新点如下:
     (1)提出了一种展宽压缩仅用/共用光栅对的"CRAC"工作模式,并对其进行了原理性的实验验证。实验表明利用该工作模式简化展宽器结构、甚至“免去”单独的展宽器在原理上是可行的。
     (2)通过仿真计算,比较分析了传统工作模式与"CRAC"工作模式下系统输出能力及输出脉冲特性的异同。分析表明,与传统的工作模式相比,在共用光栅对的‘"CRAC"工作模式下,由于展宽压缩过程中的谱透过率能实现高度匹配,在一定程度上可以提高放大能量的利用效率,另外,由于该工作模式下可以增加全系统的截止带通,为信噪比的提高提供了必要条件。
     (3)分析了一般的CPA系统中采用拼接光栅压缩器时拼接误差对压缩后脉冲时空特性的影响,提出了“拼接误差等位相制约关系”,并将其应用于双光栅双程全拼接光栅压缩器的误差实时监控。
     (4)提出了基于"CRAC"工作模式、“啁啾反转结合近场反转降低拼接误差影响、提高聚焦稳定性”的新方案。理论分析表明,针对影响最大、最不易监测和控制的光栅拼接平移错位误差(Piston误差),该方案的实施使这种误差的影响能自动消除/降低,不需要对其进行特殊的控制便能显著提高聚焦稳定性、提高最终可获得的聚焦功率密度。
     论文分析了影响高能超强短脉冲激光输出能力及输出性能的一些因素,提出了针对短脉冲激光系统的一种新的工作模式,取得了一些理论及实验上的探索性成果,更重要的是,论文为当前高峰值功率激光技术中存在的一些难点问题提供了新的解决思路,也为将来高能、超强短脉冲激光技术的发展提供了可供选择的方案和措施。
Successful application of Chirped pulse amplification (CPA) technology in the field of laser had dramatically improved the output capacity (energy and power) of short-pulse laser facilities, which has been kept in a stagnant level for almost20years before. And this realized unprecedented extreme conditions, which provided impact and opportunities to materials science, plasma physics, laser fusion and other research fields.
     Large-scale CPA laser facilities usually work in a mode as "pulse being stretched in a positive dispersion stretcher-energy amplification-compressed in a negative dispersion compressor." The stretchers which provide positive dispersion often use large aperture lens or concave mirrors, which can't be processed easily and be of high cost. In addition, aberration control and alignment accuracy requirements for these components are severe. If the requirements can not be met, it tends to distort the beam quality and decrease the final focused intensity. Therefore, it's meaningful to simplify the structure of the stretcher to avoid or reduce the impact of the large-aperture components, to reduce costs, and to improve the output laser beam quality.
     In addition, the gratings for pulse-compression with limit size and limit damage threshold are bottleneck of the output capacity for a high-energy short-pulse laser facility. Expanding the grating's aperture in a tiling manner to increase the output capacity is almost an inevitable choice. However, to ensure a tiled grating alternative to a single one, tiling errors must be controlled in a high precision, and environmental vibration may seriously distort the distribution of the focal spot. Real-time monitoring of tiling errors and stability control has always been a difficult problem, and some of the developed monitoring and control methods are very complex and expensive. So a simplified, practical and inexpensive error-control-method is important and valuable.
     An operation mode especially adaptable for CPA system with TGCs is proposed in this paper. The laser pulse is designed to sequentially pass through a parallel-grating compressor, which is essentially a stretcher with negative dispersion, parametric process for chirp reversal, energy amplification, and finally the compressor again to complete the CPA process (denoted as CRAC mode). That means we can use chirp reversal to simplify the structure of a stretcher, or even "remove" the independent stretcher. In addition, combination of chirp reversal and near-field inversion may improve the stability of the tiled gratings. Moreover, theoretical analysis showed that this CRAC operation mode will also be benefit to improve the band-pass of the overall system and to increase the utilization efficiency of the all amplified energy.
     The main contents in this paper are:
     (1) Chirped-pulse amplification system based on chirp reversal in optical parametric chirped-pulse amplification is proposed and experimentally demonstrated. The operation of this system can be described as "negative stretching-temporal chirp reversal-energy amplification-negative compression", named as CRAC mode, in which the pulse is stretched and compressed with the same gratings. Stand-alone stretcher adopting lenses or concave mirrors with large aperture can be omitted.
     (2) Calculation and analysis of chirped pulse transmitting in the amplifier chain is made. Simulation showed that with CRAC operation mode, the cut-off band-pass of the whole system can be increased and the spectral transmittance matching between stretcher and compressor can be better. Based on that, the SNR of the pulse and utilization ratio of the energy from amplifier chain can be improved.
     (3) Influence of the tiling errors from mosaic gratings used in a CPA system is analyzed. A group of "match relation equations" for the work laser and the monitor laser is proposed, which has been successfully used in a "two-pass tiled grating compressor". Experiment showed that, with wavelength and incident angle of the diagnostic beam being specially chosen, real-time monitoring and alignment can be achieved without disturbing the work beam. The far-field of the main laser beam and that of the diagnostic beam can vary in the same way with the tiling errors between the sub-aperture gratings. Rotational and translational errors can be controlled and compensated according to the far-field of the diagnostic beam.
     (4) A method,"combination of CRAC mode and near-field reversal", to diminish or remove the influence of tiling error and to improve the focused stability is proposed. Theoretical analysis shows that this method can increase the focused intensity to a great extent even if the piston error is not accurately controlled. So the monitoring scheme with this method can be simplified with improved stability.
     In general, some new ways and methods to solve the troublesome problems in a high-energy-short-pulse laser facility are proposed. A new operation mode--named as "CRAC" mode--is proposed and demonstrated for a CPA laser system. Methods for real-time monitoring and control of tiled-grating-compressor are also proposed and demonstrated.
引文
1 Strickland D. Mourou G A. Compression of amplified chirped optical pulses[J]. Opt. Comm.,1985; 56:219-222
    2 Tajima T, Mour Zettawatt-exawatt lasers and their applications in ultrastrong-field physics[J]. Physical Review Special Topics-Accelerators and Beams,2002; 5(031301):1-9
    3 彭翰生.高功率超短脉冲激光与新奇物理现象[J].强激光与粒子束,2000;12:386~391.
    4 左言磊.采用拼接光栅的啁啾脉冲压缩器的研究[博士学位论文].北京:清华大学工程物理系,2007.
    Mourou, G.. Lab. d'Opt. Appl., Palaiseau, The Exawatt laser:from relativistic to ultra relativistic optics. Lasers and Electro-Optics,2007 and the International Quantum Electronics Conference. CLEOE-IQEC 2007. Munich, Publication Date:17-22 June 2007, ISBN:978-1-4244-0931-0, INSPEC Accession Number:9859094, Digital Object Identifier:10.1109/CLEOE-IQEC.2007.4387077
    6 Nuckolls J H, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear(CTR) application. Nature,1972,239:139-142.
    7 Tabak M, Hammer J, Glinsky M E, et al. Igniton and high gain with ultrapowerful laser.Phys Plasmas, 1994,1:1626-1634.
    8 Asay J, Betti R, Campbell E M, et al. A review of the inertial fusion energy program[R/OL]. [2005-02-05]. http://www.ofes.fusion.doe.gov/more_html/FESAC/Linford.pdf.
    9 Bucksbaum P, Ditmire T, Dimaoro L, et al. The science and applications of ultrafast ultrastrong lasers[R/OL], [2006-02-03]. http://www.ofes.fusion.doe.gov/News/HEDPReport. pdf
    10 Davidson R C, Katsouleas T, Arons J, et al. National task force on high energy density physics[R/OL], [2007-01-05]. http://www.sc.doe.gov/production/henp/np/program/docs/HEDP_Report.pdf.
    11 彭翰生.超强固体激光及其在前沿学科中的应用(2).中国激光,2006,33:865~872.
    12 张杰.强场物理—一门崭新的科学.物理,1997,26:643~649.
    13 Zhang J, Macphee A G, Lin J, et al. A saturated X-ray laser beam at 7 nanometers. Science,1997, 276:1097-1100
    14 Zhang J, MacPhee A G, Nilsen J, et al. Demonstration of saturation in a Ni-like Ag X-ray laser at 14 nm. Phys Rev Lett,1997,78:3856-3859.
    15 W.克希耐尔,《固体激光工程》,科学出版社,1983
    16 曾小明.光参量啁啾脉冲放大的增益稳定性研究[硕士学位论文].绵阳:中国工程物理研究院,研究生部,2005.
    17 "OMEGA EP,System Operations Manual,Volume Ⅶ-System Description", S-AD-M-005, Revision A (January 2006)
    18 Qihua Zhu, Xiaojun Huang, Xiao Wang, Xiaoming Zeng, Xudong Xie, Fang Wang, "Progress on Developing a PW Ultrashort Laser Facility with ns, ps and fs Outputting Pulses", Proceedings of SPIE, Nov.2007, vol.6823,682306-1-6
    19 Xiaomin Zhang, and Dianyuan Fan, Xiaoming Zeng, Xiaofeng Wei, Xiaojun Huang, Xiao Wang, Qihua Zhu, and Liejia Qian, "Acquiring 1053nm femtosecond laser emission by optical parametric amplification based on supercontinuum white-light injection", Optics Letters,2006, vol.31(5):646-648
    20 V.I.Bespalov and V.I.Tanlanov, Soviet Phaysics JETP Letters,3(1966):307
    21 王文义,袁强,张小民,魏晓峰,李明中,卢兴强,国内外巨型高功率激光驱动器总体构型研究综述,惯性约束聚变科技年报(上),中国原子能出版社,2012年版,p.219-232
    22 T. J. Kessler, J. Bunkenburg, H. Huang, A. Kozlov and D. D. Meyerhofer, Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers, Optics Letters,2004,29 (6):635-637
    23 Lijiang Zeng, Lifeng Li, Method of making mosaic gratings by using a two-color heterodyne interferometer containing a reference grating, Optics Letters,2006,31(2):152-154
    24 Tiejun Zhang, Motoki Yonemura, Yoshiaki Kato, Optical design of an array-grating compressor for high-power laser pulses, Fusion Engineering and Design,1999,44:127-131
    25 M. Hornung, R. B'odefeld, M. Siebold, S. Podleska, et al. Alignment of a multigrating mosaic compressor in a PW-class CPA-laser, Proc. of SPIE,2005, Vol.5962,59622K
    26 J. Qiao, A. Kalb, T. Nguyen, J. Bunkenburg, D. Canning, and J. H. Kelly, Demonstration of large-aperture tiled-grating compressors for high-energy, petawattclass, chirped-pulse amplification systems, OPTICS LETTERS,2008,33(15):1684-1686
    27 Hideaki Habara, Guang Xu, Takahisa Jitsuno, et al, Pulse compression and beam focusing with segmented diffraction gratings in a high-power chirped-pulse amplification glass laser system, OPTICS LETTERS,2010,35(11):1783-1785
    28 O.E.Martinez, J.P.Gordon, R.L.Fork,Negative group-velocity dispersion using refraction [J]. Optical Society of America,1984,1:1003-1007
    29 Edmond. B. Treacy, Optical Pulse Compression With Diffraction Gratings, IEEE Journal Quantum Eletronics [J]. QE.1969,5:454-458
    30 Ming Lai,Shui T.Lai etal, Single-grating laser pulses strecher and compressor [J]. Appl. Opt.,1993, 33(30):6985-6987
    31 G.Cheriaux, P.Rousseau, F. Salin, et al, Aberration-free stretcher design for ultrashort-pulse amplification [J]. Opt. Lett.1996,21(6):414-416
    32 王逍,朱启华,林东晖,黄小军,曾小明,周凯南,王方等,高展宽量八通展宽器的设计制作,[J].中国激光,2006,Vol.33(7):895~898
    33 R. L. Fork, O. E. Martinez, J. P. Gordon, "Negative dispersion using pairs of prisms", Opt. Let.1984, 9:180-182
    34 R. Szipocs and A. Kohazi-Kis, "Theory and design of chirped dielectric laser mirrors", Appl. Phys. B, 1997,65:115-135
    35 R. Szipocs, K. Ferencz, Ch. Spielmann, and F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond laser", Opt. Let.1994,19:201-203
    36 A. Stingl, M. Lenzner, Ch. Spielmann, and F. Krausz, "Sub-10-fs mirror dispersion-contrilled Ti:Sapphire laser", Opt. Let.1995,20:602-604
    37 B. Schenkel, J. Biegert, and U. Keller, "Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum", Opt. Let.2003,28:1987-1989
    38 T. R. Schibli, O. Kuzucu, F. X. Kaertner et al. "Toward Single-Cycle Laser Systems", IEEE. J. Select. Topics Quantum Electron,2003,9(4):990-1001
    33 吴祖斌.负色散镜的设计、制作和飞秒激光脉冲位相测量技术的研究[D].硕士学位论文.天津:天津大学,精密仪器与光电子工程学院,2005:24~26
    40 Tournois P. Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems[J]. Opt. Comm.,1997,140:245-247
    Verluise F, Laude V, Huignard J, et al. Arbitrary dispersion control of ultrashort optical pulses with acoustic waves[J]. J. Opt. Soc. Am. B,2000,17:138
    42 Verluise F, Laude V, Cheng Z, et al. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter:pulse compression and shaping[J]. Opt. Lett.,2000, 25:575-577
    43 刘兰琴,彭翰生,魏晓峰,朱启华,等.高功率超短脉冲激光系统中用AOPDF实现增益窄化补偿的实验研究[J].,物理学报,2005,Vol.54(6):2764~2768.
    44刘兰琴.高功率超短脉冲钛宝石激光光束控制研究[D].博士学位论文.,中国工程物理研究院研究 生部,2005
    45 Sterling Backus, Charles G. Durfee III, Margaret M. Murnane, and Henry C. Kapteyn, High power ultrafast lasers, Review of Scientific Instruments,1998, Vol.69, No.3:1027-1223
    46 Solgaard.O, Yu k. Varlable Bandwidth Optical Filter and Tunable Optical CDMA Encoder/Decoder based on MEMS Gires-Tournois Interferometer[A].SPRC annual meeting[C],2003
    47 Weiner A M. Femtosecond pulse shaping using spatial light modulators[J]. Review of scientific instruments,2000,71(5):1929-1960
    48 Witte T, Zeidler D, Proch D, et al. Programmable amplitude-and phase-modulated femtosecond laser pulses in the mid-infrared[J]. Opt.Lett.,2002,27(2):131-133
    49 Efimovl A, Mooresl M D, Meil B, et al. Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning[J]. Appl.Phys.B.,2000, s133-s134
    50 Chen-Bin Huang, Zhi Jiang, Daniel E. Leaird, Jos'e Caraquitena, and Andrew M. Weiner. Spectral line-by-line shaping for optical and microwave arbitrary waveform generations, Laser & Photon. Rev.2, No.4,227-248 (2008)/DOI 10.1002/lpor.200810001
    51 Zeek E, Maginnis K, S.Backus, etal. Pulse compression using deformable mirrors[J]. Opt.Lett.,1999, 24:493-495
    Lan Walmsley, Leon Waxer, and Christophe Dorrer,The role of dispersion in ultrafast optics, Review of scientific instruments,2001, Vol.72(1):1-28
    53 胡东霞.高功率固体激光系统波前校正技术优化研究[硕士学位论文].绵阳:中国工程物理研究院研究生部,2003
    54 H.-M.Heuck, P.Neumayer, T.Kuhl, U.Wittrock, Chromatic aberration in petawatt-class lasers, Applied Physics B,2006, Vol.84:421-428
    55 左言磊,曾小明,黄小军,赵磊,王逍,周凯南,张颖,黄征,大型短脉冲激光装置中脉冲前沿畸变效应的研究[J].,物理学报,2009,Vol.58(12):148~154
    56 Zuo Yan-Lei, Jiang Dong-Bin, Zhu Qi-Hua, Dong Jun, Zeng Xiao-Ming, Huang Xiao-Jun, and Huang Zheng, A new method for measuring the pulse-front distortion of arbitrary shapes in high-power ultrashort lasei.systems, Chinese Physics B,2012, Vol.21 (3):034209-1-4
    57 Diffractive Color Corrector for the OMEGA EP Laser, June 2007 Progress Report on the Laboratory for Laser Energetics, Inertial Confinement Fusion Program Activities, http://www.lle.rochester.edu。
    58 周凯南,朱启华,王晓东,郭仪,孙立,邓武,黄小军,谢旭东,王逍,超短脉冲激光系统中空间滤波器透镜的优化设计[J].中国激光,2008,Vol.35(10):1481-1484
    59 谢旭东,朱启华,周凯南,张颖,黄小军,用衍射器件校正高能拍瓦激光系统色差的设计研究[J]., 光学学报,2010,Vol.30(1):142~146
    60 Christophe Dorrer and Jake Bromage, Impact of high-frequency spectral phase modulation on the temporal profile of short optical pulses,2008, Optics Express, Vol.16(5):3058-3068
    61 刘文兵,朱启华,冯国英,王逍,王方,光栅面不平行对压缩脉冲时空特性的影响[J].强激光与粒子束,2005,Vol.17(10):1474~1478
    62 刘兰琴,彭翰生,魏晓峰,朱启华,等.啁啾脉冲放大系统展宽压缩器各阶色散分析[J].,强激光与粒子束,2008,Vol.20(11):1857~1862
    63 王中阳,徐至展,有限束宽下光栅对压缩的理论研究[J].光学学报,2000,20(2):151~159
    64 R. Danelyus, A. Piskarskas, V. Sirutkaitis, A. Stabinis, and A. yankauskas, JETP Lett.1985,42: 122-124
    64 张树葵,文国庆,周丕璋,满永在,彭翰生,王清月,钛宝石飞秒激光的啁啾脉冲再生放大[J].,强激光与粒子束,1996,8(4):500-506
    65 赵长明,陈安,姚建铨,“脉冲钛宝石激光器动力学特性的理论及实验研究”,激光技术,1996,20(4):222~229
    67 方香云,王惠茹,周寿桓,“脉冲钛宝石激光器时间特性的研究”,中国激光,1994,A21(11):860~864
    68 Chuang Y H, Zheng L, Meyerhofer DD. Propagation of light pulses in a chirped pulse amplification laser IEEE J.Quant Electron.,1993, QE 29(1):270-280
    69 R.E. Bridges, R.W. Boyd, and G. P. Agrawal, Multidimensional coupling owing to optical nonlinearites I. General formulation, J. Opt. Soc. Am,1996, B13(3),553-559
    70 傅喜泉,宽带激光的传输和放大研究[D], 博士学位论文,复旦大学,2005
    71 刘兰琴,粟敬钦,罗斌,王文义,景峰,魏晓峰,基于混合加宽的宽带激光脉冲放大的物理模型,物理学报,2007,56(11):6749~6753
    72 Greg R. Hays, Erhard W. Gaul, Mikael D. Martinez, and Todd Ditmire, Broad-spectrum neodymium-doped laser glasses for high-energy chirped-pulse amplification, APPLIED OPTICS, 2007/Vol.46, (21):4813-4819
    73 谢旭东,王逍,朱启华,曾小明,王凤蕊,黄小军,周凯南,王方,“光谱分辨条纹相机测量高能啁啾脉冲特性”,物理学报,2007,vol.56(11):6463~6467
    74 张小民.宽带高功率激光系统总体与关键技术研究[D],博士学位论文,复旦大学,2006
    75 Demonstration of real-time phase-locked alignment of tiled gratings for chirped pulse amplified lasers. LLE Review Volume 100[R/OL]. [2006-05-02]. http://www.lle.rochester.edu/pub/review/v100/100 Demo 02.pdf.
    76 左言磊,魏晓峰,朱启华,王逍,郭仪,黄征,刘红婕,应纯同,“基于远场的拼接光栅压缩池的设计”,强激光与粒子束,2006,Vol.18(10):1619~1624
    77 胡摇,王逍,朱启华,“三类构型激光脉冲压缩器光栅拼接误差容限比较”,物理学报,2011,Vol.60(12):124205-1-7
    78 The coherent addition of gratings for pulse compression in high-energy laser systems. LLE Review Quarterly Report,2003,96:207-211. [2007-08-16]. http://www.lle.rochester.edu
    M. Hornung, R. Bodefeld, A. Kessler, et al. Spectrally resolved and phase-sensitive far-field measurement for the coherent addition of laser pulses in a tiled grating compressor. Opt. Lett.,2010, 35:2073-2075
    Hornung M, Bodefeld R, Siebold M, et al. Alignment of a tiled-grating compressor in a high-power chirped-pulse amplification laser system. Appl Opt,2007,46:7432-7435
    81Yao Hu, Lijiang Zeng and Lifeng Li. Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths. Optics Communications,2007,269:285-290
    82Yao Hu and Lijiang Zeng. Grating mosaic based on image processing of far-field diffraction intensity patterns in two wavelengths. Applied Optics,2007,46:7018-7025
    83Michael C. Rushford, William A. Molander, James D. Nissen, Igor Jovanovic,Jerald A. Britten, and C. P. J. Barty, Diffraction grating eigenvector for translational and rotational motion,Optics Letters,2006, Vol.31(2):155-157
    84 G. Chanan, C. Ohara, and M. Troy, Phasing the mirror segments of the keck telescopes II:the narrowband phasing algorithm, Appl. Opt.,2000,39,4706-4714
    85 G. Chanan, M. Troy, and F. Dekens, Phasing the mirror segments of the Keck telescopes:the broadband phasing algorithm, Appl. Opt.1998,37:140-155
    86 左言磊,魏晓峰,朱启华,刘红婕,王逍,黄征,郭仪,应纯同, 基于配对误差补偿方法的拼接光栅压缩池理论研究,物理学报,2007,Vol.56(9):5227~5232
    87 Zuo Yan Lei, Wei Xiao Feng, Wang Xiao, et al. Eliminating the longitudinal piston error between tiled gratings by angle tuning. Optics Letters,2007,32:280-282.
    88 Mraghuramaiah, A K Sharma, P A Naik, P D Gupta and R A Ganeev, A second-order autocorrelator for single-shot measurement of femtosecond laser pulse durations", (Sadhana, Printed in India,2001,26(6): 603-611
    89 郝欣,朱启华,王逍,耿远超,周凯南,黄征,王凤蕊,“空间光强分布不均匀对二阶单次自相关脉宽测量的影响”,中国激光,2008,vol.35(10):1553~1557
    90 Xiao Wang, Xin Hao, Qihua Zhu, Ying Zhang, Kainan Zhou, Xiaodong Wang, Xiaofeng Wei, Accurate Measurement and Control of Delay Variation between Two Ultra-short Laser Pulses Based on Cross-correlation", (Tupl-18,978-1-4244-3830-3/09,2009IEEE)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700