谱合成技术与空间低通滤波技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率水平、较好光束质量的激光在激光泵浦、激光切割与加工、惯性约束聚变ICF等领域具有重要应用。谱合成是获取高功率激光光束的有效途径之一,空间滤波是控制激光光束质量重要措施之一。本文针对谱合成技术和空间低通滤波技术展开深入研究,为高功率激光的获取及光束质量控制提供参考。
     由于热效应的影响,单个激光器的输出功率有限。谱合成技术利用衍射元件将多束波长不同的激光光束合成为一束光束,合成光束在近场和远场均能保持高度的重叠性,且不需控制各光束间的相对相位,具有操作简单的优势,是实现高功率激光输出的有效方式之一。论文阐述基于透射体布拉格光栅和反射体布拉格光栅的谱合成技术,并对两种谱合成方式进行对比分析。结果表明:单色光入射时,体布拉格光栅的衍射旁瓣是限制谱合成光谱间距和谱合成效率的主要因素。准单色光入射时,入射光束的光谱宽度与体布拉格光栅波长半宽度的相对大小是限制谱合成效率的主要因素,体布拉格光栅衍射旁瓣是限制谱合成光谱间距的主要因素。在准单色光入射的情况下,当入射光束的光谱宽度为体布拉格光栅波长半宽度的40%,且透射体布拉格光栅对入射光束中心波长的衍射效率为100%时,透射体布拉格光栅对入射光束的衍射效率为90%;当入射光束的光谱宽度为体布拉格光栅波长半宽度的50%,且反射体布拉格光栅对入射光束中心波长的衍射效率为99.99%时,反射体布拉格光栅对入射光束的衍射效率高达99.9%。准单色光入射时,透射体布拉格具有色散作用不利于进行谱合成。
     为解决谱合成中装置体积庞大、光谱间距较大等问题,分别提出解决方案。针对多光束谱合成中采用常规反射体布拉格光栅造成的谱合成装置体积过大的问题,分析采用多重反射体布拉格光栅实现多光束谱合成技术的可行性。为实现pm量级光谱间距的谱合成技术,提出相移反射体布拉格光栅谱合成模型。为抑制反射体布拉格光栅的衍射旁瓣,提出基于切趾反射体布拉格光栅的谱合成技术。并对体布拉格光栅的热稳定性进行分析。计算结果表明:通过合理的参数设计,采用多重反射体布拉格光栅可有效减小谱合成装置的体积。利用相移反射体布拉格光栅可实现谱合成间距为pm量级的多光束谱合成,但对各光束入射角度的控制精度要求较高。切趾技术可有效抑制反射体布拉格光栅的衍射旁瓣,引入Sin切趾后,反射体布拉格光栅一级衍射旁瓣衍射效率最大值由45%降低为0.8%。当反射体布拉格光栅的波长半宽度为0.5nm,入射光束的光谱宽度为0.2nm时,为获得95%的谱合成效率,引入Sin切趾后的谱合成光谱间距由无切趾时的0.94nm减小为0.61nm,有利于在有限谱合成光谱带宽内增加谱合成光束数目,实现高功率谱合成输出。利用反射体布拉格光栅的角度偏振衍射特性和较高的激光损伤阈值,采用反射体布拉格光栅进行双光束合成以实现高转换效率的径向偏振光输出。体布拉格光栅温度的变化会影响体布拉格光栅的性能,在谱合成中应根据需要对体布拉格光栅的温度进行控制。
     空间低通滤波器具有滤除光束中非线性增长较快的空间频率成份、改善光束质量等作用,对激光光束进行空间低通滤波是控制激光光束质量的重要措施之一。在ICF等高功率激光系统中,特别是对于长脉冲高功率激光系统,针孔滤波器的等离子体堵孔效应是高功率长脉冲激光应用首先要解决的问题之一。为实现对高功率激光光束质量的控制,论文对高功率激光空间低通滤波技术展开研究,建立柱面透镜空间低通滤波理论,并实验验证柱面透镜空间低通滤波技术的可行性。分析计算结果表明,柱面透镜焦面处光强最大值随柱面透镜组间距的增加而减小。柱面透镜仅对畸变光束的一个方向聚焦,可有效减小焦面处的光功率密度,避免等离子体堵孔效应。全息柱面透镜具有对大截面光束进行空间低通滤波的潜力。对于调制频率高于柱面透镜狭缝等效截止频率的畸变光束,采用柱面透镜空间低通滤波器与采用针孔直径和狭缝宽度相同的针孔滤波器的滤波效果相同,均可有效抑制引起光束畸变的高频角谱分量;对于调制频率高于柱面透镜狭缝等效截止频率而低于针孔截止频率的畸变光束,针孔滤波器的滤波效果优于狭缝宽度与针孔直径相同的柱面透镜空间低通滤波器。理论分析和实验结果表明,采用焦线相互垂直的两组柱面透镜可实现对畸变光束的二维空间低通滤波,获取较好光束质量的光束。
     为实现对高功率激光光束质量的控制,避免柱面透镜焦面处的等离子体堵孔效应,提出基于反射体布拉格光栅和柱面透镜的空间低通滤波结构。通过结合非聚焦空间低通滤波技术与柱面透镜空间低通滤波技术的优势,利用反射体布拉格光栅对畸变光束进行预处理,降低引起入射光束畸变的高频角谱分量的光强,从而进一步减小引起光束畸变的高频角谱分量在柱面透镜焦面处的光功率密度,避免等离子体堵孔效应,为高功率激光空间低通滤波技术提供参考。
High-power laser with great beam quality has been significantly used in laserpumping, laser cutting and drilling, Inertial Confinement Fusion (ICF) system and so on.Spectral beam combining technology is an effective approach for achieving high powerlaser output, and the beam quality of the high power laser can be controlled or refinedby low-pass spatial filtering technologies. In this dissertation, the spectral beamcombining technology and low-pass spatial filtering technology for achieving highpower laser with great beam quality are studied, which provides a reference andrecommendations for achieving high power laser with great beam quality.
     The ultimate output power of single laser is limited due to thermal effects. It is aneffective approach for achieving high power laser output by spectral beam combiningtechnology, which incoherently combines several lasers with different wavelength into asingle near-diffraction-limited beam with the same aperture by using dispersive opticalelements and does not require phase control of each single laser. The spectral beamcombining approaches based on the transmitting volume Bragg grating (TVBG) andreflecting volume Bragg grating (RVBG) are studied and compared theoretically. Theresults show that in the spectral beam combining system with plane wave incidence, thesidelobes of the TVBG and the RVBG are the main factor which limits the spectralseparation between each laser channel and the spectral combining efficiency. In thespectral beam combining system with polychromatic beam incidence, the competitionbetween the spectral width of incident beam and the spectral selectivity of the TVBGand RVBG limits the spectral combining efficiency, and the sidelobes of the TVBG andRVBG are still the main factor which affects the spectral separation. For the TVBG,when the spectral width of the incident polychromatic beam is equal to40%times ofspectral selectivity of the TVBG, the diffraction efficiency is90%when the diffractionefficiency of the center Bragg wavelength is100%. For the RVBG, when the spectralwidth of incident polychromatic beam is equal to50%times of spectral selectivity ofthe RVBG, the diffraction efficiency is99.9%when the diffraction efficiency of thecenter Bragg wavelength is99.99%. Comparing with RVBG, there is additionalfar-field divergence for TVBG with polychromatic beam incident due to the dispersivecharacteristic of the grating, which limits the applications of TVBG in spectral beamcombining system.
     Several recommendations are proposed for solving the limitations of the spectralbeam combining technology based on the RVBG. In order to reduce the scale of thespectral beam combining system when the number of combined laser beam is huge, thefeasibility of spectral beam combining technology based on the superimposed reflectingvolume Bragg grating is demonstrated theoretically. For achieving the spectral separation near the pm levels, the spectral beam combining model based on thephase-shifted reflecting volume Bragg grating is established. For suppressing thesidelobes of the RVBG in spectral beam combining system, the spectral beamcombining model based on the apodisation reflecting volume Bragg grating is proposed.The thermal effects of the volume Bragg grating are considered. The results show thatthe scale of the spectral beam combining system can be effectively reduced byreasonable design the superimposed reflecting volume Bragg grating. By using thephase-shifted reflecting volume Bragg grating, the spectral separation near pm levelscan be achieved with the cost of incident angular controlling. The sidelobes of thereflecting volume Bragg grating can be effectively suppressed by using apodisationtechnologies. The peak diffraction efficiency of the first side lobe is suppressed from45%to0.8%after using the Sin apodisation approach when the diffraction efficiency ofthe no-apodisation RVBG is99.9%. The spectral separation between the two lasersources is also reduced effectively. For the RVBG with spectral selectivity is0.5nm,and the spectral width of the incident polychromatic beam is0.2nm, in order to achievethe spectral combining efficiency at95%, the spectral separation of the RVBG is0.94nm. However, the spectral separation is reduced to0.61nm after using the apodisationtechnology in RVBG. Using the apodisation technology, it is an effective approach toachieving high power laser output by increasing the number of combined beams in atotal spectral bandwidth. Using the angular diffraction characteristic and high laserinduced damage threshold performance of the reflecting volume Bragg grating, radiallypolarization beam is achieved theoretically with high combining efficiency bycombining two perpendicular linearly polarized beams with RVBG and phasecontrolling technology. The characteristic of the volume Bragg grating can be affectedby its temperature, and the temperature of the volume Bragg grating should becontrolled in spectral beam combining system.
     Low-pass spatial filter technology is an effective approach to refine or control thebeam quality of the laser beam. In high power laser system such as ICF, the pinholespatial filter limits the ultimate output power of the laser system with long pulse widthbecause of plasma closure of the pinholes. In order to control or refine the beam qualityof the high power laser system, the theory of low-pass spatial filtering based on thecylinder lens is established, and compared with the theory of pinhole spatial filter. Theresults show that the peak intensity of the incident beam in the focal plane of thecylinder lens decreases with increasing of the cylinder group distance. The peak powerin the focal plane of the cylinder lens is effectively reduced comparing with that of thelens with the same focal length in pinhole spatial filter. The peak power in the focalplane of the cylinder is smaller than that of the lens with same focal length in pinholespatial filter, and the pinhole closure can be effectively avoided in the same high powerlaser system. The filtering of high power laser with large beam aperture can be achieved by using holographic cylinder lens because it is convenient to achieve large scaleholographic cylinder lens. The results of filtering the deformed beam are completelysame by using the cylinder lens or lens with the same width of gaps and pinhole whenthe modulation frequency of deformed beam is larger than the cutoff frequency of thegap in low-spatial filter based on the cylinder lens, and the performance of pinholespatial filter in better than cylinder lens spatial filter when the modulation of thedeformed beam is larger than the cutoff frequency of the pinhole but smaller than that ofthe gaps. Numerical and experiment results show that the low-pass spatial filter can beachieved and the beam quality can be controlled or refined by using two groups ofcylinder lens with perpendicular focal line.
     In order to control or refine the beam quality of the high power laser which wouldcause plasma pinhole closure of the cylinder lens low-pass spatial filter system, a newfilter model by combining the RVBG and cylinder lens is proposed. In this new filtersystem, by using the RVBG to pre-filter the deformed beam, the intensity of the highangular frequency in the gap which located at the focal plane of the cylinder lens isreduced to avoid plasma pinhole closure. This new configuration provides a referenceand recommendations for low-pass spatial filtering technology in high power lasersystem.
引文
[1] Phipps C, Birkan M, Bohn W, et al. Review: Laser-Ablation Propulsion[J]. J. Propul.Power.,2010,26(4):609~637.
    [2] Ishikawa H, Kajiwara I, Hoshino K, et al. Development of Laser Propulsion andTracking System for Laser-Driven Micro-Airplane[C]. Proc. AIP Conf.,2004,702:342~356.
    [3] Rodin A V, Malyuta D D, Nastoyashchiy A F, et al. Laser Propulsion ApplicationsFor Space Research[C]. Proc. AIP Conf.,2010,1230:319~325.
    [4] Petrarca M, Henin S, Stelmaszczyk K, et al. Multijoule Scaling of Laser-inducedCondensation in Air[J]. Appl. Phys. Lett.,2011,99(141103):1~3.
    [5] Henin S, Petit Y, Rohwetter P, et al. Field Measurements Suggest the Mechanism ofLaser-assisted Water Condensation[J]. Nat. Commun.,2011,1462:1~7.
    [6] Foulk L R. Laser Welding Beam Quality Calibration[R].1997, KCP-613-5954.
    [7] Niziev V G, Nesterov A V. Influence of Beam Polarization on Laser CuttingEfficiency[J]. J.Phys.D: Appl. Phys.,1999,32:1455~1461.
    [8] Dholakia K, i már T. Shaping the Future of Manipulation[J]. Nature Photonics,2011,5:335~342.
    [9] Gattass R R, Mazur E. Femtosecond Laser Micromachining in TransparentMaterials[J]. Nature photonics,2008,2:219~225.
    [10] Gao S, Liu H, Wang D, et al. LD Bar Corner-pumped TEM00CW CompositeNd:YAG Laser[J]. Opt. Express.,2009,17(24):21837~21842.
    [11] Cheng X, Zhang S, Xu J, et al. High-power Diode-end-pumped Tm:LiLuF4SlabLasers[J]. Opt. Express.,2009,17(17):14895~14901.
    [12] Liu Q, Lu F, Gong M, et al.15W Output Power Diode-pumped Solid-state Lasersat515nm[J]. Laser Phys. Lett.,2007,4(1):30~32.
    [13] Auerbach J M, Eimerl D, Wilam D. Perturbation Theory for Electric FieldAmplitude and Phase Ripple Transfer in Fequency Doubling and Tripling[J]. Appl Opt.,1997,36(3):606~612.
    [14][D].:,2007.
    [15] Milonni P W, Auerbach J M, Eimerl D. Frequency Conversion Modeling withSpatiaily and Temporally Varying Beams[C]. Proc. SPIE.,1997,2622:230~241.
    [16] Hunt J T, Renard P A, Simmons W W. Improved Performance of Fusion Lasersusing the Imaging Properties of Multiple Spatial Filters[J]. Appl. Opt.,1977,16(4):779~782.
    [17] Xin Z, Junpu Z, Wei Z, et al. Optimum Design of Spatial Filter Pinhole in HighPower Solid Laser System[C]. SOPO.,2011,1~3.
    [18] Bikmatov R G, Boley C, Burdonslcy I N, et al. Pinhole Closure in Spatial Filters ofLarge Scale ICF Laser Systems[C]. Proc. SPIE.,1999,3492(1):510~523.
    [19] Gao Y, Zhu B, Liu D, et al. Propagation of Flat-topped Multi-Gaussian Beamsthrough a Double-lens System with Apertures[J]. Opt. Express.,2009,17(15):12753~12766.
    [20] Murray J E, Milam D, Boley C D, et al. Spatial Filter Pinhole Development for theNational Ignition Facility[J]. Appl. Opt.,2000,39(9):1405~1430.
    [21] Liu Z, Wu X, Fan D. Studies on the Light Propagation through Spatial Filters inICF Laser Drive[C]. Proc. SPIE.,1999,3609:200~204.
    [22] Schmid M, Graf T, Weber H P. Analytical Model of the Temperature Distributionand the Thermally Induced Birefringence in Laser Rods with Cylindrically SymmetricHeating[J]. J. Opt. Soc. Am. B.,2000,17(8):1398~1404.
    [23] Chénais S, Druon F, Forget S, et al. On Thermal Effects in Solid State Lasers: theCase of Ytterbium-doped Materials[J]. Prog. Quant. Electron.,2006,20:89~126.
    [24] Innocenzi M E, Yura H T, Fincher C L, et al. Thermal Modeling ofContinuous-wave End-pumped Solid-state Lasers[J]. Appl. Phys. Lett.,1990,56(19):1831~1833.
    [25] Fan T Y, Sanchez A. Coherent (phased array) and Wavelength (spectral) BeamCombining Compared[C]. Proc. SPIE.,2005,5709:157~164.
    [26] Fan T Y. Laser Beam Combining for High-Power, High-Radiance Sources[J].IEEE J. Sel. Top. Quant. Electron.,2005,11(3):567~577.
    [27] Sprangle P, Pe ano J, Ting A, et al. Incoherent Combining of High-Power FiberLasers for Long-Range Directed Energy Applications[R].2006. NRL/MR/6790-06-8963.
    [28] Sprangle P, Ting, A, Pe ano, J, et al. Incoherent Combining and AtmosphericPropagation of High-Power Fiber Lasers forDirected-Energy Applications[J]. IEEE J.Quant. Electron.,2009,45(2):138~148.
    [29] Augst S J, Fan T Y, Sanchez A. Coherent Beam Combining of Ytterbium FiberLaser Amplifiers[C]. CLEO/QELS, paper CMK5.
    [30] Augst S J, Fan T Y, Sanchez A. Coherent Beam Combining and Phase NoiseMeasurements of Ytterbium Fiber Amplifiers[J]. Opt. Lett.,2004,29(5):474~476.
    [31] Daniault L, Hanna M, Papadopoulos D N, et al. Passive Coherent BeamCombining of Two Femtosecond Fiber Chirped-pulse Amplifiers[J]. Opt. Lett.,2011,36(20):4023~4025.
    [32] Daniault L, Hanna M, Lombard L, et al. Coherent Beam Combining of TwoFemtosecond Fiber Chirped-pulse Amplifiers[J]. Opt. Lett.,2011,36(5):621~623.
    [33] Augst S J, Ranka J K, Fan T Y, et al. Beam Combining of Ytterbium FiberAmplifiers[J]. J. Opt. Soc. Am. B.,2007,24(8):1707~1715.
    [34] Shay T M, Baker J T, Sanchez A D, et al. Electronic Phasing of High Power FiberAmplifier Arrays[C]. LEOS.,2008,783~784.
    [35] Yanxing M, Xiaolin W, Jinyong L, et al. Coherent Beam Combination of1.08kWFiber Amplifier Array using Single Frequency Dithering Technique[J]. Opt. Lett.,2011,36(6):951~953.
    [36] Moshe I, Jackel S, Meir A, et al.2kW, M2<10Radially Polarized Beams fromAberration-compensated Rod-based Nd:YAG Lasers[J]. Opt. Lett.,2007,32(1):47~49.
    [37] Madasamy P, Loftus T, Thomas A, et al. Comparision of Spectral BeamCombining Approaches for High Power Fiber Laser Sysyems[C]. Proc. SPIE.,2008,6952(695207):1~10.
    [38] Wirth C, Schmidt O, Tsybin I, et al.2kW Incoherent Beam Combining of FourNarrow-linewidth Photonic Crystal Fiber Amplifiers[J]. Opt. Express.,2009,17(3):1178~1183.
    [39] Yanagisawa M, Hashimoto T, Ebisawa F, et al. A2.5Gb/s Hybrid IntegratedMultiwavelength Light Source Composed of Eight DFB-LDs and an MMI Coupler on aSilica PLC platform[C]. ECOC.,1998,1:77~78.
    [40] Fan T Y. Laser Beam Combining: Techniques and Prospects[C]. CLEO.,2004,paper CLF1.
    [41] Lam A W. Wavelength Combining Optical Communications[C]. MILCOM.,1989,258~262.
    [42] Loftus T H, Liu A, Hoffman P R.258W of Spectrally Beam Combined Power withNear-diffraction Limited Beam Quality[C]. Proc. SPIE.,2006,6102(61020S):1~7.
    [43] Salet P, Lucas-Leclin G, Roger G, et al. Spectral Beam Combining of aSingle-Mode980-nm Laser Array for Pumping of Erbium-Doped Fiber Amplifiers[J].IEEE Photo. Technol. Lett.,2005,17(4):738~740.
    [44] Volodin B L, Dolgy S V, Melnik E D, et al. Wavelength Stabilization andSpectrum Narrowing of High-power Multimode Laser Diodes and Arrays by use ofVolume Bragg Gratings[J]. Opt. Lett.,2004,29(16):1891~1893.
    [45] Chann B, Huang R K, Missaggia L J, et al. Near-diffraction-limited Diode LaserArrays by Wavelength Beam Combining[J]. Opt. Lett.,2005,30(16):2104~2106.
    [46] Koechner W. Solid-State Laser Engineering[M].Springer,2006.
    [47] Shori R K. Multi-wavelength Pump Method for Improving Performance ofErbium-based Lasers[P]. US7633990B2.
    [48] Champert P, Couderc V, Leproux P, et al. White-light Supercontinuum Generationin Normally Dispersive Optical Fiber using Original Multi-wavelength PumpingSystem[J]. Opt. Express.,2004,12(19):4366~4371.
    [49] Nosu K, Ishio H, Hashimoto K. Multireflection Optical Multi/demultiplexer usingInterference Filters[J]. Electron. Lett.,1979,15:145~414.
    [50] Rall J A R, Spadin P L, Zimmerman R K, et al. Test Results of a DiffractionGrating Beam Combiner[C]. Proc. SPIE.,1990,1218:264~275.
    [51] Goyal A K, Sanchez A, Turner G W, et al. Wavelength Beam Combining ofMid-IR Semiconductor Lasers[C]. LEOS.,2001,2:532~533.
    [52] Hamilton G, Tidwell S, Meekhof D, et al. High-power Laser Source withSpectrally Beam-combined Diode Laser Bars[C]. Proc. SPIE.,2004,5336:1~10.
    [53] Huang R K, Chann B, Missaggia L J, et al. High-Brightness Wavelength BeamCombined Semiconductor Laser Diode Arrays[J]. IEEE Photo. Technol. Lett.,2007,19(4):209~211.
    [54] Klingebiel S, R ser F, Orta B, et al. Spectral Beam Combining of Yb-doped FiberLasers with High Efficiency[J]. J. Opt. Soc. Am. B.,2007,24:1716~1720.
    [55] Augst S J, Goyal A K, Aggarwal R L, et al. Wavelength Beam Combining ofYtterbium Fiber Lasers[J]. Opt. Lett.,2003,28(5):331~333.
    [56] Klingebiel S, Roser F, Ortac B, et al. Spectral Beam Combining of Yb-doped FiberAmplifiers with Excellent Beam Quality[C]. CLEO/QELS.,2006, paper CMC7.
    [57] Loftus T H, Liu A, Hoffman P R, et al.522W Average Power, SpectrallyBeam-combined FiberLaser with Near-diffraction-limited Beam Quality[J]. Opt. Lett.,2007,32(4):349~351.
    [58] Wirth C, Schmidt O, Tsybin I, et al. High Average Power Spectral BeamCombining of Yb-doped Fiber Amplifiers[C]. ASSP.,2009, paper TuB14.
    [59] Schreiber T, Wirth C, Schmidt O, et al. Incoherent Beam Combining ofContinuous-Wave and Pulsed Yb-Doped Fiber Amplifiers[J]. IEEE J. Sel. Top. Quant.Electron.,2009,15(2):354~360.
    [60] Schmidt O, Andersen T V, Limpert J, et al. High Power Spectral Beam Combiningof Four2ns-pulsed Fiber-amplifiers[C]. ASSP.,2009, paper TuA4.
    [61] Wirth C, Schmidt O, Tsybin I, et al. High Average Power Spectral BeamCombining of Four Fiber Amplifiers to8.2kW[J]. Opt. Lett.,2011,36(16):3118~3120.
    [62] Regelskis K, Hou K, Raciukaitis G, et al. Spatial-Dispersion-Free Spectral BeamCombining of High Power Pulsed Yb-doped Fiber Lasers[C]. CLEO/QELS.,2008,paper CMA4.
    [63] Schmidt O, Klingebiel S, Ortac B, et al. Spectral Combining of Pulsed Fiber Lasers:Scaling Considerations[C]. Proc. SPIE.,2008,6873(687317):1~7.
    [64] Schmidt O, Wirth C, Tsybin I, et al. Average Power of1.1kW from SpectrallyCombined, Fiber-amplified, Nanosecond-pulsed Sources[J]. Opt. Lett.,2009,34(10):1567~1569.
    [65] Schmidt O, Ortac B, Limpert J, et al.200W Average Power,1mJ Pulse Energyfrom Spectrally Combined Pulsed Sub-5ns Fiber Laser Source[C]. Proc. SPIE.,2009,7195(719519):1~8.
    [66] Schmidt O, Wirth C, Nodop D, et al. Spectral Beam Combination of FiberAmplified ns-pulses by Means of Interference Filters[J]. Opt. Express.,2009,17(25):22974~22985.
    [67] Andrusyak O G. Dense Spectral Beam Combining with Volume Bragg Gratings in Photo-Thermo-Refractive Glass[D]. Orlando:University of Central Florida,2004.
    [68]Ciapurin I, Glebov L, Rotari E, et al. Spectral Beam Combining by PTR Bragg Gratings[R].2003, SSDLTR2003, HPFib-4.
    [69]Ciapunn I V, Glebov L B, Glebova L N, et al. Incoherent Combining of100-W Yb-fiber Laser Beams by PTR Bragg Grating[C]. Proc. SPIE.,2003,4974:209-219.
    [70]Efimov O M, Glebov L B, Glebova L N, et al. High-efficiency Bragg Gratings in Photothermorefractive Glass[J]. Appl. Opt.,1999,38(4):619-627.
    [71]Efimov O M, Glebov L B, Smirnov V I, et al. Process for Production of High Efficiency Volume Diffractive Elements in Photo-Thermo-Refractive Glass[P]. US6586141B1.
    [72]Glebov L B. High Brightness Laser Design Based on Volume Bragg Gratings[C]. Proc. SPIE.,2006,6216(621601):1-11.
    [73]Igor Ciapurin, Smirnov V, Venus G, et al. High-power Laser Beam Control by PTR Bragg Gratings[C]. CLEO/QELS,2004, paper CTuP51.
    [74]Ciapurin I V, Glebov L B, Smirnov V I. Spectral Combining of High-power Fiber Laser Beams using Bragg Grating in PTR Glass[C]. Proc. SPIE.,2004,5335:116-124.
    [75]Andrusyak O, Ciapurin I, Rotar V, et al. Dense Spectral Beam combining with Volume Bragg Gratings in PTR Glass [C].2006, SSDLTR2006, BC-3.
    [76]Shu H, Bass M. The Reflective Properties of a Volume Bragg Grating Exposed to a High Power Laser Beam[C]. Proc. SPIE.,2007,6552(655206):1-11.
    [77]Andrusyak O, Ciapurin I, Smirnov V, et al. Spectral Beam Combining of Fiber Lasers with Increased Channel Density[C]. Proc. SPIE.,2007,6453(64531L):1-7.
    [78]Andrusyak O, Ciapurin I, Sevian A, et al. Power Scaling of Laser Systems Using Spectral Beam Combining with Volume Bragg Gratings in PTR Glass[C]. CLEO/QELS.,2007, paper JTuA85.
    [79]Andrusyak O, Ciapurin I, Smirnov V, et al. External and Common-cavity High Spectral Density Beam Combining of High Power Fiber Lasers[C]. Proc. SPIE.,2008,6873(687314):1-8.
    [80]Sevian A, Andrusyak O, Ciapurin I, et al. Efficient Power Scaling of Laser Radiation by Spectral Beam Combining[J]. Opt. Lett.,2008,33(4):384-386.
    [81]Andrusyak O, Smirnov V, Venus G, et al. Beam Combining of Lasers with High Spectral Density using Volume Bragg Gratings[J]. Opt. Commun.,2009,282(13):2560-2563.
    [82]Andrusyak O, Smirnov V, Venus G, et al. Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings[J]. IEEE J. Sel. Top. Quant. Electron.,2009,15(2):344-353.
    [83]蒲世兵,姜宗福,许晓军等.基于体布拉格光栅的光谱合成的数值分析[J].强激光与粒子束,2008,20(5):721-724.
    [84]张艳,张彬,祝颂军等.谱合成光束特性的模拟分析[J].物理学报,2007,56(8):4590-4595.
    [85]Yin S, Zhang B, Dan Y. Propagation Characteristics of the Yb-doped Fiber Lasers after Spectral Beam Combining by the VBGs[J]. Opt. Commun.,2011,28(1):306-311.
    [86]Zhang Y, Zhang B. Analysis of Beam Quality for the Laser Beams after Spectral Beam Combining[J]. Optik.2010,121(13):1236-1242.
    [87]占生宝,赵尚弘,胥杰等.基于透射体布拉格光栅频谱组束的研究[J].光电子·激光,2008,19(3):318-321.
    [88]占生宝,赵尚弘,胥杰等.多模增益光纤受激布里渊散组束中散射效果的研究[J].光电工程,2007,34(10):34-39.
    [89]Shengbao Z, Shanghong Z, Xingchun C, et al. Spectral Beam Combining of Fiber Lasers based on a Transmitting Volume Bragg Grating[J]. Opt. Laser Technol,2010,42:308-312.
    [90]Jeffrey A P., Boyes, J D.; Kumpan, S A., et al. Conceptual Design of the National Ignition Facility[C]. Proc. SPIE.,1995,2633:2-12.
    [91]景峰.钕玻璃激光多程放大技术研究[D].绵阳:中国工程物理研究院,1998.
    [92]刘红婕,景峰,李强等.高功率固体激光装置空间滤波器小孔对输出光束质量的影响[J].云南大学学报(自然科学版),2005,57(5A):184-189.
    [93]张鑫,刘红婕,赵军普等.高功率固体激光系统空间滤波小孔尺寸设计[J].激光与光电子学进展,2010,47(111402):1-5.
    [94]徐世祥,管富义,林尊琪等.高功率激光系统空间滤波器透镜焦距的选择及其测量[J].中国激光,1996,23(12):1077-1080.
    [95]Pingping S, Dean L, Yanli Z, et al. Evolution of Low-frequency Noise Passing through a Spatial Filter in a High Power Laser System[J]. Science China,2011,54(3):411-415.
    [96]Peng T, Zhao J, Xie L, et al. Simulation Analysis of the Restraining Effect of a Spatial Filter on a Hot Image[J]. Appl. Opt.,2007,46(16):3205-3209.
    [97]郑光威.高功率激光非聚焦型空间低通滤波技术研究[D].长沙:国防科学技术大学,2011.
    [98]Simmons W W, Speck D R, Hunt J T. Argus Laser System:Performance Summary[J]. App. Opt.,1978,17(7):999-1005.
    [99]Simmons W W, Hunt J T, Warren W E. Light Propagation Through Large Laser Systems[J]. IEEE J. Quant. Electron.,1981,17(9):1727-1744.
    [100]Celliers P M, Estabrook K G, Wallace R J, et al. Spatial Filter Pinhole for High-Energy Pulsed Lasers [J]. Appl. Opt.,1998,37(12):2371-2378.
    [101]Hunt J T, Glaze J A, Simmons W W, et al. Suppression of Self-focusing through Low-pass Spatial Filtering and Relay Imaging[J]. Appl. Opt.,1978,17(13):2053-2057.
    [102]Potemkin A K, Barmashova T V, Kirsanov A V, et al. Spatial Filters for High-peak-power Multistage Laser Amplifiers[J]. Appl. Opt.,2007,46(20):4423-4430.
    [103]Caird J A, Agrawal V, Bayramian A, et al. Nd:glass Laser Design for ICF Fission Energy(Life)[R].2008, LLNL-CONF-408600.
    [104]刘红婕,刘兰琴,粟敬钦等.基于鬼像和像差分析的高功率激光装置透镜设计[J].光学学报,2008,28(5):976-980.
    [105]Hunt J T. National Ignition Facility Performance Review1999[R].2000, UCRL-ID-138120-99
    [106]Moses E I. Introduction to the National Ignition Facility[R].2004, UCRL-CONF-I54962.
    [107]Moses E I. The National Ignition Facility and the National Ignition Campaign[J]. IEEE Transactions on Plasma Science,2010,38(4):684-689.
    [108]Denis V. A Statistical Method for Determining the Dimensions, Tolerances and Specification of Optics for the Laser Megajoule Facility (LMJ)[C]. Proc. SPIE.,2008,7100(71001E):1-11.
    [109]郑万国.高功率激光宽带倍频技术研究[D].上海:复旦大学,2006.
    [110]张小民.宽带高功率激光系统总体与关键技术研究[D].上海:复旦大学,2006.
    [111]Estabrook K, Celliers P, Murray J, et al. An Improved Pinhole Spatial Filter[C]. Conf. Annual Anomalous Absorption.,1996, UCRL-JC-124475
    [112]Lreland C L M. A Pinhole Plasma Shutter for Optical Isolation in High-power Glass Lasers[J]. J. Phys. D:App. Phys.,1980,13:9-16.
    [113]Bonneau F, Combis P. Theoretical Modeling of Laser Matter Interaction in Spatial Filter Pinholes for High Energy Pulsed Lasers[C]. Proc. SPIE.,1998,3578:250-255.
    [114]Auerbach J M, Holmes N C, Hunt J T, et al. Closure Phenomena in Pinholes Irradiated by Nd Laser Pulses[J]. Appl. Opt.,1979,18(14):2495-2499.
    [115]张鑫,袁强,赵军普等.高功率激光系统空间滤波小孔等离子体特性[J].强激光与粒子束,2010,22(12):2921-2924.
    [116]Ludman J E, Riccobono J R, Reinhand N O, et al. Very Thick Holographic Nonspatial Filtering of Laser Beams [J]. Opt. Eng.,1997,36(6):1700-1705.
    [117]Ciapurin I, Glebov L., Smirnov V. Gradual Holographic Filters for High Power Lasers[C].2003, SSDLTR2003, Poster-11.
    [118]Zheng H, He Y, Tan J, et al. Effect of Polarization on Efficiency of Volume Bragg Grating Filter[J]. Chinese Opt. Lett.,2010,8(8):738-740.
    [119]Maigyte L, Gertus T, Peckus M, et al. Signatures of Light-beam Spatial Filtering in a Three-dimensional Photonic Crystal[J]. Phys. Rev. A.,2010,82(043819):1-45.
    [120]Tang Z, Fan D, Wen S, et al. Low-pass Spatial Filtering using a Two-dimensional Self-collimating Photonic Crystal[J]. Chinese Opt. Lett.,2007,5(Supp.):221-223.
    [121]Aguayo-Rios F, Villa-Villa F, Gaspar-Armenta J A. One-dimensional Photonic Crystals of Inhomogeneous Thin Films:Band Structure of Rugate Filters[J]. Opt. Commun.,2005,244(1-6):259-267.
    [122]Luo Z, Wen S, Tang Z, et al. Low-pass Rugate Spatial Filters for Beam Smoothing[J]. Opt. Commun.,2010,283:2655-2668.
    [123]Bovard B G. Rugate Filter Theory:An Overview[J]. Appl. Opt.,1993,32(28):5427-5442.
    [124]Bovard B G. Rugate Filter Design:The Modified Fourier Transform Technique[J]. Appl. Opt.,1990,29(1):24-30.
    [125]Imenes A G, Mckenzie D R. Flat-topped Broadband Rugate Filters[J]. Appl. Opt.,2006,45(30):7841-7850.
    [126]赵磊,隋展,朱启华等.用于补偿增益窄化效应的Rugate滤波器设计[J].物理学报,2009,58(6):3977-3982.
    [127]Moreno I, Araiza J J, Avendano-Alejo M. Thin-film Spatial Filters [J]. Opt. Lett.,2005,30(8):914-916.
    [128]Macleod H. A. Thin-film Optical Filters[M]. Boca Raton:CRC Press,2010.
    [129]Hariharan P, Roy M. Improved Pinhole Spatial Filter[J]. Opt. Laser Technol.,2007,39:155-156.
    [130]Guangwei Z, Benjian S, Jichun T, et al. Experimental Research on Spatial Filtering of Deformed Laser Beam by Transmitting Volume Bragg Grating[J]. Chinese Opt. Lett.,2011,9(3):030501-1-030501-3.
    [131]Erlandson A C. Spatial Filters for High Average Power Lasers[P]. US20110043899A1.
    [132]Kogelnik H. Coupled Wave Theory for Thick Hologram Gratings [J]. Bell Syst. Tech. J.,1969,48(9):2909-2947.
    [133]Moharam M G, Gay lord T K. Rigorous Coupled-wave Analysis of Grating Diffraction-E-mode Polarization and Losses[J]. J. Opt. Soc. Am.,1983,73(4):451-455.
    [134]Moharam M G, Gaylord T K. Rigorous Coupled-wave Analysis of Planar-grating Diffraction[J]. J. Opt. Soc. Am.,1981,71(7):811-818.
    [135]Gaylord T K, Moharam M G. Analysis and Applications of Optical Diffraction by Gratings[C]. Proc. IEEE.,1985,73(5):894-937.
    [136]Gaylord T K, Moharam M G. Planar Dielectric Grating Diffraction Theories [J]. Appl. Phys. B,1982,28(1):1-14.
    [137]Kamiya N. Rigorous Coupled-wave Analysis for Practical Planar Dielectric gratings:1. Thickness-changed Holograms and Some Characteristics of Diffraction Efficiency [J]. Appl. Opt.,1998,37(25):5843-5853.
    [138]Kamiya N. Rigorous Coupled-wave Analysis for Practical Planar DielectricGratings:2. Diffraction by a Surface-eroded Hologram Layer[J]. Appl. Opt.,1998,37(25):5854~5863.
    [139] Moharam M G, Gaylord T K. Chain-matrix Analysis of Arbitrary-thicknessDielectric Reflection Gratings[J]. J. Opt. Soc. Am.,1982,72(2):187~190.
    [140] Mccartney D J. The Analysis of Volume Reflection Gratings using OpticalThin-film Techniques[J]. Opt. Quant. Electron.,1989,21:93~107.
    [141] Moharam M G, Gaylord T K. Three-dimensional Vector Coupled-wave Analysisof Planar-grating Diffraction[J]. J. Opt. Soc. Am.,1983,73(9):1105~1112.
    [142] Glytsis E N, Gaylord T K. Three-dimensional (vector) Rigorous Coupled-waveAnalysis of Anisotropic Grating Diffraction[J]. J. Opt. Soc. Am. A.,1990,7(8):1399~1420.
    [143] Alferness R. Analysis of Optical Propagation in Thick Holographic Gratings[J].Appl. Phys.,1975,7:29~33.
    [144] Alferness R. Analysis of Propagation at the Second-order Bragg Angle of a ThickHolographic Grating[J]. J. Opt. Soc. Am.,1976,66(4):353~362.
    [145] Neipp C, Márquez A, Hernandez A, et al. Thin and Thick Diffraction Gratings:Thin Matrix Decomposition Method[J]. Optik,2004,115(9):385~392.
    [146] Ciapurin I, Smirnov V, Glebov L. High-density Spectral Beam Combining byThick PTR Bragg Gratings[R].2004, SSDLTR2004, BEAM-4.
    [147] Ciapurin I V, Glebov L B, Smirnov V I. Modeling of Phase Volume DiffractiveGratings, Part1: Transmitting Sinusoidal Uniform Gratings[J]. Opt. Eng.,2006,45(1):015802.
    [148] Siiman L A, Lumeau J, Canioni L, et al. Ultrashort Laser Pulse Diffraction byTransmitting Volume Bragg Gratings in Photo-Thermo-Refractive Glass[J]. Opt. Lett.,2009,34(17):2572~2574.
    [149] Mok F H, Burr G W, Psaltis D. A System Metric for Holographic MemorySystems[J]. Opt Lett.,1996,21:896~899.
    [150] Murciano A, Carretero I, Blaya S, et al. Experimental Study of MultiplexedHolographic Gratings Recorded in a Photopolymerizable Silica Glass[J]. Appl. Phys. B.,2006,83:619~622.
    [151] Yum H N, Hemmerp R, Tripathi R, et al. Demonstration of a Single ExposureTechnique for Determining the M/#of a Holographic Substrate[C]. CLEO,2003, paperCTuE6.
    [152] Yum H N. A6-beam Combiner using Superimposed Volume Index HolographicGratings[D]. Texas: Texas A&M University,2004.
    [153] Mokhov S, Jain A, Spiegelberg C, et al. Multiplexed Reflective Volume BraggGrating for Passive Coherent Beam Combining[C]. LS.,2010, paper LWG2.
    [154] Jain A, Andrusyak O, Venus G, et al. Passive Coherent Locking of Fiber Lasersusing volume Bragg gratings[C]. Proc. SPIE.,2010,7580(75801S):1~9.
    [155]Andrusyak O, Smirnov V, Venus G, et al. Applications of Volume Bragg Gratings for Spectral Control and Beam Combining of High Power Fiber Lasers[C]. Proc. SPIE.,2009,7195(71951Q):1-11.
    [156]Ingersoll G, Leger J R. Theoretical Analysis of Multiplexed Volume Holograms for Spectral Beam Combining[C]. Proc. SPIE.,2009,7195(71951P):1-12.
    [157]Alferness R, Case S K. Coupling in Doubly Exposed, Thick Holographic Gratings[J]. J. Opt. Soc. Am.,1975,65(6):730-739.
    [158]Case S K. Coupled-wave Theory for Multiply Exposed Thick Holographic Gratings[J]. J. Opt. Soc. Am.,1975,65(6):724-729.
    [159]Wang M R, Chen B. Analysis of Bragg Diffractions by Superimposed Transmission Phase Gratings for Optical Computing and Interconnection[C]. Proc. SPIE.,1996,2891:130-138.
    [160]Glytsis E N, Gaylord T K. Rigorous3-D Coupled Wave Diffraction Analysis of Multiple Superposed Gratings in Anisotropic Media[J]. Appl. Opt.,1989,28(12):2401-2421.
    [161]Glebov L B. Fabrication and Applications of Volume Bragg Gratings[C]. BGPP.,2010, paper BMB1.
    [162]Lumeau J, Smirnov V, Glebov L B. Phase-shifted Volume Bragg Gratings in Photo-thermo-refractive Glass[C]. Proc. SPIE.,2008,6890(68900A):1-6.
    [163]Azmi A I, Peng G D. Performance Analysis of Apodized DFB Fiber Laser[C]. IPGC.,2008,1-4.
    [164]Ennser K, Zervas M N, Laming R I. Optimization of Apodized Linearly Chirped Fiber Gratings for Optical Communications[J]. IEEE J. Quant. Electron.,1998,34(5):770-778.
    [165]Pastor D, Capmany J, Ortega D, et al. Design of Apodized Linearly Chirped Fiber Gratings for Dispersion Compensation[J]. Journal of Lightwave Technology,1996,14(11):2581-2588.
    [166]Rebola J L, Cartaxo A V T. Performance Optimization of Gaussian Apodized Fiber Bragg Grating Filters in WDM Systems[J]. Journal of Lightwave Technology,2002,20(8):1537-1544.
    [167]K S, Yoshida H, Okamoto A, et al. Suppression of Crosstalk by Apodization of Photorefractive Transmission Grating for Wavelength filter[C]. PS.,2008,1-2.
    [168]Duc Do D, Kim N, Lee K Y. Gaussian Apodized Volume Grating for a Holographic Demultiplexer[C]. Proc. SPIE.,2006,6027(602728):1-6.
    [169]王琳,延凤平,李一凡等.非对称切趾对啁啾光纤光栅特性优化的分析[J].光学学报,2007,27(4):287-592.
    [170]刘艳,郑凯,谭中伟等.非对称单侧曝光切趾使啁啾光纤光栅获得优化性能[J].物理学报,2006,55(11):5859-5865.
    [171]Fend D, Lv M, Gao X, et al. Study of Chirped Fiber Bragg Gratings Apodized with Different Apodization Length Ratios[C]. Proc. SPIE.,2009,7158(715819):1-7.
    [172]Cross P S, Kogelnik H. Sidelobe Suppression in Corrugated-waveguide Filters[J]. Opt. Lett.,1977,1(1):43-45.
    [173]Zhan Q. Cylindrical Vector Beams:from Mathematical Concepts to Applications[J]. Advances in Optics and Photonics.2009,1:1-57.
    [174]Dorn R, Quabis S, Leuchs G. Sharper Focus for a Radially Polarized Light Beam[J]. Phys. Rev. Lett.,2003,91(23):233901-1~233901-4.
    [175]Quabis S, Dorn R, Eberler M, et al. Focusing Light to a Tighter Spot[J]. Opt. Commun.,2000,179:1-7.
    [176]Youngworth K S, Brown T G. Focusing of High Numerical Aperture Cylindricalvector Beams[J]. Opt. Express.,2000,7(2):77-87.
    [177]Peng F, Yao B, Yan S, et al. Trapping of Low-refractive-index Particles with Azimuthally Polarized Beam[J]. J. Opt. Soc. Am. B.,2009,26(12):2242-2246.
    [178]Zhan Q. Trapping Metallic Rayleigh Particles with Radial Polarization[J]. Opt. Express.,2004,12(15):3377-3382.
    [179]Kozawa Y, Sato S. Optical Trapping of Micrometer-sized Dielectric Particles by Cylindrical Vector Beams [J]. Opt. Express.,2010,18(10):10828-10833.
    [180]Michihata M, Hayashi T, Takaya Y. Measurement of Axial and Transverse Trapping Stiffness of Optical Tweezers in Air using a Radially Polarized Beam[J]. Appl. Opt.,2009,48(32):6143-6151.
    [181]Bokor N, Davidson N. A Three Dimensional Dark Focal Spot Uniformly Surrounded by Light[J]. Opt. Commun.,2007,279(2):229-234.
    [182]Kozawa Y, Sato S. Dark-spot Formation by Vector Beams [J]. Opt. Lett.,2008,33(20):2326-2328.
    [183]Salamin Y I. Acceleration in Vacuum of Bare Nuclei by Tightly Focused Radially Polarized Laser Light[J]. Opt. Lett.,2007,32(23):3462-3464.
    [184]Meier M, Romano V, Feurer T. Material Processing with Pulsed Radially and Azimuthally Polarized Laser Radiation[J]. Appl. Phys. A.,2007,86:329-334.
    [185]Tang W T, Yew E Y S, Sheppard C J R. Polarization Conversion in Confocal Microscopy with Radially Polarized Illumination[J]. Opt. Lett.,2009,34(14):2147-2149.
    [186]胡文华.超分辨近场结构光存储关键问题研究[D].长沙:国防科技大学,2011.
    [187]王明哲.高功率固体激光器热管理新技术研究[D].长沙:国防科学技术大学,2011.
    [188]Yoon Y, Kim W, Park N, et al. Feasibility Study of the Application of Radially Polarized Illumination to Solid Immersion Lens-based Near-field Optics[J]. Opt. Lett.,2009,34(13):1961~1963.
    [189] Moshe I, Jackel S, Meir A. Production of Radially or Azimuthally PolarizedBeams in Solid-state Lasers and the Elimination of Thermally Induced BirefringenceEffects[J]. Opt. Lett.,2003,28(10):807~809.
    [190] Roth M S, Wyss E W, Glur H, et al. Generation of Radially Polarized Beams in aNd:YAG Laser with Self-adaptive Overcompensation of the Thermal Lens[J]. Opt. Lett.,2005,30(3):1665~1667.
    [191] Niziev V G, Chang R S, Nesterov A V. Generation of Inhomogeneously PolarizedLaser Beams by use of a Sagnac Interferometer[J]. Appl. Opt.,2006,45(33):8393~8399.
    [192] Yonezawa K, Kozawa Y, Sato S. Generation of a Radially Polarized Laser Beamby use of the Birefringence of a C-cut Nd:YVO4Crystal[J]. Opt. Lett.,2006,31(14):2151~2153.
    [193] Kozawa Y, Sato S. Generation of a Radially Polarized Laser Beam by use of aConical Brewster Prism[J]. Opt. Lett.,2005,30(22):3063~3065.
    [194] Jr Kimani C. Toussaint, Park S, Jureller J E, et al. Generation of Optical VectorBeams with a Diffractive Optical Element Interferometer[J]. Opt. Lett.,2005,30(21):2846~2848.
    [195] Ahmed M A, Voss A, Vogel M M, et al. Multilayer Polarizing Grating Mirrorused for the Generation of Radial Polarization in Yb:YAG Thin-disk Lasers[J]. Opt.Lett.,2007,32(22):3272~3274.
    [196] Phua P B, Lai W J. Simple Coherent Polarization Manipulation Scheme forGenerating High Power Radially Polarized Beam[J]. Opt. Express.,2007,15(21):14251~14256.
    [197] Lai W J, Lim B C, Phua P B, et al. Generation of Radially Polarized Beam with aSegmented Spiral Varying Retarder[J]. Opt. Express.,2008,16(20):15694~15699.
    [198] Wang F, Xiao M, Sun K, et al. Generation of Radially and Azimuthally PolarizedLight by Optical Transmission Through Concentric Circular Nanoslits in Ag Films[J].Opt. Express.,2010,18(1):63~71.
    [199] Bashkansky M, Park D, Fatemi F K. Azimuthally and Radially Polarized Lightwith a Nematic SLM[J]. Opt. Express.,2010,18(1):212~217.
    [200] Stalder M, Schadt M. Linearly Polarized Light with Axial Symmetry Generatedby Liquid-crystal Polarization Converters[J]. Opt. Lett.,1996,21(23):1948~1950.
    [201] Tidwell S C, Kim G H, Kimura W D. Efficient Radially Polarized Laser BeamGeneration with a Double Interferometer[J]. Appl. Opt.,1993,32(27):5222~5229.
    [202] Passilly N, De Saint Denis R, A t-Ameur K, et al. Simple InterferometricTechnique for Generation of a Radially Polarized Light Beam[J]. J. Opt. Soc. Am. A.,2005,22(5):984~991.
    [203] Tidwell S C, Ford D H, Kimura W D. Generating Radially Polarized Beams Interferometrically[J]. Appl. Opt.,1990,29(15):2234-2239.
    [204]Kogelnik H, Li T. Laser Beams and Resonator[J]. App. Opt.,1966,5:1550~1567.
    [205]Xu K, Yang Y, He Y, et al. Liquid Crystal Retarder Modulation for Generating Real Time Non-uniformly Polarized beams[J]. J. Opt. Soc. Am. A.,2010,27(3):572-577.
    [206]Glebov L B, Limeau J, Mokhov S V, et al. Spectral Transmission of Volume Bragg Gratings:Influence of Uncompensated Fresnel Reflections[C]. In Frontiers in Optics,2006, paper JWD58.
    [207]Siegman A E. New Development in Laser Resonators[C]. Proc. SPIE.,1990,1224:2-14.
    [208]吕百达,康小平.对激光光束质量一些问题的认识[J].红外与激光工程,2007,36(1):47-51.
    [209]冯国英,周寿桓.激光光束质量综合评价的探讨[J].中国激光,2009,36(7):1643-1653.
    [210]隋展.高功率激光系统中的光束全息控制[D].上海:复旦大学,2006.
    [211]刘红婕.高功率激光束中高频位相畸变特性的研究[D].绵阳:中国工程物理研究院,2005.
    [212]Goodman J W. Introduction to Fourier Optics[M]. McGraw-Hill Companies, Inc.,1976.
    [213]张恒,纪影,范志新.正交柱面透镜成像实验[J].大学物理实验,2007,20(4):23-24.
    [214]Takacs P Z. Cylinder Lens Alignment in the LTP[C]. Proc. SPIE.,2005,5921:28-35.
    [215]Pendry J B. Perfect Cylindrical Lenses[J]. Opt. Express.,2003,11(7):755-760.
    [216]马华,曾晓东,安毓英.双半圆柱面透镜准直半导体激光光束[J].中国激光,2006,33(7):937-940.
    [217]崔兆云,曾晓东,安毓英.LD光场柱面透镜准直技术研究[J].激光杂志,2003,24(4):14-15.
    [218]王琛,黄关龙,王伟等.神光Ⅱ特殊光束强度分布条件下的均匀线聚焦系统[J].中国激光,2002,29(1):1-3.
    [219]Bass M. Handbook of Optics Volume V Atmospheric optics, Modulators, Fiber Optics, X-Ray and Neutron Optics[M]. McGraw-Hill Companies, Inc.,2010.
    [220]Bass M. Handbook of Optics Volume I Geometrical and Physical Optics, Polarized Light, Components and Instruments[M]. McGraw-Hill Companies, Inc.,2010.
    [221]Born M, Wolf E. Principles of Optics[M]. Cambridge University Press,1999.
    [222]左言磊,魏晓峰,朱启华等.超短脉冲经过小数值口径透镜的聚焦特性[J]. 强激光与粒子束.2005,17(11):1639-1643.
    [223]季小玲,吕百达.环状球差透镜对超高斯光束光束质量的影响[J].强激光与粒子束.2001,13(1):5-8.
    [224]季小玲,吕百达.球差透镜对高斯光束质量的影响[J].中国激光.2001,28(4).
    [225]王红霞,盛兆玄,赵玮等.全息透镜傅里叶变换特性分析[J].激光技术.2005,29(4):401-403.
    [226]周海宪,程云芳.全息光学—设计、制造和应用[M].北京:化学工业出版社,2006:377.
    [227]Guilin S. Holographic Cylinder Lens Recorded by Spherical Wavefronts[C]. Proc. SPIE.,1996,2885:233-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700