碳化硅纳米管气体吸附特性第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米管具有庞大的表面积和中空结构,提供了大量气体通道,管体内外均可吸附气体,表面活性高,在化学气体传感器方面具有独特的优势。与传统的传感器相比具有更高的灵敏度、更快的响应时间,并能有效地减小传感器的尺寸,同时以高灵敏度检测出周围环境中少量浓度(ppb级)的气体分子。碳化硅纳米管(SiCNT)为半导体,与直径和手性基本没有关系,禁带宽度大,结构稳定性好,抗氧化性强,使其在高温、强辐射等恶劣环境下应用具有潜在的优势,是气体传感器的理想材料之一。通过掺杂可以改变碳化硅纳米管的电学特性,拓宽碳化硅纳米管检测的气体范围,对碳化硅纳米管气体吸附特性的研究将为传感器的制备提供必要的理论基础。论文对碳基、氮基气体吸附后对碳化硅纳米管电学特性的影响进行了深入研究,通过分析气体吸附前后碳化硅纳米管输运特性的变化,系统地分析了碳化硅纳米管气体传感器的工作机理。主要研究内容如下:
     1.碳化硅纳米管碳基气体吸附特性研究
     基于第一性原理的密度泛函理论模拟分析了本征及掺硼(8,0)碳化硅纳米管一氧化碳(CO)、二氧化碳(CO2)气体的吸附特性,分析气体吸附对碳化硅纳米管电学特性的影响。CO2及CO气体与本征及掺硼碳化硅纳米管均可行成稳定的化学吸附,气体吸附后,本征及掺硼碳化硅纳米管禁带宽度减小,增强了碳化硅纳米管的导电能力,使检测电信号成为了可能。这说明,本征及掺硼碳化硅纳米管对CO2及CO气体是敏感的,具有较强的检测能力,是制备CO2及CO气体传感器的理想材料。
     2.碳化硅纳米管氮基气体吸附特性研究
     基于第一性原理的密度泛函理论模拟分析了本征(8,0)碳化硅纳米管二氧化氮(NO2)、一氧化二氮(N2O)、一氧化氮(NO)、氨气(NH3)等气体的吸附特性以及掺硼(8,0)碳化硅纳米管NO2、N2O气体的吸附特性,分析气体吸附对碳化硅纳米管电学特性的影响。NO2及N2O气体吸附后,本征及掺硼碳化硅纳米管禁带宽度减小,增强了碳化硅纳米管的导电能力,说明本征及掺硼碳化硅纳米管对NO2及N2O气体是敏感的,具有检测能力,是制备NO2及N2O气体传感器的理想材料。NO气体吸附虽然属于物理吸附范畴,但其吸附后对碳化硅纳米管的电学性能影响较大,碳化硅纳米管具备检测NO气体的能力;NH3气体吸附后对碳化硅纳米管的电学性能影响较小。
     3.掺硼碳化硅纳米管输运特性研究
     采用结合密度泛函理论的非平衡格林函数方法系统的研究了耦合于金电极的掺硼(8,0)碳化硅纳米管的输运特性。掺硼(8,0)碳化硅纳米管平衡态透射谱中存在一个的透射谷,说明掺硼碳化硅纳米管为半导体,这和第一性原理的计算结果是一致的。非平衡态输运特性中,在正偏压范围内,I-V特性曲线可以分为三个部分:从0V到0.8V和从1.0V到2V偏置电压范围内,电流随着偏压的增加而增加;而从0.8V到1.0V偏置电压区间,我们发现了微分负阻效应,微分负阻效应是由不同偏压下,分子轨道的局域性增强,从而使电极间电子的隧穿变得困难引起的。
     4.二氧化氮气体吸附碳化硅纳米管体系输运特性研究
     采用结合密度泛函理论的非平衡的格林函数方法系统的研究了耦合于金电极的二氧化氮气体吸附后碳化硅纳米管的输运特性,这是碳化硅纳米管气体传感器的工作基础。
     对比气体吸附前后的伏安特性发现,当偏置电压为1.5V时,由于气体吸附后产生新的透射峰,增大了气体吸附后的电流,吸附后的电流约为吸附前的1.5倍,这个差别已经足够进行电信号检测,这也将使碳化硅纳米管气体传感器的应用成为可能,这也是传感器工作的理论基础。
     本文对碳化硅纳米管碳基、氮基气体的吸附特性进行了深入研究,建立了气体吸附前后碳化硅纳米管模型,模拟分析了气体吸附对本征及掺硼碳化硅纳米管电学特性的影响,得到了碳化硅纳米管对检测气体的敏感性;通过分析气体吸附前后碳化硅纳米管输运特性的变化,系统的分析了碳化硅纳米管气体传感器的工作机理,为碳化硅纳米管气体传感器的制备和检测应用提供了必要的理论基础。
Nanotubes have attracted considerable interest because of their unique propertiesand many potential applications. One such application is their use as a chemical sensordue to their large surface area and hollow geometry. Gases can flow through the tubesbecause they are hollow. Therefore, gas can be adsorbed on the outer and inner surface.Compared with traditional gas sensors, nanotube gas sensors have some advantages,such as higher sensitivity, faster response time, and can effectively reduce the size of thesensor. Nanotube gas sensors can be used to detect small concentrations of gasmolecules with high responsiveness (ppb level). Silicon carbide nanotubes (SiCNTs) aresemiconductors independent of their helicity and radius, and have exceptional properties,such as thermal stability, chemical inertness, which make them potential candidates forgas monitoring that operate in harsh environments. By doping impurity atoms intoSiCNTs, the electrical and chemical properties will be modified, and improve theadsorption capability of SiCNTs. Studies on adsorption properties of gases on SiCNTsare not only of high theoretical value, but also of great practical significance. Theadsorption properties of the carbon-based and nitrogen-based on intrinsic andboron-doped (B-doped) SiCNTs are studied with density functional theory (DFT). Theelectronic transport properties of B-doped and NO2adsorbed SiCNTs are studied withthe method combined DFT with nonequilibrium Green’s function (NEGF) and the mainconclusions are as follows:
     1. Adsorption properties of carbon-based gases on SiCNTs
     Structure and electronic properties of intrinsic and B-doped SiCNTs with andwithout adsorption of carbon dioxide (CO2) and carbon monoxide (CO) are calculatedwith CASTEP package based density functional theory. Stable adsorptions between thegas molecules and SiCNTs are formed. After the adsorption of CO2and CO molecules,band gap of intrinsic and B-doped SiCNTs are significantly reduced. The conductivitiesof intrinsic and B-doped SiCNTs are enhanced obviously, so the detection of electricsignal is possible. Intrinsic and B-doped SiCNT are expected a potential candidate todetect the presence of CO2and CO, and our results are meaningful to the developmentof the SiCNT gas sensors.
     2. Adsorption properties of nitrogen-based gases on SiCNTs
     Structure and electronic properties of intrinsic SiCNTs with adsorption of nitrogendioxide (NO2), nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) arecalculated based on density functional theory. And structure and electronic properties ofB-doped SiCNTs with adsorption of NO2and N2O are also studied. After the adsorptionof NO2and N2O molecules, band gap of intrinsic and B-doped SiCNTs are significantlyreduced. The conductivities of intrinsic and B-doped SiCNTs are enhanced obviously,so the detection of electric signal is possible. Although the adsorption of NO gas isphysical adsorption, but NO molecule has evidently effect on electrical properties ofSiCNT, so SiCNT have the ability to detect NO gas. The adsorption of NH3moleculehas no significantly influence on SiCNT.
     3. Transport properties of B-doped (8,0) single-walled SiCNTs
     The transport properties of B-doped (8,0) single-walled SiCNTs are investigatedwith the method combined DFT with NEGF. The transmission coefficients near theFermi energy are nearly zero. This means that the B-doped SiCNT is a semiconductorand consistent with the results of calculations based on the first principle calculation.The current under positive bias can be divided into three parts. Along with the biasrange from0.0V to0.8V and from1.0V to2.0V, the current rises with the increase ofthe bias. And as the bias ranges from0.8V to1.0V, negative differential resistance(NDR) effect is observed. It is difficulty for electrons tunneling from one electrode toanother with the increase of localization of molecular orbital, which is the essentialreason for NDR.
     4. Transport properties of SiCNTs with NO2molecule adsorption
     The transport properties of SiCNTs with NO2molecule adsorption are investigatedwith the method combined DFT with NEGF. The transport property is workingmechanism of the SiCNTs NO2gas sensor. Based on the voltage current (I-V)characteristic of the adsorption system, from+1.1V under positive bias, the differencebetween the I-V curves of the sensor with and without NO2molecule begins to increase.Under the bias of+1.5V, the current of the sensor is about1.5times of that with no gasmolecule adsorbed, which is large enough for detecting the gas in application. Ourresults are meaningful to the studies on the SiC nanotube gas sensors.
     The studies on the adsorption properties of the carbon-based and nitrogen-based onintrinsic and B-doped SiCNTs and electronic transport properties of B-doped and NO2adsorbed SiCNTs are meaningful to the model, development and application of SiCNTgas sensors.
引文
[1.1] Sumio Iijima, Helical microtubules of graphitic carbon, Nature,1991,354,56-58.
    [1.2] R. Klingeler, C. Kramberger, C. Müller, T. Pichler, A. Leonhardt, B. Büchner,Funktionalisierte Kohlenstoffnanor hren: Materialforschung in der Nanowelt,Wiss. Z. TU Dresden,2007,56,105-110.
    [1.3] M. A. Prelas, G. Popovici, L. K. Bigelow, Handbook of Industrial Diamonds andDiamond Films, Marcel Dekker, New York,1997.
    [1.4] B. T. Kelly, Physics of Graphite, Applied Science, London,1981.
    [1.5] Sumio Iijima, Toshinari Ichihashi, Single-shell carbon nanotubes of1-nmdiameter, Nature,1993,363,603-605.
    [1.6] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R.Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layerwalls, Nature,1993,363,605-607.
    [1.7] Andreas Thess, Roland Lee, Pavel Nikolaev, et al. Crystalline Ropes of MetallicCarbon Nanotubes, Science,1996,273,483-487.
    [1.8] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and CarbonNanotubes, Academic Press, San Diego,1996.
    [1.9] Teri Wang Odom, Jin-Lin Huang, Philip Kim, Charles M. Lieber, Atomic structureand electronic properties of single-walled carbon nanotubes, Nature,1998,391,62-64.
    [1.10] Wei B Q, Spolenak R, Kohler-Redlich P, et al. Electrical transport in pure andboron-doped carbon nanotubes. Appl. Phys. Lett.1999,5,74(21).3149-3151
    [1.11] Akinobu K, Youiti O, Kazuhito T, et al. Electron transport in metal/multiwallcarbon nanotube/metal structures (metal=Ti or Pt/Au). Appl. Phys. Lett.2001,8,79(9).1354-1356
    [1.12] Li Q H, Wang T H. Improved Electric Transport Properties of a Multi-wallcarbon Nanotube. Chin. Phys. Lett.2003,20(8).1333-1335
    [1.13] Panchakarla L S, Govindaraj A, and Rao C N R. Nitrogen-and Boron-DopedDouble-Walled Carbon Nanotubes. ACS Nano.2007,1(5).494-500
    [1.14] D. H. Robertson, D. W. Brenner, J. W. Mintmire, Energetics of nanoscalegraphitic tubules, Phys. Rev. B,1992,45,12592-12595.
    [1.15] N. Wang, Z. K. Tang, G. D. Li, J. S. Chen, Materials science: Single-walled4carbon nanotube arrays, Nature,2000,408,50-51.
    [1.16] Charlier A, McRae E, Heyd R, et al Classification for double-walled carbonnanotubes. Carbon.1999,37(11).1779-1783
    [1.17] Hutchison J L, Kiselev N A, Krinichnaya E P, et al. Double-walled carbonnanotubes fabricated by a hydrogen arc discharge method. Carbon.2001,4,39(5).761-770
    [1.18] Qin L C, Zhao X L, Hirahara K, et al. Materials science: The smallest carbonnanotube. Nature.2000,408(6808).50
    [1.19] Wang N, Tang Z K, Li G D, et al. Materials science: Single-walled4carbonnanotube arrays. Nature.2000,11,408.50-51
    [1.20] Menon M, Richter E, Mavrandonakis A, et al. Structure and stability of SiCnanotubes. Phys. Rev. B.2004,69(11).115322
    [1.21] Li C P, Fitz Gerald J, Zou J, et al Transmission electron microscopy investigationof substitution reactions from carbon nanotube template to silicon carbidenanowires. New Journal of Physics.2007,9.137
    [1.22] Taguchi T, Igawa N, Yamamoto H, et al. Synthesis of silicon carbide nanotubes.Journal of the American Ceramic Society.2005,88(2).459-461
    [1.23] Renzhi M, Yoshio B, Tadao S, et al. Growth, Morphology, and Structure of BoronNitride Nanotubes. Chem. Mater.2001,13(9).2965-2971
    [1.24] Wang J S, Kayastha V K, Yap Y K, et al. Low Temperature Growth of BoronNitride Nanotubes on Substrates. Nano Lett..2005,5(12).2528-2532
    [1.25] Lourie O R, Jones C R, Bartlett B M, et al. CVD growth of boron nitridenanotubes. Chem. Mater.2000,12(7).1808-1810
    [1.26] Yu Q J, Fu W Y, Yu C L, et al. Fabrication and optical properties of large-scaleZnO nanotube bundles via a simple solution route. J. Phys. Chem. C.2007,111(47).17521-17526
    [1.27] Wang R M, Xing Y J, Xu J, et al. Fabrication and microstructure analysis on zincoxide nanotubes. New J. Phys.2003,9,5(115).67020
    [1.28] Ren X, Jiang C H, Li D D, et al. Fabrication of ZnO nanotubes with ultrathinwall by electrodeposition method. Materials Letters.2008,6,62(17-18).3114-3116
    [1.29] Nicolas Keller, Cuong Pham-Huu, Gabrielle Ehret.et al. Synthesis andcharacyerisation of medium surface area silicon carbide nanotubes[J].Carbon,2003.41:2131-2139.
    [1.30] Mavrandonakis A. Froudakis G, schnel M. Frompure carbon to silicon—carbonnanotubes:An ab-initio Study[J]. Nano Lett,2003,12:279
    [1.31] Menon M, Richter E, Mavrandonakis A, et aL Structure and stability of SiCnanotubes [J]. PhyS. Rev. B,2004,83:3228
    [1.32] Sun X H, Li C P, Wong W K, et aL Formation ofsilicon carbide nanotubes andnanowires via reaction of silicon(from Disproportionation of Silicon Monoxide)with carbon nanotubes [J]. J. Am. Chem. Soc,2002,124:144
    [1.33] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes. Nature.1992,7,358.220-222
    [1.34] Ebbesen T W. Carbon nanotubes. Annu. Rev. Mater. Sci.1994,24.235-264
    [1.35] Journet C, Maser W K, Bernier P, et al. Large-scale production of single-walledcarbon nanotubes by the electric-arc technique. Nature.1997,8,388.756-758
    [1.36] Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes bylaser vaporization. Chem. Phys. Lett.1995,243(1-2).49-54
    [1.37] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes.Science.1996,7,273(5274).483-487
    [1.38] Muńoz E, Maser W K, Benito A M, et al. Gas and pressure effects on theproduction of single-walled carbon nanotubes by laser ablation. Carbon.2000,38(10).1445-1451
    [1.39] Yudasaka M, Komatsu T, Ichihashi T, et al. Single-wall carbon nanotubeformation by laser ablation using double-targets of carbon and metal. Chem.Phys. Lett.1997,10,278(1-3).102-106
    [1.40] Dai H, Rinzler A G, Nikolaev P, et al. Single-wall nanotubes produced bymetal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett.1996,9,260(3-4).471-475
    [1.41] Kong J, Cassell A M, Dai H J. Chemical vapor deposition of methane forsingle-walled carbon nanotubes. Chem. Phys. Lett.1998,8,292(4-6).567-574
    [1.42] Kong J, Soh H T, Cassell A M, et al. Synthesis of individual single-walled carbonnanotubes on patterned silicon wafers. Nature.1998,10,395.878-881
    [1.43] Cheng H M, Li F, Sun X, et al. Bulk morphology and diameter distribution ofsingle-walled carbon nanotubes synthesized by catalytic decomposition ofhydrocarbons. Chem. Phys. Lett.1998,6,289(5-6).602-610
    [1.44] Su M, Zheng B, Liu J. A scalable CVD method for the synthesis of single-walledcarbon nanotubes with high catalyst productivity. Chem. Phys. Lett.2000,5,322(5).321-326
    [1.45] Iijima S. Helical microtubules of graphitic carbon. Nature.1991,11,354.56-58
    [1.46] Ebbesen T W. Carbon nanotubes. Annu. Rev. Mater. Sci.1994,24.235-264
    [1.47] Journet C, Maser W K, Bernier P, et al. Large-scale production of single-walledcarbon nanotubes by the electric-arc technique. Nature.1997,388(6644).756-758
    [1.48] Liu C,Cong H T,Li F,et al. Semi-continuous Synthesis of Single-walled CarbonNanotubes by a Hydrogen Arc Discharge Method. Carbon.1999,37(11).1865-1868
    [1.49] Guo T, Nikolaev P, Rinzler A G, et al. Self-assembly of tubular fullerenes. J. Phys.Chem.1995,99(27).10694-10697
    [1.50] Bandow S, Asaka S, Saito Y, et al. Effect of the Growth Temperature on theDiameter Distribution and Chirality of Single-Wall Carbon Nanotubes. Phys.Rev. Lett.1998,80(17).3779-3782
    [1.51] Herrera J E, Resasco D E. Role of Co-W interaction in the selective growth ofsingle-walled carbon nanotubes from CO disproportionation. J. Phys. Chem. B.2003,107(16).3738-3746
    [1.52] Herrera J E, Balzano L, Pompeo F, et al. Raman characterization of single-walledcarbon nanotubes of various diameters obtained by catalytic disproportionationof CO. J. Nanosci. Nanotech.2003,3(1-2).133-138
    [1.53] Maruyama S, Miyauchi Y, Murakami Y, et al. Optical characterization ofsingle-walled carbon nanotubes synthesized by catalytic decomposition ofalcohol. New J. Phys.2003,10,5(149).1-12
    [1.54] Maruyama S, Kojima R, Miyauchi Y, et al. Low-temperature synthsis ofhigh-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett.2002,360(3-4).229-234
    [1.55] Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res.2002,35(12).1035-1044
    [1.56]韦建卫.异质掺杂对碳纳米管电子特性和输运性能的影响(博士学位论文).湖南大学.2008
    [1.57]陈刚.双壁纳米碳管的电弧法制备、表征及应用(博士学位论文).大连理工大学.2007
    [1.58]欧阳玉.碳纳米管结构研究(博士学位论文).湖南大学.2008
    [1.59] Shelimov K B, Esenaliev R O, Rinzler A G, et al. Purification of single-wallcarbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett.1998,1,282(5-6).429-434
    [1.60] Huang H, Kajiura H, Yamada A, et al. Purification and alignment of arc-synthesissingle-walled carbon nanotube bundles. Chem. Phys. Lett.2002,4,356(5-6).567-572
    [1.61] Yu A, Bekyarova E, Itkis M E, et al. Application of centrifugation to thelarge-scale purification of electric arc-produced single-walled carbon nanotubes.J. Am. Chem. Soc.2006,128(30).9902-9908
    [1.62] Duesberg G S, Blau W, Byrne H J, et al. Chromatography of carbon nanotubes.Synthetic Metals.1999,6,103(1-3).2484-2485
    [1.63] Jeong T, Kim W Y, Hahn Y B. A new purification method of single-wall carbonnanotubes using H2S and O2mixture gas. Chem. Phys. Lett.2001,8,344(1-2).18-22
    [1.64] Sen R, Rickard S M, Itkis M E, et al. Controlled purification of single-walledcarbon nanotube films by use of selective oxidation and near-IR spectroscopy.Chem. Mater.2003,15(22).4273-4279
    [1.65] Huria H, Ebbesen T W, Tanigaki K. Opening and purification of carbonnanotubes in high yields. Adv. Mater.1995,7(3).275-276
    [1.66] Dujardin E, Ebbesen T W, Krishnan A, et al. Purification of single-shellnanotubes. Adv. Mater.1998,10(8).611-613
    [1.67] Fang H T, Liu C G, Liu C, et al. Purification of single-wall carbon nanotubes byelectrochemical oxidation. Chem. Mater.2004,16(26).5744-5750
    [1.68] Dujardin E, Ebbesen T W, Hiura H, et al. Capillarity and wetting of carbonnanotubes. Science.1994,9,265(5180).1850-1852
    [1.69] Bandow S, Rao A M, Williams K A, et al. Purification of single-wall carbonnanotubes by microfiltration. J. Phys. Chem. B.1997,101(44).8839-8842
    [1.70]王新庆,王淼,李振华等.单壁纳米碳管的纯化及表征.物理化学学报.2003,5,19(5).428-431
    [1.71] Mpourmpakis G, Froudakis G E, Lithoxoos G P, et al. SiC nanotubes: A novelmaterial for hydrogen storage. Nano Letters.2006,8,6(8).1581-1583
    [1.72] He R A, Chu Z Y, Li X D, et al. Synthesis and hydrogen storage capacity of SiCnanotube. Key Engineering Materials.2008,368-372.647-649
    [1.73] Li F, Xia Y Y, Zhao M W, et al. Density-functional theory calculations ofXH3-decorated SiC nanotubes (X={C, Si}): Structures, energetics, andelectronic structures. J. Appl. Phys.2005,97(10).104311
    [1.74] Wu R Q, Yang M, Lu Y H, et al. Silicon carbide nanotubes as potential gassensors for CO and HCN detection. J. Phys. Chem. C.2008,112(41).15985-15988
    [1.75] Zhao J X, Ding Y H. Silicon carbide nanotubes functionalized by transition metalatoms: A density-functional study. J. Phys. Chem. C.2008,112(7).2558-2564
    [1.76] Sun X H, Li C P, Wong W K, et al. Formation of Silicon Carbide Nanotubes andNanowires via Reaction of Silicon (from Disproportionation of SiliconMonoxide) with Carbon Nanotubes. J. Am. Chem. Soc.2002,124(48).14464-14471
    [1.77] Borowiak-Palen E, Ruemmeli M H, Gemming T, et al. Bulk synthesis ofcarbon-filled silicon carbide nanotubes with a narrow diameter distribution. J.Appl. Phys.2005,2,97(5).056102
    [1.78] Hu J Q, Bando Y, Zhan J H, et al. Fabrication of ZnS/SiC nanocables,SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes). Appl.Phys. Lett.2004,85(14).2932-2934
    [1.79] Cheng Q M, Interrante L V, Lienhard M, et al. Methylene-bridged carbosilanesand polycarbosilanes as precursors to silicon carbide—from ceramic compositesto SiC nanomaterials. Journal of the European Ceramic Society.2005,25(2-3).233–241
    [1.80] Pei L Z, Tang Y H, Chen Y W, et al. Preparation of silicon carbide nanotubes byhydrothermal method. J. Appl. Phys.2006,6,99(11).114306
    [1.81] H.Y. Jung, S.M. Jung, J. Kim, et al. Chemical sensors for sensing gas adsorbedon the inner surface of carbon nanotube channels, Appl. Phys.Lett.,2007,90:153114
    [1.82] M.Law, H.Kind, B.Messer, et al. Covalently functionalized nanotubes asnanometresized probes in chenistry and biology [J] Angew. Chem. Int. Edit.2002,41:2405-2408
    [1.83]张月梅,硼掺杂碳纳米管结构和气敏性能的理论研究(硕士学位论文),山东大学,2006
    [1.84] J. Kong, N. R. Franklin, C. Zhou, et.al. Nanotube Molecular Wires as ChemicalSensors, Science,2000,287:622-625
    [1.85] M. Penza, G.. Cassano, R. Rossi, Effect of growth catalysts on gas sensitivity incarbon nanotube film based chemiresistive sensors, Appl. Phys. Lett.,2007,90:103101
    [1.86] N. Sinha, J. Z. Ma, and J. T. W. Yeow, Carbon nanotubes-based sensors, Journalof Nanoscience and Nanotechnology,2006,6:573–590
    [1.87] R.X. Wang, D.J. Zhang, Y.M. Zhang, et al. Boron-Doped Carbon NanotubesServing as a Novel Chemical Sensor for Formaldehyde, J. Phys. Chem. B,2006,110:18267-18271
    [1.88] B. Lu, Z. Zhen, Computational study of B-or N-doped single-walled carbonnanotubes as NH3and NO2sensors. Carbon,2007,45:2105-2110
    [1.89] P. G.. Su, C. T. Lee, C. Y. Chou, et al. Fabrication of flexible NO2sensors bylayer-by-layer self-assembly of multi-walled carbon nanotubes and their gassensing properties, Sens. Actuators: B,2009,139:488–493
    [1.90] F. Picaud, R. Langlet, M. Arab et al. Gas-induced variation in the dielectricproperties of carbon nanotube bundles for selective sensing, J. Appl. Phys.,2005,97:114316
    [1.91] J. Zhang, A. Boyd, A. Tselev, et al. Mechanism of NO2detection in carbonnanotube field effect transistor chemical sensors, Appl. Phys. Lett.,2006,88:123112
    [1.92] P. G. Collins, K. Bradley, M. Ishigami et al.Extreme oxygen sensitivity ofelectronic. erties of carbon nanotubes [J] Science2000,287:1801-1804
    [1.93] A. Zahab, L. Spina, and P. Poncharal, Water-vapor effect on the electricalconductivity of a single-walled carbon nanotube mat [J] Phys. Rev. B2000,62:10000-10003.
    [1.94] S. Santucci, S. Picozzi, F. Di Gregorio, L. Lozzi, C. Cantalini, L. Valentini, J.M.Kenny, and B. Delley, NO2and CO gas adsorption on carbon nanotubes:Experiment and theory [J] Chem. Phys.2003,119:10904-10910.
    [1.95] B. Philip, J. K. Abraham, A. Chandrasekhar, and V. K. Varadan, Carbonnanotube/PMMA composite thin films for gas-sensing applications [J] SmartMater. Struct.2003,12:935-939.
    [1.96] S.Peng and K.Cho, Ab initio Study of Doped Carbon Nanotube Sensors [J], NanoLett.,2003,3:513-517
    [1.97] S.I. Soloviev, Y. Gao, T.S. Sudarshan, Doping of6H–SiC by selective diffusionof boron, Appl. Phys. Lett.,2000,77(24):4004-4006
    [1.98] R. Rurali, P. Godignon, J. Rebollo, et al. First-principles study of n-type dopantsand their clustering in SiC, Appl. Phys. Lett.,2003,82(24):4298-4300
    [1.99] A. Gali. Ab initio study of nitrogen and boron substitutional impurities insingle-wall SiC nanotubes. Phys Rev B,2006,73(24):245415
    [1.100] P. H. Cuong, K. Nicolas, E. Gaby., et al. The first preparation of silicon carbidenanotubes by shape memory synthesis and their catalytic potential. J. Catal.,2001,200(2):400-410
    [1.101] X. H. Sun, C. P. Li, W. K. Wong, et al. Formation of silicon carbide nanotubesand nanowires via reaction of silicon (from disproportionation of siliconmonoxide) with carbon nanotubes. J. Am. Chem. Soc,2002,124(48):14464-14471
    [1.102] T. Taguchi, N. Igawa, and H. Yamamoto. Synthesis of silicon carbide nanotubes.J. Am. Ceram. SOC,2005,88(2):459-461
    [1.103]张威虎,张富春,张志勇等.(9,0)单臂SiC纳米管电子结构与光学性质第一性原理研究,铸造技术,2010,31(7):848-852
    [1.104] R. J. Baierle, R. H. Miwa. Hydrogen interaction with native defects in SiCnanotubes, PHYSICAL REVIEW B,76,2007,205410
    [1.105] G. Gao, S.Park, H.Kang, A first principles study of NO2chemisorption onsilicon carbide nanotubes, Chemical Physics,2009,355:50-54
    [1.106] Rui-Li Liang, Yan Zhang, Jian-Min Zhang, Adsorption of oxygen molecular onpristine and defected SiC nanotubes, Applied Surface Science,2010,257:282-289
    [1.107] B.Xiao, J. Zhao, Y. Ding, et al. Theoretical studies of chemi-sorption of NO2molecules on SiC nanotube, Surf. Sci.(2010), doi:10.1016/j.susc.2010.07.020
    [1.108] J.X.Zhao, Y.H.Ding, Can Silicon Carbide Nanotubes Sense Carbon Dioxide? J.Chem. Theory Comput.,2009,5:1099-1105
    [2.1] D. Srivastava, M. Menon, K. Cho, Computational Nanotechnology with CarbonNanotubes and Fullerenes, Comput. Sci. Eng.,2001,3,42-55.
    [2.2] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Iterativeminimization techniques for ab initio total-energy calculations: moleculardynamics and conjugate gradients, Rev. Mod. Physics,1992,64,1045-1097.
    [2.3] Hartree D R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field.Part II. Some Results and Discussion. Mathematical Proceedings of the Cambridhephilosophical Society.1928,1,24(1).111-132
    [2.4] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev.1964,136(3B).B864-B871
    [2.5] Kohn W, Sham L J. Self-consistent equations including exchange and correlationeffects. Phys. Rev.1965,140(4A). A1133-A1138
    [2.6]李爱玉.从金属原子链到金属纳米线:结构和电子性质(博士学位论文).厦门大学.2006
    [2.7]乔靓.碳纳米管场发射性质的第一原理研究(博士学位论文).吉林大学.2007
    [2.8]张芳英. ZnO系列和过渡金属掺杂GaN体系几何结构与电子性质的第一性原理研究(博士学位论文).复旦大学.2007
    [2.9] Perdew J P, Zunger A. Self-interaction correction to density functionalapproximations for many-electron systems. Phys. Rev. B.1981,23(10).5048-5079
    [2.10] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation madesimple. Phys. Rev. Lett.1996,10,77(18).3865-3868
    [2.11]谢希德,陆栋.固体能带理论.上海.复旦大学出版社,1998.
    [2.12]曾雉.第一原理电子结构计算研究Rni2B2C新型超导体(博士学位论文).中国科学院固体物理研究所.1997
    [2.13]郑小宏.分子尺度导体输运性质的第一性原理研究(博士学位论文).中国科学院固体物理研究所.2005
    [2.14]许英.关联电子体系的基态性质(博士学位论文).中国科学院固体物理研究所.2005
    [2.15]袁定旺.金属团簇与小分子相互作用的第一性原理研究(博士学位论文).中国科学院固体物理研究所.2005
    [2.16]李顺方.团簇和表面氧化过程的第一性原理研究(博士学位论文).中国科学院固体物理研究所.2004
    [2.17]王江龙.新型超导体材料的电子结构研究(博士学位论文).中国科学院固体物理研究所.2003
    [2.18]肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分法在化学和材料物理中的应用.北京.科学出版社,1998
    [2.19]卫崇德,章立源等.固体物理中的格林函数方法.1992年版.北京.高等教育出版社,1992.80-127
    [2.20] Haug H,Jauho A. Quanium Kinetics in Transport and optics of Semieonduetors.Heidelberg. Springer Press,35-91.
    [2.21] Lundstrom M, Guo J. Nanoseale Transistors: Device Physies,Modeling andSimulation. Heidelberg. SpringerPress,2005.1-37.
    [2.22] Mahan G D. Many particle physics. SeondEdition. NewYork and London.Plenum Press,1990.
    [2.23]杨展如.量子统计物理.2007年第一版.北京.高等教育出版社.2007.337-399.
    [2.24]宋久旭.碳纳米管、碳化硅纳米管电子结构及其输运特性的研究(博士学位论文).西安电子科技大学,2008
    [2.25]杨先敏.固体物理学中格林函数方法简介.1989年第一版.北京.兵器工业出版社,1989.
    [2.26] Riekayzen. Green’s functions and condensed matter. Version1980. London.Academic Pr.,1980.
    [2.27]刘红霞.纳米管异质结输运特性的研究(博士学位论文).西安电子科技大学,2010
    [2.28] Doniach S, Sondheimer E H. Green’s Funetions for Solid State Physieist. WABenjaminInc.,1974.
    [2.29] Stewart J. Clark, Matthew D. Segall, Chris J. Pickard, Phil J. Hasnip, Matt I. J.Probert, Keith Refson, Mike C. Payne, First principles methods using CASTEP,Z. Kristallogr,2005,220,567-570.
    [2.30] M. D. Segall, Philip J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J.Clark, M. C. Payne, First-principles simulation: ideas, illustrations and theCASTEP code, J. Phys.: Condens. Matter,2002,14,2717-2744.
    [2.31] J. Taylor, H. Guo, J. Wang, Ab initio modeling of quantum transport properties ofmolecular electronic devices, Phys. Rev. B,2001,63,245407.
    [3.1] D. B. Slater, Jr., L. A. Lipkin, G. M. Johnson, et al, Proceeding of InternationalConference on Silicon Carbide and Related Materials, September1995, pp.18,Japan
    [3.2]贾护军,4H-SiC微波功率MESFET关键技术研究(博士学位论文),西安电子科技大学,2009
    [3.3] Ding Ruixue, Yang Yintang, Han Ru,Microtrenching effect of SiC ICP etching inSF6/O2plasma, Journal of Semiconductors,2009,30(1):016001
    [3.4] Zhao M W, Xia Y Y, Li F, etal. Strain energy and electronic structures of siliconcarbide nanotubes: Density functional calculations. Phys Rev B.2005,2,71,085312
    [3.5] Menon M, Richter E, Andresa M, etal. Andriotis, Structure and stability of SiCnanotubes. Phys Rev B.2004,3,69,115322
    [3.6] Gali A. Ab initio study of nitrogen and boron substitutional impurities insingle-wall SiC nanotubes. Phys Rev B.2006,6,73,245415
    [3.7] Sun X H, Li Ch P, Wong W K, et al. Formation of Silicon Carbide Nanotubes andNanowires via Reaction of Silicon (from Disproportionation of Silicon Monoxide)with Carbon Nanotubes. J Am Chem Soc.2002,11,124(48).14464-14471
    [3.8] Li Chi Pui, Fitz Gerald John D, Zou Jin, Chen Ying. Transmission electronmicroscopy investigation of substitution reactions from carbon nanotube templateto silicon carbide nanowires. New Journal of Physics.2007,5,9,137
    [3.9] Taguchi T, Igawa N, Yamamoto H, Jitsukawa S. Synthesis of silicon carbidenanotubes. Journal of the American Ceramic Society.2005,2,88(2).459-461
    [3.10] Wang Lu, Lu Jing, Luo Guangfu, etal. First-principles study: Size-dependentoptical properties for semiconducting silicon carbide nanotubes. Optics Express.2007,8,15(17).10947-10957
    [3.11] Wang Lu, Lu Jing, Luo Guangfu, etal. Optical absorption spectra andpolarizabilities of silicon carbide nanotubes: A first principles study. Journal ofPhysical Chemistry C.2007,12,111(51).18864-18870
    [3.12] Zhao JingXiang, Ding YiHong. Silicon carbide nanotubes functionalized bytransition metal atoms: A density-functional study. Journal of Physical ChemistryC.2008,1,112(7).2558-2564
    [3.13] Meng Tiezhu, Wang Chong-Yu, Wang Shan-Ying. First-principles study of asingle Ti atom adsorbed on silicon carbide nanotubes and the correspondingadsorption of hydrogen molecules to the Ti atom. Chemical Physics Letters.2007,4,437(4-6).224-228
    [3.14] Zhao Mingwen, Xia Yueyuan, Zhang R Q, Lee S T. Manipulating the electronicstructures of silicon carbide nanotubes by selected hydrogenation. Journal ofChemical Physics.2005,6,122(21).214707
    [3.15] Meng Tiezhu, Wang Chong-Yu, Wang Shan-Ying. First-principles study ofcontact between Ti surface and semiconducting carbon nanotube. Journal ofApplied Physics.2007,7,102,013709
    [3.16] Ganji M D. Behavior of a single nitrogen molecule on the pentagon at a carbonnanotube tip: A first-principles study. Nanotechnology.2008,1,19(2):025709
    [3.17] Fenglei Cao, Xianyan Xu, Wei Ren, et al. Theoretical Study of O2MolecularAdsorption and Dissociation on Silicon Carbide Nanotubes, Journal of PhysicalChemistry C.2010,114:970-976
    [3.18] Iwami Kazuchika, Goto Hidekazu, Hirose Kikuji, Ono Tomoya. First-principlesstudy of electronic structure of deformed carbon nanotubes. Science andTechnology of Advanced Materials.2007,4,8(3).200-203
    [3.19] Qiao L, Zheng W T, Wen Q B, JiangQ. First-principles density-functionalinvestigation of the effect of water on the field emission of carbon nanotubes.Nanotechnology.2007,4,18(15).155707
    [3.20] Yu S S, Wen Q B, Zheng W T, Jiang Q. Effects of doping nitrogen atoms on thestructure and electronic properties of zigzag single-walled carbon nanotubesthrough first-principles calculations. Nanotechnology.2007,4,18(16).165702
    [3.21] Pfrommer B. G, Cote M., Louie S. G, Cohen M. L., Relaxation of crystals withthe Quasi-Newton Method. J. Comput. Phys.,1997,131(1):233-240
    [3.22] A. Gali, T. Hornos, P. Deák, N. T. Son, E. Janzén, et al.“Activation of shallowboron acceptor in C/B coimplanted silicon carbide: A theoretical study,” Appl.Phys. Lett., Vol.86,102108,2005.
    [3.23] S. I. Soloviev, Y. Gao and T. S. Sudarshan,“Doping fo6H-SiC by selectivediffusion of boron,” Appl. Phys. Lett., Vol.77, pp.4004-4006,2000.
    [3.24]宋久旭,杨银堂,柴常春,等.掺氮3C-SiC电子结构的第一性原理研究.西安电子科技大学学报.2008,3,35(1).87-91
    [3.25] Ding Ruixue, Yang Yintang, Ren Xingrong, et al. First-principles study of borondoping-induced band gap narrowing in3C-SiC,2009, IEEE Proceedings of16thIPFA,563-566
    [3.26] Jung H.Y., Jung S.M., Kim J., et al. Chemical sensors for sensing gas adsorbedon the inner surface of carbon nanotube channels, Appl. Phys. Lett.,2007,90:153114
    [3.27] Collins P.G., Bradley K., Ishigami M., et al. Extreme oxygen sensitivity ofelectronic properties of carbon nanotubes. Science,2000,287(5459):1801-1804
    [3.28] Kong J., Franklin N.R., Zhou C.W., et al. Nanotube molecular wires as chemicalsensors. Science,2000,287(5453):622-625
    [3.29] Feng X., Irle S.,Witek H., et al. Sensitivity of Ammonia Interaction withSingle-Walled Carbon Nanotube Bundles to the Presence of Defect Sites andFunctionalities. J. Am. Chem. Soc.,2005,127(30):10533-10538
    [3.30] Li J., Lu Y.J., Ye Q. et al. Carbon nanotube sensors for gas and organic vapordetection. Nano Lett,2003,3(7):929-933
    [3.31] Goldoni A., Larciprete R., Petaccia L., et al. Single-wall carbon nanotubeinteraction with gases: Sample contaminants and environmental monitoring. J.Am. Chem. Soc.,2003,125(37):11329-11333
    [3.32] Sun X. H., Li C. P., Wong W. K., et al. Formation of silicon carbide nanotubesand nanowires via reaction of silicon (from disproportionation of siliconmonoxide) with carbon nanotubes. J Am Chem Soc,2002,124(48):14464-14471
    [3.33] Zhao M W, Xia Y Y, Li F, et al. Strain energy and electronic structures of siliconcarbide nanotubes: Density functional calculations. Phys Rev B,2005,71(8):085312
    [3.34] Menon M., Richter E., Andreas M., et al. Structure and stability of SiC nanotubes.Phys Rev B,2004,69(11):115322
    [3.35] Yang Y T, Song J X, Liu H X, et al. Negative differential resistance insingle-walled SiC nanotubes, Chin. Sci. Bull.2008,53(23):3770-3372
    [3.36] Gali A. Ab initio study of nitrogen and boron substitutional impurities insingle-wall SiC nanotubes. Phys Rev B,2006,73(24):245415
    [3.37] Santucci S, Picozzi S, Gregorio FD, et al. NO2and CO gas adsorption on carbonnanotubes: experiment and theory. J Chem Phys,2003,119:10904-10910.
    [3.38] Wu R. Q.,Yang M., Lu Y. H., et al. Silicon Carbide Nanotubes As Potential GasSensors for CO and HCN Detection J. Phys. Chem. C,2008,112(41),15985-15988
    [3.39] Yim W L, Gong X G, Liu Z F. Chemisorption of NO2on carbon nanotubes. JPhys Chem B,2003,107:9363-9369.
    [3.40] Zhao J. X., Ding Y. H. Silicon Carbide Nanotubes Functionalized by TransitionMetal Atoms: A Density-Functional Study, J. Phys. Chem. C,2008,112(7),2558-2564
    [3.41] Gao G.; Kang H. S. First Principles Study of NO and NNO Chemisorption onSilicon Carbide Nanotubes and Other Nanotubes, J. Chem. Theory Comput.2008,4,1690-1697
    [3.42] Seo K, Park K A, Kim C, et al. Chirality-and diameter-dependent reactivity ofNO2on carbon nanotube walls. J Am Chem Soc,2005,127:15724-15729.
    [3.43] Zhang Y, Suc C, Liu Z, et al. Carbon nanotubes functionalized by NO2:coexistence of charge transfer and radical transfer. J Phys Chem B,2006,110:22462-22470.
    [3.44] Lu B, Zhen Z. Computational study of B-or N-doped single-walled carbonnanotubes as NH3and NO2sensors. Carbon,2007,45:2105-2110
    [3.45]姚红英,顾晓,季敏,等。SiO2-羟基表面上金属原子的第一性原理研究,物理学报,2006,55:6042-6046
    [3.46] Segall M.D., Lindan P.J.D, Probert M.J., et al. First-principles simulation: ideas,illustrations and the CASTEP code. J. Phys.: Condens. Matter,2002,14:2717-2744
    [3.47] An W., Wu X. J., Zeng X. C. Adsorption of O2, H2, CO, NH3, and NO2on ZnOnanotube: A Density Functional Theory Study. J Phys.Chem. C,2008,112:5747-5755
    [3.48] Mota R., Fagan S. B., Fazzio A. First principles study of titanium-coated carbonnanotubes as sensors for carbon monoxide molecules. Surface Science,2007,601(18):4102-4104
    [3.49] Perdew J, Burke K, Emzerhof M, Generalized Gradient Approximation MadeSimple, Phys. Rev. Lett.,1996,77:3865-3868
    [3.50] Andriy H. Nevidomskyy, Gábor Csányi, et al. Chemically active substitutionalnitrogen impurity in carbon nanotubes, Phys. Rev. Lett.,2003,91,105502
    [3.51] Chun-Wei Chen, Ming-Hsien Lee, S J Clark, Band gap modification ofsingle-walled carbon nanotube and boron nitride nanotube under a transverseelectric field, Nanotechnology,2004,15:1837-1843
    [3.52] Jijun Zhao, Hyoungki Park, Jie Han, et al. Electronic properties of carbonnanotubes with covalent sidewall functionalization, J. Phys. Chem. B2004,108,4227-4230
    [3.53] Li-Gan Tien, Tsong-Ming Liaw, Feng-Yin Li, et al. Density-Functional-TheoryCalculation of Semiconducting Carbon Nanotubes under an External ElectricField, Journal of the Chinese Chemical Society,2003,50,627-629
    [3.54] Yunfang Li,Hui Li, Structures and Electronic, Optical Properties of HydrogenNanowires Encapsulated in Single-walled Boron Nitride Nanotubes, J. Mater.Sci. Technol.,2010,26(6),542-546
    [3.55] XIAO Yang, YAN Xiao-Hong, DING Jian-Wen, Codoping of Potassium andBromine in Carbon Nanotubes-A Density Functional Theory Study, CHIN.PHYS.LETT.,2007,24(12),3506
    [3.56] Jing Lu, Shigeru Nagase, Yutaka Maeda, et al. Adsorption configuration of NH3on single-wall carbon nanotubes, Chemical Physics Letters,2005,405:90-92
    [3.57] Li-Gan Tien, Chuen-Horng Tsai, Feng-Yin Li, et al. Influence of vacancy defectdensity on electrical properties of armchair single wall carbon nanotube,Diamond&Related Materials,2008,17:563-566
    [3.58] Jian-Feng Jia, Hai-Shun Wu, Haijun Jiao, et al. The structure and electronicproperty of BN nanotube, Physica B,2006,381:90-95
    [3.59] Zhao M, Xia Y, Zhang R Q, et al. Manipulating the electronic structures ofsilicon carbide nanotubes by selected hydrogenation, J Chem Phys,2005,122(21):214707
    [3.60] Peng S., Cho K. Ab Initio Study of Doped Carbon Nanotube Sensors, Nano Lett.2003,3,513-517
    [3.61] Mota R., Fagan S. B., Fazzio A. First principles study of titanium-coated carbonnanotubes as sensors for carbon monoxide molecules. Surface Science,2007,601(18):4102-4104
    [3.62] da Silva L.B., Fagan S.B., Mota R. Ab Initio Study of Deformed CarbonNanotube Sensors for Carbon Monoxide Molecules, Nano Lett.2004,4,65-67
    [4.1] Ya.B. Zeldovich, P. Ya Sadovnikov, D.A. Frank-Kamenetskii, Oxidation ofNitrogen in Combustion, Academy of Sciences of the USSR, Institute forChemical Physics, Moscow, Leningrad,1947
    [4.2] A. Gulino, T. Gupta, P.G. Mineo, M.E. van der Boom, Selective NOxopticalsensing with surface-confined osmium polypyridyl complexes, Chem. Commun.2007,14(46):4878-4880
    [4.3] J.T. McCue, J.Y. Ying, SnO2In2O3Nanocomposites as Semiconductor GasSensors for CO and NOxDetection, Chem. Mater.2007,19(5):1009-1015
    [4.4] E.M. Boon, M.A. Marletta, Sensitive and Selective Detection of Nitric OxideUsing an H-NOX Domain, J. Am. Chem. Soc.2006,128(31):10022-10023
    [4.5] S.C. Xu, S. Irle, D.G. Musaev, M.C. Lin, Quantum Chemical Prediction ofReaction Pathways and Rate Constants for Dissociative Adsorption of COxandNOxon the Graphite (0001) Surface, J. Phys. Chem. B,2006,110(42):21135-21144
    [4.6] H. Gronbeck, A. Hellman, A. Gavrin, Structural, Energetic, and VibrationalProperties of NOxAdsorption on Agn, n=18, J. Phys. Chem. A,2007,111(27):6062-6067
    [4.7] J.Y.Dai, P. Giannozzi, J.M. Yuan. Adsorption of pairs of NOx molecules on single-walled carbon nanotubes and formation of NO+NO3from NO2, Surface Science,2009,603:3234-3238
    [4.8] S. Peng, K. Cho, P.F. Qi, et al. Ab initio study of CNT NO2gas sensor, ChemicalPhysics Letters,2004,387:271-276
    [4.9] B.Lu, Z. Zhen. Computational study of B-or N-doped single-walled carbonnanotubes as NH3and NO2sensors, Carbon,2007,45:2105-2110
    [4.10] G.Gao, H. S.Kang. First Principles Study of NO and NNO Chemisorption onSilicon Carbide Nanotubes and Other Nanotubes, J. Chem. Theory Comput.2008,4,1690-1697
    [4.11] G.Gao, S.H. Park, H. S.Kang. A first principles study of NO2chemisorption onsilicon carbide nanotubes, Chemical Physics,2009,355:50-54
    [4.12]北京师范大学等编,《无机化学》(第四版),北京,高等教育出版社,2002.8.
    [4.13] A.Gali Ab initio study of nitrogen and boron substitutional impurities insingle-wall SiC nanotubes. Phys Rev B,2006,73(24):245415
    [4.14] J. X.Zhao, Y. H.Ding Can Silicon Carbide Nanotubes Sense Carbon Dioxide?, J.Chem. Theory Comput.2009,5(4):1099-1105
    [4.15]张秀君,温室气体与全球环境变化,沈阳教育学院学报,2001,3(4):109-111
    [5.1] Sun X H, Li Ch P, Wong W K, etal. Formation of Silicon Carbide Nanotubes andNanowires via Reaction of Silicon (from Disproportionation of Silicon Monoxide)with Carbon Nanotubes. J Am Chem Soc.2002,11,124(48).14464-14471
    [5.2] Long M Q, Wang L L, Chen K Q, etal. Coupling effect on the electronic transportthrough dimolecular junctions. Physics Letters A.2007,6,365(5-6).489-494
    [5.3] Cohen R, Stokbro K, Martin J, etal. Charge transport in conjugated aromaticmolecular junctions: Molecular conjugation and molecule-electrode coupling.Journal of Physical Chemistry C.2007,10,111(40).14893-14902
    [5.4] Hoft R C, Ford M J, Cortie M B. The effect of reciprocal-space sampling and basisset quality on the calculated conductance of a molecular junction, MolecularSimulation.2007,9,33(11).897-904
    [5.5] Kim W Y, Kwon S K, Kim K S. Negative differential resistance of carbonnanotube electrodes with asymmetric coupling phenomena. Physical Review B.2007,7,76.033415
    [5.6] Roland C, Meunier V, Larade B. Charge transport through small silicon clusters.Physical Review B.2002,7,66.035332
    [5.7] Büttiker M, Imry Y, Landauer R. Generalized many-channel conductance formulawith application to small rings.Physical Review B.1985,31.6207
    [5.8] Brandbyge M, Mozos J L, Ordejón P, et al. Density-functional method fornonequilibrium electron transport. Phys. Rev. B.2002,65(16).165401
    [5.9] Taylor J, Guo H, and Wang J. Ab initio modeling of quantum transport propertiesof molecular electronic devices. Phys. Rev. B.2001,6,63(24).245407
    [5.10] Perdew J P, Zunger A. Self-interaction correction to density-functionalapproximations for many-electron systems. Physical Review B.1981,23.5048-5079
    [5.11] Artacho E, Sanchez-Portal D, Ordejón P, etal. Linear-Scaling ab-initioCalculations for Large and Complex Systems. Phys. Status Solidi B.1999,9,215(1).809-817
    [5.12] Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations.Physical Review B.1991,43:1993-2006
    [5.13] Bockstedte M, Mattausch A, and Pankratov O, Different roles of carbon andsilicon interstitials in the interstitial-mediated boron diffusion in SiC, Phys. Rev.B,2004,70:115203
    [5.14] Gali A, Hornos T, Deák P, Son N T, Janzén E and Choyke W J, Activation ofshallow boron acceptor in C/B coimplanted silicon carbide: A theoretical study,Appl. Phys. Lett.,2005,86:102108.
    [5.15] Gali A. Ab initio study of nitrogen and boron substitutional impurities insingle-wall SiC nanotubes. Phys Rev B.2006,6,73.245415
    [5.16] Li Z Y, Kosov S. D. Orbital interaction mechanisms of conductance enhancementand rectification by dithiocarboxylate anchoring group, J. Phys. Chem. B2006,110(39):19116-19120
    [6.1] Song C, Xia Y Y, Zhao M W, et al. Ab initio study of base-functionalized singlewalled carbon nanotubes. Chem. Phys. Lett.2005,10,415(1-3).183-187
    [6.2] Gali A. Ab initio study of nitrogen and boron substitutional impurities insingle-wall SiC nanotubes. Phys. Rev. B.2006,6,73(24).245415
    [6.3] Cohen R, Stokbro K, Martin J M L, et al. Charge transport in conjugated aromaticmolecular junctions: Molecular conjugation and molecule-electrode coupling. J.Phys. Chem. C.2007,111(40).14893-14902
    [6.4] Liu Hong-Xia, Zhang He-Ming, Hu Hui-Yong, Song Jiu-Xu. Structural feature andelectronic property of an (8,0) carbon/silicon carbide nanotube heterojunction.Chinese Physics B,2009,18(02):734-737
    [6.5] Liu Hongxia, Zhang Heming, Zhang Zhiyong. Electronic transport properties of an(8,0) carbon/silicon carbide nanotube heterojunction. Journal of Semiconductors,2009,30(5):052002
    [6.6] Li X F, Chen K Q, Wang L L, et al. Effect of length and size of heterojunction onthe transport properties of carbon-nanotube devices. Appl. Phys. Lett.2007,91(13).133511
    [6.7] Tzolov M, Chang B, Yin A, et al. Electronic Transport in a Controllably GrownCarbon Nanotube-Silicon Heterojunction Array. Phys. Rev. Lett.2004,2,92(7).075505
    [6.8] Li X F, Chen K Q, Wang L L, et al. Effect of length and size of heterojunction onthe transport properties of carbon-nanotube devices. App. Phys. Lett.2007,91(13):133511
    [6.9] Roland C, Meunier V, Larade B, et al. Charge transport through small siliconclusters. Phys. Rev. B.2002,7,66(3).035332
    [6.10] Büttiker M, Imry Y, Landauer R, et al. Generalized many-channel conductanceformula with application to small rings. Phys. Rev. B.1985,5,31(10).6207-6215
    [6.11] Brandbyge M, Mozos J L, Ordejón P, et al. Density-functional method fornonequilibrium electron transport. Phys. Rev. B.2002,65(16).165401
    [6.12] Taylor J, Guo H, and Wang J. Ab initio modeling of quantum transport propertiesof molecular electronic devices. Phys. Rev. B.2001,6,63(24).245407

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700