大型液气锤动力学特性与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对大型锻造设备工作中振动冲击大、精确控制难的问题,以液气锤为对象,研究了锻造设备系统的动力学特性、控制策略与控制技术。
     通过对液气锤原系统和工况分析,提出了以大流量三级插装阀组为执行元件控制液气锤进排油过程,实现液气锤控制中的快速响应;设计了一种定位悬锤、泄漏主动补偿的液压控制回路,实现了液气锤任意行程打击并保障了工作的安全性;设计了液气锤控制系统的检测回路,分别对液压系统的输出油液压力、工作腔的气体压力和锤头提升高度进行实时监控,实现了打击工况的安全检测;设计了基于打击数据样本和模糊自适应控制器的PLC控制策略,提出了液气锤的有效打击时间控制方法,实现液气锤打击的自动控制。
     根据液气锤系统构成、工作原理和工况特性,将液气锤整机动力学系统划分为三个子系统:机械系统(含气压系统)、液压系统和控制系统。基于不同工况分别研究了各子系统及其主要元器件的数学模型和动力学特征,并构建了相应工况下的各子系统及其主要元器件的动力学模型和液气锤整机动力学模型,研究了模型中参数的确定和计算方法。
     研究了系统动力学特性的数字仿真方法,利用仿真软件分别对机械系统的动力学特性、液压系统及其主要元器件大流量插装阀的动力学特性、控制系统主要元件的响应特性进行仿真。利用子系统仿真数据和液气锤设计参数,建立液气锤整机系统动力学特性模型并进行了仿真,研究了影响系统动态特性的因素,仿真结果与试验测试结果比较,证明了理论分析的正确性。
     研究了基于模糊神经网络的液气锤动态特性的控制理论及方法,提出了有效打击、有效打击时间、可控性和可控域概念,通过试验建立了不同打击工况下的有效打击数据样本。导出了控制系统的传递函数,建立了模糊神经网络的控制规则,并利用样本中数据对网络结构进行训练,通过仿真确定了模糊控制器的控制规则。通过实验,证明了这种控制方法具有良好的动态响应特性和稳定性。
     将上述研究成果应用到40t·m液气锤技术改造中,经过一个月的试生产后转入正式应用,到目前为止已经应用20个月,效果良好,误差均控制在0.03s以内,证明了理论研究结果的正确性。
Aiming at the big vibration shocking and the difficulty to control accurately of the largeforging equipment, and taking the liquid-air hammer system as the research object, the dynamicsperformance, the control strategy and the control technology of the large forging equipment arestudied.
     By analyzing the original liquid-air hammer system and the working conditions, the methodof controlling the sucking and exhausting oil process by taking the three-stage cartridge valve oflarge flow level as the actuator is proposed, and the quick response of the liquid-air hammercontrol is obtained. A hydraulic control loop system by fixed hanging weight, activecompensation for divulging is designed, the random stroke hammering of the liquid-air hammeris realized and the working safety is guaranteed. The PLC control strategy based on hammeringdata sample and fuzzy self-adaptive controller is designed, the effective hammering time of thehammer is put forward and the automatic control is realized.
     According to the structure of the liquid-air hammer system, the working principle and theworking conditions, the dynamics system of the liquid-air hammer system is divided into threesubsystems: the mechanical system(including the pneumatic system), the hydraulic system andthe control system. Based on the different working conditions, the dynamics performances ofeach subsystem and the parts within it are studied, the dynamics models of each subsystem fordifferent working conditions are established, the dynamics model of the total liquid-air hammersystem is set up, and the parameter determination and calculation of the models are researched.
     The numerical simulation of the dynamics performance of the system is studied, thedynamics performances of the mechanical system, the hydraulic system, the cartridge valve oflarge flow level and the response performance of the major parts of the control system aresimulated. The dynamics performance model of the liquid-air hammer system is set up andsimulated according to the simulation data of the subsystems and the design parameter of theliquid-air hammer system. The elements influencing the system performance are researched, andthe validity of the theoretical analysis is proved by comparing the simulation results and theactual experiment results.
     The control theory and method based on the fuzzy neural networks of the liquid-air hammeris studied, the conceptions of the effective hammering, the effective hammering time, the controllability and controllable field are put forward. The effective hammering samples fordifferent hammering conditions are established by the actual experiment. The transferringfunction of the control system is derived, the fuzzy neural network control laws are established.The network structure is trained by using the data of the samples, and the control laws of thefuzzy controller are determined by simulation. By the experiment, the control method is provedto be of good dynamic response performance and good stability.
     The research mentioned above is employed in the technical upgrade of the40t.m liquid-airhammer system, and the system turns to formal running after one-month trial production. Thesystem has been running20months so far, the working effect of the system is good, and theerror is controlled to be within0.03s, which verifies the validity of the theory research.
引文
[1]虞跃生,龚勇.我国锻造工业的发展现状及对策[J].设备·工装,2004,1(1):36-38.
    [2]张金.国内锻造设备的现状与需求分析[J].机械加工,2003,3(4):39-40.
    [3]刘洪娟.锻造设备与技术发展[J].机械管理开发,2002,(S1):82-84.
    [4]蒋鹏.我国锻造技术装备60年的进步与发展[J].金属加工,2010,(11):1-4.
    [5] Lei Bufang, Li Yongtang, Liu Jiansheng. Research on the Energy Economization ofElectro-hydraulic Hammer[J]. Chineses Journal of Mech.Eng,2000,13(1):64-69.
    [6]Pahnke, Michael. Recamping of open die forging plant[J]. MPT Metallurgical Plant andTechnology,1988,11(3):4.
    [7]Ajax-CECO.阿贾克斯制造公司概况[EB/OL]. http://www.ajax-ceco.com.cn/.
    [8]陈力.德国制造为何不倒[J].机械加工,2003,(3):40-43.
    [9]中国设备网[EB/OL]. http://www.cnsb.cn/html/news/164/show_164581.html.
    [10]刘振堂.我国锻压机械行业现状概况[J].机械工人,2011,(04):10-15.
    [11]S. I. Oh, W. T. Wu, K. Arimoto. Recent developments in process simulation for bulk formingprocesses[J]. Journal of Materials Processing Technology,2001,111:2-9.
    [12]Jochen Breitling, Darrell Wallace, Taylan Altan. Investigation of different loading conditionsin a high speed mechanical press[J]. Journal of materials processing technology,1996,59:18-23.
    [13]王卫东,李建朝.锻造设备的发展过程及发展趋势[J].安阳工学院学报,2009,(02):36-38.
    [14]王以华,吕景林.模锻行业发展的新趋势[J].机械工人,2010,(11):11-16.
    [15]Pahnke, Hans joachim, Forging machines with hydraulic drive–development operatingresults[J]. Metallurgical Plant and Technology,1998,11(6):77-82.
    [16]J. W. Brooks. forging of superalloys[J]. Materials&Design,2000,21(4):297-303
    [17]A.N.吉明著.锻锤[M].北京:机械工业出版社,1957.
    [18]Yuri Melamed,Andrei Kiselev,Michael Gelfgat, Don Dreesenand James. Hydraulic hammerdrilling technology[J]. developments and capabilities Black Journal of Energy ResourcesTechnology,2000,122(1):1-7.
    [19]S.R. Ibrahim&E.C.Mikuleik. The Experimental Detemination of Vibration Parameters fromTime Responses[J]. Shock&Vibration Bulletin46,pt.5,1976.
    [20]YANG W C. TOBLER W E Controlled Power Steering Dynamic Modeling and Analysis ofElectronically System[J]. Advanced Automotive Technologies ASME,DSC,1993,(52):267-278.
    [21]I.V. Mezentsev.Influence of design factors on the efficiency of hydraulic hammers [J].Journal of Mining Science,2003,4(39):400-404.
    [22]Jonas Hallstrom. Influence of friction on die filling in counterblow hammer forging[J].Journal of Materials Processing Technology2000.108(1):21-25.
    [23]Klaus Siegert, arkus Husserman, Bruno losch. Recent developments in hydroformingtechnology[J]. Jounal of materials Proccessing Technology,2000,98:251-258.
    [24]王静,李永堂,王卫卫等.液压模锻锤振动分析[J].太原重型机械学院学报,1987,2(8):58-66.
    [25]张天鹏,刘玉文,王海龙.2.5吨米液压模锻锤的运动及力能分析[J].重型机械,1989,(02):42-47.
    [26]姜维林,金文明,何东野等.50kJ液压模锻锤打击能量的测定分析[J].吉林工业大学学报,1992,66(02):72-76.
    [27]李永堂,宋建丽,刘建生.对击式液压锤运动部分动力学分析[J].太原重型机械学院学报,1994,(12):309-314.
    [28]杨可以,李付国,李云瑞.模锻锤整体刚度细数及打击力计算[J].锻压技术,1995,(04):42-42.
    [29]黎俊初.锻锤基础双自由度有阻尼振动力学模型的计算机分析[J].应用能源技术,1996,(09):34-36.
    [30]李云瑞,李毓镔.锤砧座振动模式及其振幅[J].重型机械,1997,(01):43-47.
    [31]高乃光,陈维民,黎俊初.锻锤工作过程中砧座及基础的振动分析[J].重型机械,1997,(03):36-41.
    [32]张弛,徐佩娟.液压模锻锤动态特性测试方法及计算机处理分析[J].试验技术与试验机,2000,40(01):16-17.
    [33]张弛,徐佩娟,何东野.基于锻件为弹粘塑体的液压模锻锤动态研究[J].吉林大学学报,2009,39(05):1172-1176.
    [34]张弛,徐佩娟,陈华.基于锻件为弹粘塑体的液压模锻锤打击力的研究[J].塑性工程学报,2009,16(04):91-94.
    [35]吴国庆,周井玲,沈世德. CH83消振液压模锻锤打击能量的自动控制[J].机械设计与制造工程,2002,1(31):64:66.
    [36]任中全,贺文海,唐伟.砧座振动特性的Simulink仿真分析[J].机床与液压,2004,(05):132-133.
    [37]冀国良,李永堂.25kJ液压模锻锤机身模态分析和动力学响应[J].锻压装备与制造技术,2006,41(03):70-72.
    [38]房娃,李永堂,巨丽.25kJ液压模锻锤工作状况下试验模态分析研究[J].山西冶金,2007,108(04):16-18.
    [39]金文明,马文元,杨慎华.50kJ液压模锻锤打击能量仿真研究[J].锻压装备与制造技术,2008,(05):90-92.
    [40]金文明,杨慎华,徐迪. CJ83-50kJ液压模锻锤基础振动仿真分析[J].锻压装备与制造技术,2009,4:42-46.
    [41]韩玉坤,张运真,王立新等.20MN快锻液压机打击碰撞动态特性研究[J].锻造技术,2010,35(04):95-99.
    [42]K. HONG-VU, P. S. Raghupathi. Advances in forging technology[J]. A Report on the NorthAmerican Forging Technology Conference,1984,3:165-172.
    [43]Niels Rode Kristensen, Henrik Madsen and Sten Bay J rgensen. Using continuous timestochastic modeling and nonparametric statistics to improve the quality of firstprinciplesmodels[J]. Computer Aided hemicalEngineering,Vol.10,002,901-906.
    [44]Niels Rode Kristensen,Henrik Madsen and Sten Bay J rgensen. Parameter estimation instochastic grey-box modelsautomatica[J]. Computer Aided Chemical Engineering, Volume40, Issue2, February2004,Pages225-237.
    [45]Niels Rode Kristensen, Henrik Madsen and Sten Bay J rgensen. A method for systematicimprovement of stochastic grey-box models[J]. Computers&Chemical Engineering,Vol.28, Issue8,15July2004,1431-1449.
    [46]Alessandro Beghi, Marco Liberati, Sergio Mezzalira, Stivi Peron. Grey-box modeling of amotorcycle shock absorber for virtual prototyping applications[J]. Simulation ModellingPractice and Therty,Vol.15,2007,894-907.
    [47]Derlansfield P. The Design of Hydraulic System and Dynamic Analysis[M]. Beijing: SciencePress,1987.
    [8]李永堂,雷步芳,高雨茁.液压系统建模与仿真.北京[M].冶金工业出版社,2003,2:247-313.
    [49]李永堂,雷步芳,Ting K L.液压锤液压系统的建模与仿真[J].中国机械工程,2004,03.
    [50]张瑞芳,刘峰,黄强.灰箱辨识在二系悬挂参数估计中的应用[J].铁道机车车辆,2006,(04):26-28.
    [51]弓勇军,赵克定,曹健,刘宝兴.三轴液压仿真转台灰箱辨识研究[J].中国惯性技术学报,2005,10:78-81.
    [52] Backe W,Hoffmann W.Dsh-Program System for Digital Simulation of HydraulicSystem.RWTH.Aachen[J]. Ger.Pap presented at the Int Fluid Power Symp, Cambridge,1981.8BHRA Fluid Eng,1981:95-114.
    [53]路甬祥,胡大统.电液比例控制技术[M].北京:机械工业出版社,1988.
    [54]沈德毅,黄人豪,冯炎.二通插装阀开关特性的理论与实验研究[J].机电设备,1989,(02):27-31.
    [55]黄人豪.二通插装阀控制回路的组合和设计(续二)[J].液压气动与密封,1992,(02):72-74.
    [56]庞积伟.插装阀数学模型的建立及其动态仿真研究[J].机电工程技术,2001,30(06):14-17.
    [57]邵森寅.插装式顺序阀及背压单向阀动态特性的研究[D].浙江大学,2008,5.
    [58]张力钧,黄人豪,胡伟民,濮凤根.二通插装阀统-建模方法的研究[J].液压气动与密封,2003,(03):1-4.
    [59]董敏,赵静一,吴晓明.二通插装阀系统动态特性的仿真与研究[J].液压气动与密封,2001,(09):22-24.
    [60]张宁.插装阀动特性与液压机预卸荷插装阀组卸压特性仿真研究[D].燕山大学,2009,5.
    [61骆建彬,林亨,解云龙,王志诚.液压机三级插装阀组的动态特性分析[J].锻压机械,1995,(06):42-44.
    [62]姚静.锻造油压机液压控制系统的关键技术研究[D].燕山大学,2009.
    [63]Bache W.Hoffman. DSH Hydraulic Systems[J]. The Program Sixth System for DigitalSimulation of International Fluid Power Symposium,1981,(04):95-114.
    [64]Jan-Ove.Palmlberg.Simulation as a key tool to improve the fluid power system designprocess[A].Proceedings of the5th International Conference on Fluid Power(ICFP-2001),2001,china.
    [65]Kornilova.A.V The technique of estimation of durability and remaining life of press onforging machines’basic parts[J]. Kuznechno Shtam Proizvodstvo,2005,(05):11-16.
    [66]陈鹰.面向创新的液压仿真技术[J].液压气动与密封,2003,(04):16-20.
    [67]罗忠辉. PLC在低空间落锤式液压自动打桩机上的应用[J].机床电器,2000,(02):18-20.
    [68]薛惠. PLC在高频液压振动桩锤的应用[J].舰船电子工程,2004,(03):60-65.
    [69]卓东风. PLC技刹系挽在液瓜摇枚制中的应用[J].锻压机械,1995,(04):35-37.
    [70]霍家辉. JL-30000J落锤冲击试验机控制系统改造[J].宽厚板,2006,12(03):28-30.
    [71]方桂花.40吨米液气锤动力学分析及时间控制[J].机电工程,2011,28(08):918-923.
    [72]吴家麟.微机模糊控制[J].机车电传动,1993,(3):31-33.
    [73]苗红宇.基于PLC的模糊控制在香皂生产电气控制系统中的应用[D].天津:天津大学图书馆,2007.
    [74]刘维军.最优自适应模糊复合控制研究与应用[D].西安:西北工业大学2004.
    [75]柯昌信.自能控制在大型风力发电机电控系统中的应用[D].乌鲁木齐:新疆大学,2003.
    [76程启明.锤熔烧结过程的主从微机模糊控制系统[J].电子测量与仪器学报,1996,10(01):56-61.
    [77]王志凯.基于PLC的模拟控制在电压无功控制策略中的应用[J].工业自动控制,2001,(11):20-24.
    [78]张桂香.基于Lyapunov方法的离散时间模糊控制系统设计[J].湖南大学学报,2002,29(04):47-52.
    [79]王东明.水电机组模糊GPSS优化设计及其控制性能仿真研究[D].郑州:郑州大学,2003.
    [80]宋明.基于PLC的模糊控制在电压/无功控制策略中的应用[J].工业控制计算机,2004,17(11):50-51.
    [81]赵阶品.挖掘机液压系统模糊控制方法的研究[J].建设机械技术与管理,2005,(06):84-86.
    [82]童悦.基于PLC的模糊控制在隧道通风中的应用[J]. PLC专栏,2006,9(02):37-40.
    [83]文鹏.基于PLC的模糊控制在造纸过程中的应用[J].控制系统,2007,(06):58-61.
    [84]林继钦.打桩船防落锤液压系统采用模糊控制的仿真研究[J].流体传动与控制,2011,(03):28-31.
    [85]崔俊涛.基于PLC的模糊控制应用研究[J].机械研究与应用,2011,(06):73-78.
    [86]Lei Bufang, Li Yongtang, Liu Jiansheng. Research on the Energy Economization of Electro-hydraulic Hammer[J]. Chinese Journal of Mech. Eng.,2000,13(1):64-69.
    [87]李忠,卢进南.液气锤故障分析与设计方案的改进[J].辽宁工程技术大学学报,2010,(29):110-111.
    [88]孟凡武,贺明,康建伟.电液锤液压系统中蓄能器的选择[J].锻压装备与制造技术,2005,(02):35-37.
    [89]Li Yongtang, Lei Bufang, TING K L. Modeling and Simulation of the Hydraulic System inHydraulic Hammer Using “Gray-box” Modeling Method[J]. China Mechanical Engineering,2004,15(6):481-483.
    [90]Kong Xiangdong, Tang Xiangjun. The Modeling Research of Triple-stage Cartridge InsertedValve and Proportional Restrictive Valve in Forging Hydraulic Press[J].ISFP,Beidaihe,2007:101-103.
    [91]Henke, Russ. The case for cartridge valve technology[J]. Diesel Progress North AmericanEdition,2002,68(1):50-52.
    [92]马文元.50kJ液压模锻锤打击能量研究[D].吉林大学工学硕士学位,2007,5.
    [93]W. Back. Design Systematic and Performance of Cartridge Valve Control[J]. InternationalConference on Fluid Power,1987:169.
    [94]张付英,刘卉,张林静.液压往复密封理论、技术与应用的进展研究[J].润滑与密封,2007,32(03):199-200.
    [95]Kong xiaowu, Qiu minxiu. A study of the influence of pipe on valve control hydraulicsystem[J]. Proceedings of the fifth international conference on fluid power transmission andcontrol. Hang zhou, zhejiang university press,2001:23-27.
    [96]姜维林,金文明,何东野等.50kJ液压模锻锤打击能量的测定分析[J].吉林工业大学学报,1992,66(02):72-76.
    [97]金文明,马文元,杨慎华.50kJ液压模锻锤打击能量仿真研究[J].锻压装备与制造技术,2008,(05):90-92.
    [98]任中全,贺文海,唐伟.砧座振动特性的Simulink仿真分析[J].机床与液压,2004,(05):132-133.
    [99]张天鹏,刘玉文,王海龙.2.5吨米液压模锻锤的运动及力能分析[J].重型机械,1989,(02):42-47.
    [100]李永堂,宋建丽,刘建生.对击式液压锤运动部分动力学分析[J].太原重型机械学院学报,1994,(12):309-314.
    [101]张弛,徐佩娟,何东野.基于锻件为弹粘塑体的液压模锻锤动态研究[J].吉林大学学报,2009,39(05):1172-1176.
    [102]张弛,徐佩娟,陈华.基于锻件为弹粘塑体的液压模锻锤打击力的研究[J].塑性工程学报,2009,16(04):91-94.
    [103]毕见强,孙康宁.锻压机械打击力系统的计算机模拟[J].锻压技术,2003,(01):48-50.
    [104]王登荣.十吨模锻锤打击力的动态测试[J].四川工业学院学报,1991,10(02):103-110.
    [105]陈学胜,杨文成.液压模锻锤动力学分析及联通回路设计[J].锻压机械,1992,(06):14-19.
    [106]Lei B F, Li Y T. Research on the energy economization of electro-hydraulic hammer.Chine-se Journal of Mechanical Engineering,2000,13(1):64-69.
    [107]赵悦.蓄能器辅助快锻系统仿真及实验研究[D].燕山大学,2009:11-17.
    [108]赵琦.蓄能器及其工作回路的计算机辅助设计[D].燕山大学,2001:11-17.
    [109]D Sciamarella,G Artana. A water hammer analysis of pressure and flow in the Voiceproductiong system[J]. Journal of Speech Communication,2009,(51):344–351.
    [110]周红,刘永寿,邵小军,岳珠峰.飞机液压管路冲击响应分析[J].航空计算技术,2010,40(04):1-3.
    [111]Bergeorn,L..Water hammer in hdyarulics and wave surges in electricity.1961.(Wiley,NewYork).
    [112] Weng,C.K. Transmission of power by pulsating flow(P-F)concept in hydraulicsystems[J].Trans.ASME,J.BasicEngng.1966,(88):316-322.
    [113]Garett A S, James E B. Experiments and Simulation on the Nonlinear Control of a HydraulicServosystem[J]. IEEE Transations on Control System Technology,1999,7(2):238-247.
    [114]Pang Zhenxu. Modeling and simulation of high-speed hydraulic press[J]. China MechanicalEngineering,2002,13(10):841-843.
    [115]徐迪.50kJ液压模锻锤基础振动分析[D].吉林:吉林大学图书馆,2006.
    [116]V. S. Glazyrin, V. S. Martyshkin. Investigation of vibrations of vibroinsulated foundationsof forge punch hammers[J].2003,122(1):188-192.
    [117]金文明,杨慎华,徐迪. CJ83-50kJ液压模锻锤基础振动仿真分析[J].锻压装备与制造技术,2009,(04):42-46.
    [118]王卫东.大吨位模锻锤砧座优化设计[J].锻压装备与制造技术,2008,(04):35-36.
    [119]黎俊初.锻锤基础双自由度有阻尼振动力学模型的计算机分析[J].应用能源技术,1996,(09):34-36.
    [120]王静,李永堂,王卫卫等.液压模锻锤振动分析[J].太原重型机械学院学报,1987,2(08):58-66.
    [121]任中全,贺文海,唐伟.砧座振动特性的Simulink仿真分析[J].机床与液压,2004,(05):132-133.
    [122]杨可以,李付国,李云瑞.模锻锤整体刚度细数及打击力计算[J].锻压技术,1995,(04):42-42.
    [123]张弛,徐佩娟.液压模锻锤动态特性测试方法及计算机处理分析[J].试验技与试验机,2000,40(01):16-17.
    [124]韩玉坤,张运真,王立新等.20MN快锻液压机打击碰撞动态特性研究[J].锻造技术,2010,35(04):95-99.
    [125]房娃,李永堂,巨丽.25kJ液压模锻锤工作状况下试验模态分析研究[J].山西冶金,2007,108(04):16-18.
    [126]冀国良,李永堂.25kJ液压模锻锤机身模态分析和动力学响应[J].锻压装备与制造技术,2006,(03):70-72.
    [127]吴跃斌,谢英俊,徐立.液压仿真技术的现在和未来[J].液压与气动,2002,(11):1-3.
    [128] Liu.Nenghong, Ma.Shenggang, Huang.Renhao. Theoretical analysis and experimentalresearch of static and dynamic performances of cartridge relief valve[J]. Fluid PowerTransmission and Control Proceedings of the2nd International Conference,1989:183.
    [129]Denman D, McNeil W. Multi-axial servohydraulics controls compaction press[J]. Hydraulic&Pneumatics,2000,98(2):259-264.
    [130]Holzhüter, The Simulation of Relay Control Systems Using Matlab/Simulink[J]. ControlEngineering Practice,1998,6(9):1089-1096.
    [131]苏丹,李红伟,申童.用Apollo RCA方法分析和解决安装边零件变形问题[J].航空科学技术,2010,(04):14-16.
    [132]王丹.安装座部件锻造工艺研究[会议].第十届全国塑性工程学术年会、第三届国际塑性加工先进技术研讨会论文集,2007,(10):230-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700