中药制剂生产过程全程优化方法学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中药生产过程是中药产品固有质量的具体形成阶段,中药制药过程的每一单元环节都会对中药质量产生影响。随着现代信息技术、分析技术、控制技术和传感器技术的广泛应用,一批先进的中药制剂新技术、新工艺、新方法,离线/在线质量分析与检测手段被应用与中药制药过程,若干企业实施并建立了中药生产自动化和一体化控制系统,不仅提高了中药制剂生产的效率和水平,也极大地提高了中药产品的内在质量。
     然而,在中药生产过程信息化、自动化和控制水平不断提高的同时,某些与中药产品质量密切相关的若干关键基础问题还没有得到较好的解决,表现在:(1)中药质量控制多采用各种离线或在线分析的方法,而较少地从生产过程的角度考虑中药质量在各工艺单元之间的传递规律,当中药材质量出现波动,或者正常生产过程出现扰动时,会发生质量变异及其在整个生产链条中的传播,导致中间体和终产品质量的波动。(2)中药制药过程优化技术,包括单元优化技术和系统集成优化技术,发展滞后,与生产过程的集成化和自动化不匹配。
     为解决上述问题,本课题创新性地提出中药制剂生产“全程优化”的概念和方法,是在中医药理论和系统科学理论的指导下,从中药制剂生产过程全局角度考虑质量传递变化规律,应用先进的信息技术、分析技术、制剂技术和工程技术,研究适宜于中药制剂生产的全程建模与仿真方法、中药制药全流程优化控制方法、以及风险控制策略,实现中药生产过程的安全平稳运行和工艺参数的优化操作,保证中药生产过程朝着确定的方向发展,稳定终产品质量,达到“过程控制-过程优化-质量控制-安全有效”的统一,为实现中药生产全过程质量优化控制奠定理论和方法学基础。具体研究内容包括以下四个部分:
     1中药生产过程全程优化理论初步研究
     中药制剂生产全程优化属于多学科交叉领域,阐释“全程优化”理论的内涵、地位和意义的阐释,将有利于指导全程优化的生产实践。该部分研究了“全程优化”与传统中医药理论的关系,以及如何在中药制剂生产全程优化中体现中医药理论的指导作用;研究“全程优化”与现代系统科学理论的关系,以及如何在中药制剂生产全程优化中应用系统科学的思想;通过探讨中药制剂核心理论的有关内容,明确了“全程优化”在现代中药制剂研究中的地位和作用。在上述探讨的基础上,提出了“全程优化”的实现途径和本课题的研究方案。
     2中药生产过程单元典型特征研究
     以中药制药典型工艺单元——醇沉为研究对象,采用以近红外(NIR)为主的过程分析技术(PAT),从定量分析和定性分析两个方面对中药制药过程单元的特征进行研究。定量分析采用偏最小二乘(PLS)模型,可以选择性提取过程NIR光谱中与响应变量有关的信息;定性分析采用基于主成分分析(PCA)分析的多变量统计过程控制(MSPC)模型,可以提取过程NIR光谱中的主要模式和特征。结果表明,在相同的工艺参数下,中药制药单元过程的批次间并不稳定一致,存在一定不确定性。定量分析模型和定性分析模型需要不断更新才能应对新的过程变异。PAT技术有助于发现单元批间差异,但在中药制药单元内部控制变异的能力有限。
     3中药生产过程质量传递规律研究
     借鉴ICH质量源于设计(QbD)的理念,提出了在中药制剂生产工艺中建立设计空间的构想。设计空间代表对中药制药过程的深入理解,其开发需要建立过程模型,该部分研究了四种数据驱动型近似建模技术,即多项式回归、最小二乘支持向量机(LS-SVM)、径向基人工神经网络(RBFNN)和Kriging建模,在栀子提取和醇沉过程单元中的应用。其中,LS-SVM、 RBFNN和Kriging模型采用遗传算法(GA)和自适应建模策略计算最优超参数。基于各单元的工艺模型,采用响应曲面分析、不确定性分析法(UA)和灵敏度分析法(SA),研究了过程单元输入和输出之间的关系,分析了在不同条件下关键工艺参数对关键质量属性的影响。在单元模型建立的基础上,应用系统科学思想,采用“分块-集成”的建模方法建立了栀子“提取-浓缩-醇沉”过程单元组合模型。通过蒙特卡罗仿真(MCS),基于过程单元组合模型,研究了中药制药单元组合设计空间的建立和可视化方法。基于设计空间探讨了栀子苷和京尼平龙胆双糖苷在三个子系统之间的传递规律。
     4中药生产过程全程优化策略研究
     该部分创新性的将递进PLS建模技术和贝叶斯优化技术集成,建立了适宜于中药多阶段间歇生产过程的全程优化策略——目标导向全程优化(TOPO),包括4个部分(目标定义、数据预处理、递进PLS过程建模、过程优化实施)和10个步骤。以清开灵注射液中金银花和栀子前处理工艺为研究对象,利用企业实际生产数据,进行了TOPO仿真实验,结果表明TOPO可用以稳定终产品质量。首次提出概率轨迹的概念,并将其应用于多阶段间歇生产过程的理解和监控。TOPO充分利用并挖掘隐含在工业生产过程数据中的信息,为中药生产过程全程优化提供了系统的解决方案。
     上述四个方面的内容,将单元研究与多单元研究相结合,实验规模研究与生产规模研究相结合,理论研究与实际应用相结合,逐步深入、层层递进,所形成的中药生产过程“全程优化”方法和技术将有助于提高中药制剂生产全过程质量控制水平、促进中药制药产业的核心竞争力的提升。
The quality of traditional Chinese medicine (TCM) products is formed during their pharmaceutical production process, each unit of which has more or less impact on the final product. Along with the development and wide application of modern information technology, analytical technology, sensor and control technology, a number of advanced pharmaceutical innovations has been applied in the manufacturing process of TCM products. Some enterprises built and implemented the automatic and integrated control systems. All these works have greatly increased the level and efficiency of TCM production process, as well as the inner quality of the products.
     However, with the good development trend of TCM industry, there still exist some quality related and key problems that have been not solved properly. Firstly, variations from the raw herbal materials and the manufacturing process could propagate during the production, leading to the variability of the intermediate and the product. The quality control of Chinese medicine often emphasizes on the analytical aspect. Conventional analytical techniques are able to capture the phenomenon of process variation, but are insufficient to maintain the quality consistence across herbal products. Secondly, the optimization technologies, including the unit and system optimization, don't match up with the automatic and integrated production systems.
     In order to solve the above mentioned problems, the new concept and methodology named overall process optimization (OPO) of the TCM production is proposed in this thesis. The OPO methodology inherits the guidance from the TCM theory and system science theory. The most important character of OPO methodology is that it considers the transfer of products'quality from the overall production process point of view. The advanced information technology, analytical technology, pharmaceutical and engineering technology will be adapted and integrated in the implementation of OPO methodology. The main contents of OPO are to research the overall process modeling and simulation methods, the overall process optimization and control methods, and the risk evaluation and control methods. The goals of OPO are to realize the safe, smooth and optimized manufacture of the TCM product, to assure the predefined target of the TCM production, to stabilize the quality of the final products, and to accomplish the unity of "process control, process optimization, quality control, safety and efficacy". It is hoped that the OPO methodology will lay the foundation for the quality control of the overall process of TCM production. Around the content and aim of OPO. four parts are organized in this thesis.
     1. Preliminarily theoretical study of overall process optimization of TCM production
     The study of overall process optimization of TCM production belongs to the multidisciplinary research area. Therefore, a clear interpretation of the OPO theory will help to guide the production practice. In this part of the thesis, the relationship between the OPO theory and the TCM theory is analyzed, and the guiding role of TCM theory is established. The relationship between the OPO theory and the modern system science theory is also discussed, and how to apply the system science theory to the overall process optimization is investigated. The core theory of TCM pharmaceutics is investigated, and the position and function of OPO theory in the theory of TCM pharmaceutics is clarified. Based on the theoretical studies, the possible ways to realize the OPO methodology in actual production process as well as the research plan of this thesis are brought forward.
     2. Characteristic study of the unit process of TCM production
     In this part, the popular TCM production unit, i.e. alcohol precipitation, is taken as the research object. And with the help the near infrared (NIR) spectroscopy, a process analytical technology (PAT) tool, the character of TCM production unit is analyzed from both the quantitative and qualitative aspects. The process NIR spectra could reflect the whole feature and fingerprint of the pharmaceutical process. In the quantitative analysis, the PLS model is utilized to extract the response variable related information from the process NIR spectra. In qualitative analysis, the PCA algorithm and multivariate statistical process control (MSPC) model is used to extract the main pattern from the process NIR spectra. Results revealed that there was batch-to-batch variation in the TCM production, and such variation could be due to the process uncertainty. The quantitative and qualitative models need to be updated to cope with the process variations. The PAT methods are helpful to observe the phenomena of batch-to-batch variations, but deserve the limited competence of control within the production unit.
     3. Study of the quality transferring law of TCM production
     By applying the concept of ICH's Quality by Design (QbD), the establishment of design space for the TCM production process is proposed. Design space stands for a higher level and deep understanding of the TCM production process, and its development is based on process models. In this part, four kinds of data-driven approximation models, i.e. polynomial model, least square support vector machine (LS-SVM), radical basis function neural network (RBFNN) and Kriging model, are used to build surrogates for the water extraction and alcohol precipitation process of gardenia fruit. The hyperparameters of LS-SVM, RBFNN and Kriging models are optimized by a combination of genetic algorithm (GA) and adaptive modeling technique. Based on the process models, the relationships between the critical process parameters and critical quality attributes of the process unit are investigated by the response surface methodology, uncertainty analysis and sensitivity analysis.
     With the established process unit models and the help from the system science theory, a "partition-integration" modeling method is used to develop the multi-unit combinational model for the "extraction-concentration-alcohol precipitation" processes of gardenia fruit. Based on the multi-unit combinational model, the Monte Carlo simulation (MCS) is applied to approximate the multi-unit combinational design space, which is visualized by the parallel coordinate plot. Through the multi-unit combinational design space, the quality transfer laws of Geniposide and Genipin-1-β-D-gentiobioside are studied.
     4. Study of the strategy for the overall process optimization of TCM production
     This part presents a new strategy, target-oriented overall process optimization (TOPO), which can be used to assure the consistent quality in TCM products. The methodology of TOPO includes four parts, target definition, data pretreatment, process modeling and overall process optimization. The Bayesian approach is integrated into the optimization step. The mechanism of TOPO involves optimizing multiple units of the production system step by step, giving each unit optimal operating conditions consistent with the quality target. The probability trajectory is adjusted to monitor and optimize the production process. The proposed TOPO strategy was successfully applied to seven-unit manufacturing process used to produce Lonicerae Japonicae extract and six-unit production process of gardenia extract. Results demonstrated that TOPO could keep the production process in line with the predefined target and reduce the variability of the final products. In general, TOPO explores the full potential of legacy batch production data with respect to understanding and optimizing the herbal production process, and provides systematic ways to the overall process optimization of the TCM production.
     All in all, this thesis integrates the process unit research and multi-unit research, the laboratory scale research and production scale research, the theoretical study and practical application together. The proposed OPO methodologies and technologies for TCM production will help to enhance the level of quality control of TCM products as well as core competiveness of TCM industry.
引文
[1]展晓日,史新元,张培,等.乳块消片高效液相指纹图谱研究[J].中国实验方剂学杂志,2008,14(4):1-3.
    [2]Yang D, An Y, Jiang X, et al. Development of a novel method combining HPLC fingerprint and multi-ingredients quantitative analysis for quality evaluation of traditional Chinese medicine preparation. Talanta,2011,85(2):885-890.
    [3]Liu H, Su J, Yang X, et al. A novel approach to characterize chemical consistency of traditional Chinese medicine Fuzi Lizhong Pills by GC-MS and RRLC-Q-TOFMS. Chinese J Nat Med,2011,9(4):267-273
    [4]王振中,李家春,窦霞,等.液相色谱-质谱联用法对桂枝茯苓胶囊指纹图谱中特征峰的鉴定[J].南京中医药大学学报,2009,25(3):194-196.
    [5]Xie P, Chen S, Liang Y, et al. Chromatographic fingerprint analysis—a rational approach for quality assessment of traditional Chinese herbal medicine. J Chromatogr A,2006,1112(1-2):171-180.
    [6]Yan S, Xin W, Luo G, et al. An approach to develop two-dimensional fingerprint for the quality control of Qingkailing injection by high-performance liquid chromatography with diode array detection. J Chromatogr A,2005.1090(1-2):90-97.
    [7]梁逸曾,王兵,曾茂茂,等.色谱指纹图谱与中药质量控制[J].世界科学技术—中医药现代化,2010,12(1):94-98.
    [8]胡楚楚,李云飞,程翼宇.一种基于指纹图谱分析技术的中药生产工艺稳定性评价方法[J].中国中药杂志,2006,31(14):1151-1162.
    [9]孟宪生,艾立,罗国安,等.基于指纹图谱运用均匀设计优化腰痛宁胶囊提取方法的研究[J].中国新药杂志,,2009,18(10):942-945.
    [10]Cao Y, Wang L, Yu X, et al. Development of the chromatographic fingerprint of herbal preparations Shuang-Huang-Lian oral liquid. J Pharm Biomed Anal,2006,41(3):845-856.
    [11]Ni L, Zhang L, Hou J, et al. A strategy for evaluating antipyretic efficacy of Chinese herbal medicines based on UV spectra fingerprints. J Ethnopharm,2009.124(1):79-86.
    [12]Li Y. Hu Z, He L. An approach to develop binary chromatographic fingerprints of the total alkaloids from Caulophyllum robustum by high performance liquid chromatography/diode array detector and gas chromatography/mass spectrometry. J Pharm Biomed Anal,2007,43(5):1667-1672.
    [13]詹雪艳.史新元,段天璇.等.色谱指纹图谱组合相似度的算法[J].色谱,2010,28(11):1071-1076.
    [14]Wang Y, Xian J, Xi X, et al. Multi-fingerprint and quality control analysis of tea polysaccharides. Carbohyd Polym,2013,92(1):583-590.
    [15]国家药典委员会.中华人民共和国药典(2010年版,一部)[S].北京:中国医药科技出版社,2010:附录132-133.
    [16]谭曼容,鄢丹,邱玲玲,等.中药生产过程质量生物评控方法研究——以板蓝根颗粒为例[J].中国中药杂志,2012,37(8):1122-1126.
    [17]Ren Y, Zhang P, Yan D, et al. Application of microcalorimetry of Escherichia coli growth and discriminant analysis to the quality assessment of a Chinese herbal injection (Yinzhihuang). Acta Pharmaceut Sinica B,2012,2(3):278-285.
    [18]程跃,程文明,郑严.支持向量机在中药浓缩浓度软测量中的应用[J].计算机工程与应用,2010,46(5):240-242.
    [19]De Beer T, Burggraeve A, Fonteyne M, et al. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int J Pharm,2011, 417(1-2):32-47
    [20]Karande A, Heng P, Liew C. In-line quantification of micronized drug and excipients in tablets by near infrared (NIR) spectroscopy:Real time monitoring of tabletting process Int J Pharm,2010,396:63-74.
    [21]Saerens L, Dierickx L, Quinten T, et al. In-line NIR spectroscopy for the understanding of polymer-drug interaction during pharmaceutical hot-melt extrusion. Eur J Pharm Biopharm,2012,81(1):230-237.
    [22]Rosas J, Blanco M, Gonzalez J, et al. Quality by Design approach of a pharmaceutical gel manufacturing process, Part 2:Near infrared monitoring of composition and physical parameters. J Pharm Sci,2011,100(10):4442-4451.
    [23]Vanarase A, Jarvinen M, Paaso J, et al. Development of a methodology to estimate error in the on-line measurements of blend uniformity in a continuous powder mixing proces. Powder Technol,2013,241:263-271.
    [24]马群,乔延江,郝贵奇,等.近红外光谱法在中药原粉制剂均匀度控制中的应用[J].北京中医药大学学报,2006,12,,854-855.
    [25]宰宝禅,史新元,乔延江.基于支持向量机的中药片剂包衣质量分析[J].中国中药杂志,2010,35(6):699.
    [26]朱向荣,李娜,史新元,等.支持向量机与紫外光谱用于鉴别清开灵注射液六混中间体[J].光谱学与光谱分析,2008,28,1626-1629.
    [27]Xiong H, Gong X, Qu H. Monitoring batch-to-batch reproducibility of liquid-liquid extraction process using in-line near-infrared spectroscopy combined with multivariate analysis. J Pharm Biomed Anal,2012,70:178-87.
    [28]Wu Z. Sui C. Xu B. et al. Multivariate detection limits of on-line NIR model for extraction process of chlorogenic acid from Lonicera japonica. J Pharm Biomed Anal,2013,77:16-20.
    [29]Huang H, Qu H. In-line monitoring of alcohol precipitation by near-infrared spectroscopy in conjunction with multivariate batch modeling. Anal Chim Acta, 2011,707(1-2):47-56.
    [30]Wu Y, Jin Y, Li Y, et al. NIR spectroscopy as a process analytical technology (PAT) tool for on-line and real-time monitoring of an extraction process. Vib Spectrosc,2012,58:109-118.
    [31]黄挚雄,章志兵,罗安.多目标优化控制在中药提取中的应用[J].中南大学学报(自然科学版),2006,37(4):790-795.
    [32]程跃,程文明,郑严.基于自适应模糊PID的中药提取温度控制[J].控制工程,2009,16(5):527-530.
    [33]何伟,罗安,龙丽妲,等.多模型预测控制在中药浓缩工段中的应用[J].计算机测量与控制,2007.15(11):1484-1486.
    [34]刘翠萍,董良,金磊.西门子PCS7系统在中药提取浓缩生产过程中的应用[J].中药研究与信息,2004,6(7):23-37.
    [35]杨义芳.中药提取分离的组合与集成优化技术[J].中药材,2008,31(12):1915-1921.
    [36]Huang H, Xie Q, Li S. An operation mode of manufacturing system for traditional Chinese medicine based on equipment integration. Second Pacific-Asia Conference on Circuits, Communications and System (PACCS),2010:165-169.
    [37]罗宪礼.中药制药企业MES系统建设的研究[A].2009中国过程系统工程年会暨中国MES年会论文集[C],2009:485-487.
    [38]赵国钰.基于ERP的中药制药企业信息化应用[J].工业控制计算机2008,,(02):62-63.
    [39]程跃.中药制药过程控制及集成化生产若干关键问题研究[D].西南交通大学,2010.
    [40]U.S. Food Drug Administration (FDA), Pharmaceutical cGMPS for the 21st Century, Available from: http://www.fda.gov/Drugs/DevelopmentApprovalProcess/Manufacturing/QuestionsandAnswe rsonCurrentGoodManufacturingPracticescGMPforDrugs/UCM071836
    [41]U.S. Food and Drug Administration, Guidance for Industry:PAT-A Framework for Innovative Pharmaceutical Development, Manufacturing and Quality Assurance.2004. Available from:http://www.fda.gov/downloads/Drugs/.../Guidances/ucm070305.pdf
    [42]International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), ICH Q8 (R2):Pharmaceutical Development,2009.
    [43]International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), ICH Q9:Quality Risk Management,2005
    [44]International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), ICH Q10:Pharmaceutical Quality System,2008
    [45]Berridge J. PQLI :Current Status and Future Plans. J Pharm Innov,2009,4(1):1-3.
    [1]田君,池汝安,高洪,等.乙醇提取土茯苓黄酮甙的动力学研究[J].天然产物研究与开发,2005,17(1):11-15.
    [2]韩林辛,倪键,玄律,等.刺五加水煎煮提取动力学模型的建立[J].中成药,2011,33(2):240-245.
    [3]左玉帮,曾爱武,袁希钢,等.从豆粕中提取大豆异黄酮传质动力学研究[J].高校化学工程学报,2008,22(2):200-204.
    [4]代宏哲,宋纪蓉,徐抗震,等.苦豆籽中生物总碱提取动力学模型研究[J].中成药,2007,,29(9):1376-1379.
    [5]刘云宏,朱文学,马海乐.地黄真空红外辐射干燥模型[J].农业机械学报,2010,41(1):122-126.
    [6]汤兵勇,王德进,席国强等.中药粉针剂喷雾干燥过程及其机理模型[J].黑龙江大学自然科学学报,1995,12(3):29-32.
    [7]卢玲.中药颗粒干燥特性与振动流化床干燥模型及模拟研究[D].天津大学,2006.
    [8]沈平孃,刘志远,黄凯中等.中药制药干燥工艺过程技术的工程化研究[J].世界科学技术—中医药现代化,2010,12(1):119-121.
    [9]Martinez J, Monteiro A, Rosa P, et al. Multicomponent model to describe extraction of Ginger oleoresin with supercritical carbon dioxide. Ind Eng Chem Res, 2003,42(5),1057-1063.
    [10]Jia D, Li S, Xia L. Supercritical CO2 extraction of Plumula nelumbinis oil:Experiments and modeling. J Supercrit Fluids,2009,50:229-234.
    [11]陆文超,魏杰,丁忠伟,等.膜蒸馏法浓缩中药提取液过程膜污染机理类型的确定[J].北京化工大学学报(自然科学版),2011,(01):1-4.
    [12]魏巧莲.中药提取液絮凝流体动力学的研究[D].天津大学,2005.
    [13]Liu X, Wang J, Zhou C, et al. Preparative separation and enrichment of syringopicroside from Folium syringae leaves with macroporous resins. J Biomed Biotechnol,2010:572-570.
    [14]姚广涛,冯燕,魏雄辉,等.应用均匀设计优化中药复方冰茶栓[J].辽宁中医药杂志,2006.33(5):609-610.
    [15]邹小艳,魏立新,杜玉枝,等.星点设计-效应面法优化川西獐牙菜提取工艺[J].中草药,2008,39(5):692-696.
    [16]伍永富,吴品江,魏萍,等Box-Behnken设计-效应面法优化木犀草素-β-环糊精包合物的制备工艺研究[J].中草药,2010,41(7):1094-1099.
    [17]郑平,王文忠,马占新,等.二次回归正交法优化清火栀麦口服液的提取工艺[J].中药材,2010,33(2):285-287.
    [18]何国勇,周牡丹,童胜强,等.响应面法优化丹参醇沉工艺的研究[J].中国现代应用药学,2010,27(2):118-122.
    [19]王统一,赵兵,王玉春.正交试验-人工神经网络模型优化龙眼多糖的超声提取工艺[J].中草药,2006,37(10):1514-1516.
    [20]李玲娟,李刚.BP神经网络在中药水提液膜过滤中的应用[J].计算机仿真,2009,26(6):195-199.
    [21]文辉.基于神经网络的中药片剂包衣建模研究[D].南昌航空大学,2009.
    [22]李军,黄海宽,曹琦.基于支持向量机的中药工艺参数优化研究[J].计算机工程与应用,2007,43(36):205-207.
    [23]韩志峰,沈洁,郭立玮,等.支持向量机算法用于中药挥发油含油水体超滤通量的预测[J].中国医药工业杂志,2011,42(1):21-25.
    [24]王顺岩,张建新,刘健洪.化工过程的集成建模方法研究[J].制造业自动化,2009,,31(10):139-141.
    [25]国蓉,李剑君,国亮,等.甘草酸超声提取工艺的混合神经网络模拟及优化[J].西 安工业大学学报,2006,26(4):307-311.
    [26]Peng Y, Luo J, Yang F. Study on control and optimization of soft capsule dropping pills based on intelligent method.2010 8th IEEE International Conference on Control and Automation,2010:1163-1168.
    [27]刘砚墨,李页瑞,陈勇,等.多指标综合评分法优选赤芍浸膏微波真空低温干燥工艺[J].中药材,2010,33(9):1497-1500.
    [28]张源,周琴妹,王璐.多指标综合评分法研究中药半浸膏片的制粒工艺[J].中国药师,2011,14(2):182-185.
    [29]Harrington E C. The desirability function. Ind Qual Contr,1965,21:494-498.
    [30]董艳,李妹婧,郑惠华,等.响应曲面优化超声波提取灵芝多糖工艺研究[J].食品科学,2009,30(16):98-101.
    [31]马勇,杜守颖,黎迎,等.醒脑静固体制剂中挥发性成分环糊精包合物制备工艺[J].中国实验方剂学杂志,2011,17(14):7-11.
    [32]王睿,商洪才,王永炎,等ED-NM-MO三联法对丹参三七配比的多目标优化研究[J].天津中医药,2006,23(3):242-247.
    [33]杨铭,汪文娟.BP神经网络结合遗传算法用于丹参提取工艺的多目标优化[J].药学服务与研究,2007,7(6):417-421.
    [34]Zhang L, Gong X, Qu H. Optimizing the alcohol precipitation of Danshen by response surface methodology. Sep Sci Technol,2013,48(6):977-983.
    [35]任凤莲,谷芳芳,吴梅林,等.利用响应面分析法优化山楂中总黄酮提取条件[J].天然产物研究与开发,2006,18:126-129.
    [36]吴大章,吴品江,杨明.设计-效应面法优化紫苏叶挥发油-p-环糊精包合物制备工艺[J].成都中医药大学学报,2009,32(1):81-87.
    [37]Yin G, Dang Y. Optimization of extraction technology of the Lycium Barbarum polysaccharides by Box-Behnken statistical design. Carbohyd Polym,2008,74:603-610.
    [38]焦荣荣.可视化分析与神经网络用于枇杷叶中提取熊果酸工艺实验研究[D].安徽师范大学,2010.
    [39]Grossmann I. Enterprise-wide Optimization:A new frontier in process systems engineering. AIChE J,2005,51(7):1846-1857.
    [40]柴天佑.生产制造全流程优化控制对控制与优化理论方法的挑战[J].自动化学报,,2009,35(6):641-649.
    [41]Varma V, Reklaitis G, Blau G, et al. Enterprise-wide modeling & optimization—An overview of emerging research challenges and opportunities. Comput Chem Eng,2007,31:692-711.
    [42]De Araujo A. Studies on plantwide control. Norwegian University of Science & Technology,2007.
    [43]Yao Y, Gao F. Phase and transition based batch process modeling* and online monitoring. J Process Contr,2009,19(5):816-826.
    [44]Biegler L, Zavala V. Large-scale nonlinear programming using IPOPT:An integrating framework for enterprise-wide dynamic optimization. Comput Chem Eng,2009,33(3):575-582
    [45]Misener R, Gounaris C, Floudas C. Mathematical modeling and global optimization of large-scale extended pooling problems with the (EPA) complex emissions constraints. Comput Chem Eng,2010,34,9(7):1432-1456.
    [46]De Araujo A, Govatsmark M, Skogestad S. Application of plantwide control to the HDA process. I-steady-state optimization and self-optimizing. Contr Eng Pract,2007,15(10):1222-1237.
    [47]Bildea C, Kiss A. Plantwide control of a biodiesel process by reactive absorption. Comput Aided Chem Eng,2010,28:535-540.
    [48]Gerogiorgis Dimitrios I, Barton P. Steady-state optimization of a continuous pharmaceutical process. Comput Aided Chem Eng,2009,27:927-932.
    [1]印会河.中医基础理论[M].上海:上海科学技术出版社,1984,5-9.
    [2]熊皓舒,傅迎,聂晶,等.中药生产多工序多指标统计质量控制(MMSQC)方法[J].中国中药杂志,2012,37(13):1935-1941.
    [3]钱学森等.论系统工程[M].上海:上海交通大学出版社,2007.
    [4]刘兴堂等.复杂系统建模理论、方法与技术[M].北京:科学出版社,2008:4.
    [5]钱学森,于景园,戴汝为.一个科学新领域-开放的复杂巨系统及其方法论[J].自然杂志,1990,13(1):3-10
    [6]吕宪萃.基于Petri网的生物过程建模模拟方法的研究[D].哈尔滨工业大学,2006.
    [7]Gotovac H, Andricevic R, Gotovac B. Multi-resolution adaptive modeling of groundwater flow and transport problems. Adv Water Resour,2007,30(5):1105-1126.
    [8]Ma T, Ma D. Multidisciplinary design-optimization methods for aircrafts using large-scale system theory. Systems Engineering-Theory & Practice,2009,29(9):186-192.
    [9]Melin P, Castillo O. An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory. Inform Sciences,2007, 177(7):1543-1557.
    [10]Elena S, Sanjuan R. RNA viruses as complex adaptive systems. Biosystems,2005,81(1):31-41.
    [11]邱凯昌,李德毅,李德仁.云理论及其在空间数据发掘和知识发展中的应用[J].中国图象图形学报,1999,4(11):930-934.
    [12]邢宗义,贾利民.复杂工业过程的模糊建模与控制[J].中国铁道科学,2005,26(3):139-140.
    [13]Kutrib M, Vollmar R, Worsch T. Introduction to the special issue on cellular automata. Parallel Comput,1997,23(11):1567-1576.
    [14]Kim D, Seo S, Park G. Hybrid GMDH-type modeling for nonlinear systems:Synergism to intelligent identification. Adv Eng Softw,2009,40(10):1087-1094.
    [15]Li S, Zhang B. Traditional Chinese medicine network pharmacology:theory, methodology and application. Chinese J Nat Med,2013,11(2):0110-0120.
    [16]王耘,史新元,张燕玲,等.系统生物学意义下的中药研发与药性理论[J].世界科学技术一中医药现代化,2006,8(1):39-43.
    [17]罗国安,琼麟,刘清飞,等.整合化学物质组学的整体系统生物学——中药复方配伍和作用机理研究的整体方法[J].2007,9(1):10-15.
    [18]梁逸曾,易伦朝,许青松.中药现代化研究与化学计量学[J].中国科学B辑:化学,2008,38(4):278-287.
    [19]王连心,孟庆刚.开放的复杂巨系统及其方法在中医药领域中的应用[J].北京中医药大学学报.2008,,31(2):82-85.
    [20]李伯虎,柴旭东,侯宝存,等.复杂工程系统高效能仿真技术中的几个问题[J].高性能计算发展与应用,2010,(4):3-12.
    [21]徐莲英,陶建生,冯怡,等.中药制剂发展的回顾[J].中成药,2000,22(1):18.
    [22]曹春林,许典元,常新全.论新中成药设计与实验研究[J].中药新药与临床药 理,1995,6(1):12-14.
    [23]谢秀琼.中药制剂研究中的处方筛选和剂量确定[J].中药新药临床药理,1993,4(2):40-42.
    [24]谢秀琼.中药制剂研究中的剂型及工艺[J].中药新药与临床药理,1994,5(2):54-56.
    [25]谢秀琼.对中药制剂工艺研究评价指标的浅见[J].中药新药与临床药理,1997,10(4):197-198.
    [26]中国科学技术协会,中华中医药学会.中医药学学科发展报告[M].北京:中国科学技术出版社,2009,188-194.
    [27]郑虎占.试从《伤寒论》干姜附子汤方证谈中医药学的理法方药与剂工质效[J].北京中医药大学学报,2008,31(6):365-368.
    [28]张伯礼,王永炎.方剂关键科学问题的基础研究——以组分配伍研制现代中药[J].中国天然药物,2005,3(5):258-261.
    [29]王阶,郭丽丽,王永炎.中药方剂有效成(组)分配伍研究[J].中国中药杂志,2006,31(1):5-9.
    [30]杨明,冯怡,徐德生,等.现代中药复方释药系统的构建[J].世界科学技术——中医药现代化,2006,8(5):10-15.
    [31]张萍,杨燕,鄢丹,等.多指标成分含量测定与指纹图谱分析在中药制备工艺与质量控制中的应用[J].中华中医药杂志,2010,25(1):120-123.
    [32]谢培山.色谱指纹图谱分析是中草药质量控制的可行策略[J].中药新药与临床药理,,2001,12(3):141.
    [33]肖小河,金城,赵中振.论中药质量控制与评价模式的创新与发展[J].中国中药杂志,2007,32(14):1377-1381.
    [34]王广基,郝海平,阿基业,等.代谢组学在中药方剂整体药效作用及机制研究中的应用与展望[J].中国天然药物,2009,7(2):82-89.
    [35]李晓宇,郝海平,王广基,等.三七总皂苷多效应成分整合药代动力学研究[J].中国天然药物,2008,6(5):377-381.
    [36]Pappa D, Stergioul L, Telonis P. The role of knowledge management in the pharmaceutical enterprise. Int J Technol Manage,2009,47,1/2/3,127-144.
    [37]International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), Quality Guidelines Q10 Pharmaceutical Quality System. Available from: http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html
    [38]U.S. government, Office of Science and Technology Policy Executive Office of the President, "Big Data" Initiative. Available from: http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.p df
    [39]乔延江,李澎涛,苏钢强,等.中药(复方)KDD研究开发的意义[J].北京中医药大学学报,1998,21(3):15-17.
    [40]竹内弘高,野中郁次郎.知识创造的螺旋[M].北京:知识产权出版社,2006.
    [1]U.S. Food Drug Administration, Guidance for Industry PAT:A Framework for Innovative Pharmaceutical Development, Manufacturing and Quality Assurance,2004. Available from: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances /UCM070305.pdf.
    [2]Yip W, Gausemel I, Sande S, et al. Strategies for multivariate modeling of moisture content in freeze-dried mannitol-containing products by near-infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis,2012,70:202-211.
    [3]马群,乔延江郝贵奇,等.近红外光谱法在中药原粉制剂均匀度控制中的应用[J].北京中医药大学学报,2006,29(12):854-855.
    [4]臧鹏,李军会,于燕波,等.六味地黄丸近红外光谱定性分析方法的建立[J].中华中医药杂志,2011,26(12):2951-2954.
    [5]Zhu X, Li N, Shi X, et al. Analysis of geniposide and total nitrogen content in qingkailing injection intermediate by near infrared spectroscopy and synergy interval partial least squares. Chem J Chinese U,2008,29(5):906-911.
    [6]Norgaard L. iToolbox for MATLAB,2005, http://www.models.life.ku.dk/iToolbox.
    [7]Sarraguca M C, Lopes J A. Quality control of pharmaceuticals with NIR:From lab to process line. Vib Spectrosc,2009,49(2):204-210.
    [8]Collell C, Gou P, Arnau J, et al. Non-destructive estimation of moisture, water activity and NaCl at ham surface during resting and drying using NIR spectroscopy. Food Chem, 2011,129(2):601-607.
    [9]Blanco M, Romero M A, Alcala M. Strategies for constructing the calibration set for a near infrared spectroscopic quantitation method. Talanta,2004.64(3):597-602.
    [10]Wang Y, Veltkamp D, Kowalski B. Multivariate instrument standardization. Anal Chem, 1991,63:2750-2756.
    [11]Bouveresse E, Hartmann C, Massart D, et al. Standardization of near-infrared spectrometric instruments. Anal Chem,1996,68:982-990.
    [12]Blank T, Sum S, Brown S. Transfer of near-infrared multivariate calibrations without standards. Anal Chem,1996,68:2978-2995.
    [13]Du W, Chen Z, Zhong L, et al. Maintaining the predictive abilities of multivariate calibration models by spectral space transformation. Anal Chim Acta,2011.690:64-70.
    [14]Chen Z, Li L, Yu R, et al. Systematic prediction error correction:a novel strategy for maintaining the predictive abilities of multivariate calibration models. Analyst,2011,136:98-106.
    [15]Zeaiter M, Roger J, Bellon-Maurel V. Dynamic orthogonal projection. A new method to maintain the on-line robustness of multivariate calibrations. Application to NIR-based monitoring of wine fermentation. Chemom Intell Lab Syst.2006,80(2):227-235.
    [16]Jin L, Xu Q, Smeyers-Verbeke J, et al. Updating multivariate calibration with the Delaunay triangulation method:The creation of a new local model. Chemom Intell Lab Syst, 2006,80(1):87-98.
    [17]Li W, Xing L, Fang L, et al. Application of near infrared spectroscopy for rapid analysis of intermediates of Tanreqing injection. J Pharm Biomed Anal,2010,53(3):350-358.
    [18]Capron X, Walczak B, De Noord O, et al. Selection and weighting of samples in multivariate regression model updating. Chemom Intell Lab Syst,2005,76(2):205-214.
    [19]Blanco M, Cueva-Mestanza R, Peguero A. NIR analysis of pharmaceutical samples without reference data:Improving the calibration. Talanta,2011,85(4):2218-2225.
    [20]Rodionova O, Pomerantsev A. Simple view on Simple Interval Calculation (SIC) method. Chemom Intell Lab Syst,2009,97(1):64-74.
    [21]Pomerantsev A. Progress in chemometrics research, Nova Science Publisher, New York, 2005,43-64.
    [22]Pomerantsev A, Rodionova O, Hoskuldsson A. Process control and optimization with simple interval calculation method. Chemom Intell Lab Syst,2006,81(2):65-179.
    [23]Pomerantsev A, Rodionova O. Hard and soft methods for prediction of antioxidants' activity based on the DSC measurements. Chemom Intell Lab Syst,2005,79(1-2):73-83.
    [24]Semenov Institute of Chemical Physics, Software implementation of SIC method for MATLAB,2008, http://rcs.chph.ras.ru/sic.
    [25]Rodionova O, Esbensen K, Pomerantsev A. Application of SIC (simple interval calculation) for object status classification and outlier detection—comparison with regression approach. J Chemom,2004,18(9):402-413.
    [26]Xu B, Lin Z, Shi X, et al. NIR Determination of three critical quality attributes in alcohol precipitation process of Lonicerae Japonicae with uncertainty analysis. International Conference on Biomedical Engineering and Biotechnology,2012,1566-1571.
    [27]Hu K, Yuan J. Multivariate statistical process control based on multiway locality preserving projections. J Process Contr,2008,18:797-807.
    [28]Huang H, Qu H. In-line monitoring of alcohol precipitation by near-infrared spectroscopy in conjunction with multivariate batch modeling. Anal Chim Acta,2011,707:47-56.
    [29]Jin Y, Ding H, Liu X, et al. Investigation of an on-line detection method combining near infrared spectroscopy with local partial least squares regression for the elution process of sodium aescinate. Spectrochim Acta A,2013,109:68-78.
    [30]Wu Z, Tao O, Dai X, et al. Monitoring of a pharmaceutical blending process using near infrared chemical imaging. Vib Spectrosc.2012.63:371-379.
    [31]Wu Y, Jin Y, Li Y. et al. NIR spectroscopy as a process analytical technology (PAT) tool for on-line and real-time monitoring of an extraction process. Vib Spectrosc,2012,58: 109-118.
    [32]Momose W, Imai K, Yokota S, et al. Process analytical technology applied for end-point detection of pharmaceutical blending by combining two calibration-free methods: Simultaneously monitoring specific near-infrared peak intensity and moving block standard deviation. Powder Technol,2011,210(2):122-131.
    [33]International Conference on Harmonisation, ICH Q8 (R2):Pharmaceutical Development, 2009.
    [34]Wu H, White M, Khan M. Quality-by-Design (QbD):An integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development. Int J Pharm,2011,405(1-2):63-78.
    [35]Jiang C, Flansburg L, Ghose S, et al. Defining process design space for a hydrophobic interaction chromatography (HIC) purification step:application of quality by design (QbD) principles. Biotechno Bioeng,2010,107(6):985-997.
    [36]Puchert T, Holzhauer C, Menezes J, et al. A new PAT/QbD approach for the determination of blend homogeneity:Combination of on-line MRS analysis with PC Scores Distance Analysis (PC-SDA). Eur J Pharm Biopharm,2011,78(1):173-182.
    [1]Gelsey A, Schwabacher M, Smith D. Using modeling knowledge to guide design space search. Artif Intell,1998,101(1-2):35-62.
    [2]Gries M. Methods for evaluating and covering the design space during early design development. Integration,2004,38(2):131-183.
    [3]Cavin L, Fischer U, Mosat A, et al. Batch process optimization in a multipurpose plant using Tabu Search with a design-space diversification. Comput Chem Eng,2005,29(8):1770-1786.
    [4]Giordano A, Barresi A A, Fissore D. On the use of mathematical models to build the design space for the primary drying phase of a pharmaceutical lyophilization process. J Pharm Sci,2011,100(1):311-324.
    [5]Adam S, Suzzi D, Radeke C, et al. An integrated Quality by Design (QbD) approach towards design space definition of a blending unit operation by Discrete Element Method (DEM) simulation. Eur J Pharm Sci,2011,42(1-2):106-115.
    [6]Huang J, Kaul G, Cai C, et al. Quality by design case study:An integrated multivariate approach to drug product and process development. Int J Pharm,2009,382 (1-2):23-32.
    [7]Streefland M, Van Herpen PFG, Van de Waterbeemd B, et al. A practical approach for exploration and modeling of the design space of a bacterial vaccine cultivation process. Biotechnol Bioeng,2009,104(3):492-504.
    [8]Nosal R, Schultz T. PQLI definition of criticality. J Pharm Innov,2008,3(2):79-78.
    [9]Garcia-Munoz S, Dolph S, Ward II H W. Handling uncertainty in the establishment of a design space for the manufacture of a pharmaceutical product. Comput Chem Eng,2010,34(7):1098-1170.
    [10]Lepore J, Spavins J. PQLI design space. J Pharm Innov,2008,3(2):79-87.
    [11]张兆旺.中药药剂学[M].北京:中国中医药出版社,2003:372.
    [12]中华人民共和国药典.一部[S].2010:401-1248.
    [13]李军,黄海宽,曹琦.基于支持向量机的中药工艺参数优化研究[J].计算机工程与应用,2007,43(36):205-207.
    [14]焦荣荣.可视化分析与神经网络用于枇杷叶中提取熊果酸工艺实验研究[D].安徽师范大学,2010:30-43.
    [15]段宝忠,黄林芳,陈士林UPLC-ELSD法同时测定伊贝母中贝母辛和西贝母碱的含量[J].药学学报,2010,45(12):1541-1544.
    [16]周跃华.关于中药复方新药投料方式的思考[J].中成药,2009,31(10):1588-1590.
    [17]U.S. Food and Drug Administration. Draft guidance for industry and review staff. Target product profile—a strategic development process tool. Mar.,2007. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances /ucmO8O593.pdf
    [18]Naseem A, Areeg A, Ahmed S, et al. Quality by Design approach for formulation development:A case study of dispersible tablets. Int J Pharm,2012,423:167-178.
    [19]Lionberger R, Lee S, Lee L, et al. Quality by Design:Concepts for AND As. AAPS J. 2008,10(2):268-276.
    [20]刘泽玉,苏柘僮,杨明,等.联用Plackett-Burman与Box-Behnken设计控制青黛制备过程中靛玉红的生成[J].中国中药杂志.2010.35(19):2551-2555.
    [21]杨阳.中药提取工艺文献知识组织方法研究[D].中国中医科学院.2011.
    [22]王强,金城,肖小河,等.中药制剂工艺改变性质的分析与评价方法[J].中国药学杂志,2009,44(15):1121-1124.
    [23]曹春林,许典元,常新全.论新中成药设计与实验研究[J].中药新药与临床药理,1995,6(1):12-14.
    [24]刘云宏,朱文学,马海乐.地黄真空红外辐射干燥模型[J].农业机械学报,2010,41(1):122-126.
    [25]卢玲.中药颗粒干燥特性与振动流化床干燥模型及模拟研究[D].天津大学,2006.
    [26]Jia D, Li S, Xia L. Supercritical CO2 extraction of Plumula nelumbinis oil:Experiments and modeling. J Supercrit Fluid,2009,50:229-234.
    [27]李玲娟,李刚.BP神经网络在中药水提液膜过滤中的应用[J].计算机仿真,2009,26(6):195-199.
    [28]Davis B, Lundsberg L, Cook G. PQLI control strategy model and concepts. J Pharm Innov,2008,3(2):95-104.
    [29]廖辉,王林,单晓庆,等.栀子中五个环烯醚萜苷的研究[J].西南民族大学学报,2009,35(6):1228-1232.
    [30]陈红,肖永庆,李丽,等.桅子化学成分研究[J].中国中药杂志,2007,32(11):1041-1043.
    [31]谢静,冷静.中药栀子水提工艺研究.中国药业,2008,17(21):43-44.
    [32]Krige D G A statistical approach to some basic mine valuation problems on the wit water srand. Journal of the Chemical, Metallurgical and Mining Society of South Africa, 1951,52(6):119-139.
    [33]Lee K, Park G. A global robust optimization using kriging based approximation model. JSME Int J,2006,49(3):779-788.
    [34]Li M, Li G, Azarm S. A Kriging metamodel assisted multi-objective genetic algorithm for design optimization. J Mech Design,2008,130:031401-1-10.
    [35]Moody J, Darken C. Fast learning in networks of locally-tuned processing units. Neural Comput,1989,2(2):281-284
    [36]Vapnik V, Lerner A. Pattern recognition using generalized portrait method. Automat Rem Contr,1963,24:774-780.
    [37]Suykens J, Van Gestel T, De Brabanter J, et al. Least squares support vector machines. Singapore:World Scientific Publishing.2002
    [38]Thissen U. Ustun B, Melssen W J, et al. Multivariate calibration with least-squares support vector machine. Anal Chem,2004,76(11),3099-3105.
    [39]Debruyne M, Serneels S, Verdonck T. Robustified least squares support vector classification. J Chem.2009.23(9):479-486.
    [40]Gorissen D, Couckuyt I, Laermans E, et al. Multiobjective surrogate modeling, dealing with the 5-percent problem. Eng Comput-Germany,2010,26(1):81-89.
    [41]Gorissen D, Crombecq K, Couckuyt I, et al. A surrogate modeling and adaptive sampling toolbox for computer based design. J Mach Learn Res,2010,11:2051-2055.
    [1]Wold S, Sjostrom M, Eriksson L. PLS-regression:a basic tool of chemometrics. Chemom Intel Lab Syst,2001,58,109-130.
    [2]Wold H. Path models with latent variables:the NIPALS approach, in:Blalock HM. Quantitative sociology:international perspectives on mathematical and statistical model building. Academic Press:New York,1975,307-357.
    [3]De Jong S. SIMPLS:An alternative approach to partial least squares regression. Chemom Intel Lab Syst,1993,18,251-263.
    [4]Picard R R, Cook R D. Cross-validation of regression models. J Am Stat Assoc,1984,79, 575-583.
    [5]Coleman M C, Block D E. Bayesian parameter estimation with informative priors for nonlinear systems. AIChE J,2006,52,651-667.
    [6]Del Castillo E. Process optimization:a statistical approach. Springer:Berlin,2007, 336-337.
    [7]Naes T, Mevik B. Understanding the collinearity problem in regression and discriminant analysis. J Chemom,2001,15,413-426.
    [8]Zhang H, Hu P, Luo G, et al. Screening and identification of multi-component in Qingkailing injection using combination of liquid chromatography/time-of-flight mass spectrometry and liquid chromatography/ion trap mass spectrometry. Anal Chim Acta,2006, 577,190-200.
    [9]O'Brien R M. A caution regarding rules of thumb for variance inflation factors. Qual Quant,2007,41,673-690.
    [10]Shen F, Niu X, Yang D, et al. Determination of amino acids in Chinese rice wine by Fourier transform near-infrared spectroscopy. J Agric Food Chem,2010,58,9809-9816.
    [11]International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), Q10 Pharmaceutical Quality System.2008, http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html
    [12]Troup G M, Georgakis C. Process systems engineering tools in the pharmaceutical industry. Comput Chem Eng,2013,51,157-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700