基于ISSR、AFLP分子标记和Cyclins基因克隆的四倍体鱼进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多倍化不仅仅是植物进化的特征之一,在包括从原生动物到人类的所有动物的进化历程中都可能发生过多倍化事件。特别是在鱼类,多倍化更是一个非常普遍的现象。多倍化导致的基因组复制和基因拷贝的增加,为生物的进化跃迁提供了必须的物质基础,在脊椎动物的进化历程中起着非常重要的作用。
     异源四倍体鲫鲤是通过远缘杂交的方式首次在脊椎动物中人工培育的两性可育、遗传性状稳定的多倍体鱼,其体细胞包含2套红鲫和2套鲤鱼染色体。为了了解异源四倍体鲫鲤形成后基因组的进化情况,本研究以异源四倍体鲫鲤及其原始亲本为材料,从基因组和单个基因的变化两个角度探讨了异源四倍体鲫鲤的基因组变化及其与原始父母本的分子进化关系。研究结果对进一步了解鱼类乃至脊椎动物多倍体的形成与进化机制具有重要的意义。主要研究内容如下:
     采用ISSR和AFLP分子标记,对异源四倍体鲫鲤及其原始亲本群体的遗传结构及基因组的变化进行分析。研究结果表明,异源四倍体鲫鲤经过连续15代的培育,仍然保持了原始亲本遗传性状的稳定性。但遗传相似率表明,异源四倍体鲫鲤与其原始母本红鲫的亲缘关系更近,表现出偏母性遗传的特性;DNA带纹分析发现,在异源四倍体鲫鲤基因组中发生了原始亲本条带的丢失,两种分子标记统计的原始母本红鲫基因组带纹消失比例分别为19%和26.5%,原始父本鲤鱼基因组带纹消失的比例分别为46.8%和28.4%,父本基因组比母本基因组的带纹消失比例大。同时,在异源四倍体鲫鲤群体中发现一些原始父母本没有的DNA条带。
     Cyclin A1和B1基因是细胞周期调控关键基因。首次分离和克隆出异源四倍体鲫鲤及其原始亲本Cyclin A1和B1基因cDNA全长序列,在此基础上,对异源四倍体鲫鲤及其原始亲本进行了序列同源性比较及碱基差异位点分析。结果表明,异源四倍体鲫鲤与原始父母本编码区序列同源性都在90%以上,特别是在周期蛋白框区的序列同源性更高(94%以上)。而四倍体鲫鲤与原始母本红鲫的同源性高于与原始父本的同源性。系统进化树也显示异源四倍体鲫鲤总是首先与其原始母本红鲫聚合,也表现出与偏母性遗传的特性。在Cyclin A1基因编码区,异源四倍体鲫鲤相对于原始母本红鲫的碱基变异水平为1.8%、相对于原始父本鲤鱼的碱基变异水平为4.7%;在Cyclin B_l基因编码区,相对于原始母本的碱基变异水平为O.9%,相对于原始父本的碱基变异水平为5.7%,说明在四倍体鲫鲤中原始父本比原始母本的Cyclin A1和B1基因碱基变异程度更高。Cyclin A1和B1氨基酸序列比对发现,异源四倍体鲫鲤分别存在4个和2个与其原始父母本不同的位点,新的氨基酸位点的产生是由密码子单个碱基位点的非同义突变所致。
     根据斑马鱼Cyclin B1基因的剪切方式,设计4对兼并引物,首次扩增出异源四倍体鲫鲤及其原始亲本红鲫和鲤鱼Cyclin B基因8个内含子,内含子剪切位点符合GT-AG规则。将异源四倍体鲫鲤Cyclin B基因内含子合并序列与原始母本红鲫和原始父本鲤鱼进行比较,它们之间的同源性分别为96.8%和66.4%。通过第2对引物(P3/P4)PCR扩增,获得三倍体鲫鲂、四倍体鲫鲂、五倍体鲫鲂和团头鲂、草鱼、鲢鱼、鳙鱼等鲤科鱼Cyclin B基因部分DNA序列。结合异源四倍体鲫鲤及其原始亲本红鲫和鲤鱼Cyclin B基因对应DNA序列,对不同倍性鲤科鱼类Cyclin B基因DNA片段序列进行比较分析。结果表明:由相同引物扩增的染色体数为48的鲂、草、鲢、鳙鱼,只扩增出1条DNA片段,片段长度分别为750 bp、950 bp、720 bp和720 bp,而染色体数目加倍的红鲫、鲤鱼、异源四倍体鲫鲤、异源四倍体鲫鲂,扩增出2条DNA片段(1200 bp和900 bp),三倍体和五倍体鲫鲂扩增出3条DNA片段(1200 bp、900 bp和750 bp),每个DNA片段均含Cyclin B基因第2、3内含子和第2、3、4外显子。序列分析表明,四倍体鲫鲤、三倍体鲫鲂、四倍体鲫鲂和五倍体鲫鲂与其母本1200 bp片段同源性分别为99.5%、98.9%、99.5%和88.7%,与母本900 bp片段同源性分别为97.5%、94.6%、94.2%和89.9%,说明四倍体鲫鲤与多倍体鲫鲂1200 bp和900 bp Cyclin B基因片段与母本红鲫同源性高,在进化上具有偏母性遗传特性。而三倍体和五倍体鲫鲂的750 bp CyclinB基因片段与父本同源性分别高达98.6%和98.2%,说明其来自父本团头鲂。在两性可育的异源四倍体鲫鲤和异源四倍体鲫鲂中存在各自父本Cyclin B基因片段序列消除现象。此外,用Cyclin B基因内含子3序列构建不同倍性鲤科鱼的系统进化树,‘结果表明,由Cyclin B基因内含子序列构建的系统进化树可以正确反映亲缘关系较近的鲤亚科属间鱼类系统进化关系,而不适合亲缘关系较远的亚科间杂交鱼类系统进化分析。
     采用荧光定量PCR方法,比较了雌核发育二倍体鲫鲤与普通红鲫和鲤鱼早期卵巢Cyclin A1和B1基因的表达,结果表明两个基因在雌核发育二倍体鲫鲤早期卵巢的表达量明显低于红鲫和鲤鱼早期卵巢的表达量,同时也低于二倍体鲫鲤成熟期卵巢表达量。雌核发育二倍体鲫鲤早期卵巢Cyclin A1和B1基因的低量表达,推测与早期卵巢生殖细胞核内复制有关。
Polyploidy is not only a typical characteristic of plant species,but can also be found in almost all organisms from protists to humans,which is especially a more common phenomenon in fishes.Duplication of the genome,and extra-copies of genes resulting from polyploidy,provide the necessary genetic materials for biological evolution and play an important role in the evolutionary process of the vertebrate.
     The allotetraploid produced by distant hybridization(red crucian carp♀X common carp♂),is the first case artificial polyploid fish with the bisexual fertile and stable inheritance in vertebrate in the wold.It has been proved to have two chromosome sets of red crucian carp and two chromosome sets of common carp.In order to understand how allotetraploid genomes evolve after their formation,in this study,we investigated the genomic change and molecular evolution relationships of the allotetraploid and their original parents.The research results will have great significance of further understanding the formation and evolution mechanisms of the polyploid in the fish and even vertebrate.The major results in this paper were presented as follows:
     Population genetic structure and genomic change of the allotetraploid and their Original parents were revealed by ISSR-PCR and AFLP-PCR markers.The abundant genetic polymorphism were detected among the three populations.The genetic distances and cluster analysis indicated that the allotetraploids inherited the greater part of genetic materials from their original parents after 15 successive generations,and kept the stable genetic characteristics.But the allotetraploids had a higher sister relationships with their original maternal red crucian carp and were inclined to inherite more genetic information from the female parents;The analysis of DNA fingerprintings showed that the allotetraploids,derived from crossing of two original parents genomes,had undergone DNA sequence eliminations, the percentages of sequence elimination statisted from two sets of markers were 19%and 26.5%,respectively,comparing to the female parents,and 48.6%and 28.4%,respectively,comparing to the male parents.The ratio of sequence eliminatiuon from the male parents was larger than the from the female parents.At the same time,some non-parentage bands were founded in the allotetraploid hygbrids.
     The cyclin A and B gene are the key regulators ofcell cycle,which can regulate the cell from G_2/M to an M phase.The cDNA encoding cyclin A and B were derived from the ovaries of the allotetraploid and their original parents,using RT-PCR and RACE.Based on the cDNA and amino acids sequences of cyclin Al and Bl genes,the sequence homology and nucleotide divergence loci were analyzed between the allotetraploid and its original parents,the results indicated the the homology of encoding cDNA sequences of allotetraploid and its original parents were more than 90%, especially,the homology of cyclin boxes sequences were more than 94%, and all the sequence homology between the allotetraploid and its female parent was higher than that between the allotetraploid and its male parent.The well-resolved phylogenetic trees showed that the allotetraploid had more close relative relationship with the original maternal red crucian carp in the evolution process.On the encoding regions of cyclin Al and Bl, the nucleotides mutation levels of allotetraploid were 1.8%and 0.9%, respectively,comparing with the original maternal red crucian carp,and which were 4.7%and 5.7%,respectively,in contrasting to the original paternal common carp,which suggesting that the mutation degrees of cyclin Al and Bl,in the genome of allotetraploid,the original paternal common carp was higher than that of the original maternal red crucian carp. The amino acids sequence alignments of cyclin Al and Bl revealed that there were 4 and 2 amino acids mutation loci between allotetraploids and their original parents,respectively,and the non-parentage loci were resulted from the nonsynonymous substitutions of single nucleotide of codon.
     According to the splicing ways of the zebrafish cyclin Bl gene,four pairs degenerate primers were designed to be specific for the exon regions of cyclin B in allotetraploid and its original parents,we amplified 8 introns of cycline B gene from allotetraploid and its original parents by PCR,and all the introns obeyed "GT-AG" rule.The combined intron sequence of allotetraploid shared 96.8%and 66.4%homology respectively,with those of the original maternal red crucian carp and original paternal common carp. Partial fragments of the cyclin B gene from triploid,tetraploid,and pentaploid hybrids of red crucian carpx blunt snout bream,blunt snout bream,grass carp,silver carp,and bighead carp were amplified by the primer pairs P3/P4.One DNA fragment was amplified from the blunt snout bream,grass carp,silver carp,and bighead carp(750,900,720,and 720 bp, respectively).Two fragments(1200 and 900 bp) were amplified from the red crucian carp,common carp,and allotetraploids.The triploid and pentaploid hybrids yielded three DNA fragments(1200,900,and 750 bp). The 1200 bp fragments of the allotetraploid crucian carp,triploid, tetraploid,pentaploid hybrids of red crucian carp~x blunt snout bream shared 99.5,98.9,99.5,and 88.7%homology,respectively,with the maternal DNA.The 900 bp fragment shared 97.5,94.6,94.2 and 89.9% homology,respectively.Our results suggest that inheritance is maternally dominated.Furthermore,we observed preferential elimination of the paternal sequences in the allotetraploid hybrids.Based on these sequences analyses we constructed a phylogenetic tree to explain the relationships among the different ploidy levels.
     Real-time Quantitative RT-PCR was used to analyze the cyclin Al and Bl gene expression in ovary of the diploid gynogenetic progeny of allotetraploid hybrid,red crucian carp and common carp at the early stage. The results showed that the expression level of cyclin Al and Bl gene in
     the diploid gynogenesis hybrid was significantly lower than that in red crucian carp and common carp,at the same time,which was also lower of the diploid gynogenetic progeny of allotetraploid hybrid at the early stage than that at the mature stage.The low expression level of cyclin Al and Bl gene in ovary of the diploid gynogenesis may be correlative to the endoreduplication of oogonia at the early stage.
引文
[1]Grant V.Plant Speciation[M].2nd ed.New York:Columbia University Press,1971
    [2]Masterson J.Stomatal size in fossil plant:evidence for polyploidy in majority of angiosperms[J].Science,1994,264:421-424
    [3]杨继.植物多倍体基因组的形成与进化[J].植物分类学报,2001,39(4):357-371
    [4]Baatout S.Molecular basis to understand polyploidy[J].Hemato Cell Ther,1999,41(4):4169-4170
    [5]Becak M,Becak W.Evolution by polyploidy in Amphibia:New insights[J].Cytogen Cell Genet,1998,80(1-4):28-33
    [6]Soltis D E,Soltis P E.Polyploidy:Recurrent formation and genome evolution[J].TREE,1999,14(9):348-352
    [7]Cronn R C,Small R L,Wertdel J F.Duplicated genes evolve independently after polyploid formation in cotton[J].Proc Natl Acad Sci USA,1999,96(25):14406-14411
    [8]Osbom T C,Pires J C,Birchler J A,et al.Understanding mechanisms of novel gene expression in polyploids[J].Trends in Genetics,2003,19(3):141-147
    [9]Muler H J.Why polyploidy is rarer in ajlimals than in plants[J].Amer.Nat,1925,59:346-353
    [10]Salemaa H.Polyploidy in the evolution of the glacial relict Pontoporeia spp.(Amphipoda,Crustacea)[J].Hereditas,1984,100:53-60
    [11]Lewis W H.Polyploidy:Biological relevance[M].1980,277-378
    [12]李绍文.多倍体昆虫[J].昆虫知识,.2002,39(2):147-151
    [13]耿德贵,王景明,江山,等.鱼类染色体显带的研究进展[J].动物学杂志,1999,34(1):40-43
    [14]范兆廷,沈俊宝.鱼类中的多倍体[J].动物学杂志,1985,20(3):52-57
    [15]Sezaki K.Comparision of erthrocytes size between diploid and tetraploid in spinous loach.Cobitis biwae[J].Bull.Jap.SO.Sci.Fish,1978,44(8):851-854
    [16]Romer AS.“Vertebrate paleontyology"[M].University of Chicago Press,Chicago,1966
    [17]Schultz R J.Role of polyploidy in evolution of fishes[C].International Conference on Polyploid Biological Relevance.Stylouis,1979,313-340
    [18]Engel W.Genduplikation durch polypoide evolution,die isoenzyme der sorbitdehydrogenese bei herings-und lacksartigen fischen(Isospondyli)[J].Humangenetik.1970,9:157-163
    [19]Muramoto J.On the diploid state of the fish order Osdariophisi[J].Chromorsoma,1968,24(1):59-66
    [20]Ohno S.“Animal Cytogenetics" Vo1.4,Chordata l[M].Gerbruder Bomtraeger,Berlin,1974
    [21]WolfU.Polyploidization in the fishes,family Cyprinidae,order Cypriniformes[J].Human-genetik,1969,7(2):240-244
    [22]李树深.脊椎动物中的多倍体[J].动物学杂志,1980,2:52-54
    [23]沈俊宝,范兆廷.黑龙江主要水域鲫鱼倍性及其地理分布[J].水产学报,1983,7(2):87-94.
    [24]周嘉申,沈俊宝,刘明华.黑龙江一种银鲫(方正银鲫)雌核发育的细胞学初步探讨[J].动物学报,1983,29(1):11-16
    [25]Kobayasi H.Comparative study of karayotypes in the small and large races of spinous loaches(Cobitus biwae)[J].Zool.Mag.,1976,85:316-322
    [26]沈俊宝,范兆廷,王瑞国.黑龙江一种银鲫(方正银鲫)群体雄鱼的核型研究[J].遗传学报,1983,lO(2):133-136
    [27]沈俊宝,范兆廷,李素文.方正银鲫与扎龙湖鲫鱼体细胞精子DNA含量及倍性的比较研究[J].动物学报,1984,30(1):7-13
    [28]Digerkus G.KarotypDes analysis and evidence of tetraploidy in the North American paddle fish,Polyodon spathula[J].Science,1976,194:842-844
    [29]Moyle PB,Cech JJ Jr.1996.Fishes:An Introduction to Ichthyology[M].Prentice2Hall:Upper Saddle River.NJ.612
    [30]Batistic R F.Further studies on polyploid Amphibians[J].The J.Heredity,1975,66:160-162
    [31]吴敏.新疆绿蟾蜍染色体组型:Ag-NORs和减数分裂观察[J].新疆师范大学学报,1986,1:69-74
    [32]叶名文.动物植物中的多倍体现象及形成[J].生物学通报,1998,33(2):21-23
    [33]刘祖洞.遗传学[M].第2版,北京:高等教育出版社,1991
    [34]Comings D E.Evidence for ancient tetrapoidy and conservation of linkage group in mammalian chromorsomomes[J].Nature,1972,238:455-457
    [35]Schultz R J.Polyploidy[M],1980,p713-740
    [36]Ramsey J,Schemske D W.Pathways,mechanisms,and rates of polyploid formation in flowering plants[J].Annu Rev Ecol,Syst,1998,29:467-501
    [37]Ohno S.Evolutionbygeneduplication[M].Berlin:Springer-Verlag,1970
    [38]Holland P W,Garcia F J,Williams N A,et al.Gene duplications and the origins of vertebrate development[J].Dev Suppl,1994,125-133
    [39]张士璀,袁金铎,刘振辉.基因倍增和脊椎动物起源[J].生命科学,2003,15(1):18-20
    [40]Catelanotto C,Azzalin G,Macino G,et al.Nature,2000,404:245.
    [41]Aparicio S,Chapman J,Stupka E,et al.Whole genome shotgun assembly and analysis of the genome of Fugu rubripes[J].Science,2002,297(5585):1301-1310
    [42]Jaillon O,Aury J M,Brunet F,et al.2004.Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto2karyotype[J].Nature,431(7011):946-957
    [43]Hoegg S,Brinkmann H,Taylor J S,Meyer A.Phylogenetic timing of the fish2specific genome duplication correlates with the diversification of teleost fish[J].J Mol Evol,2004,59(2):190-203
    [44]Venkatesh B.Evoltion and diversity of fish genomes[J].Curr Opin Genet Dev,2003,13(6):588-592
    [45]Stingo V,ROCCO L.Chondrichthyan cytogenetics:A comparison with teleosteans [J].J Mol,Evol,1991,33:76-82
    [46]Wittbrodt J,Meyer A,Schartl M.More genes in fish[J].Bio Essays,l998,20(6):511-515
    [47]Moghadam H K,Ferguson M M,Danzmann RG.Evolution of Hox clusters in Salmonidae:A comparative analysis between Atlantic salmon(Salmo salar) and Rainbow trout(Oncorhynchus mykiss)[J].JMol Evol,2005,61(5):636-649
    [48]Leggatt R A,Iwama G K.Occurrence of polyploidy in the fishes[J].Rev Fish Biol Fish,2003,13:237-246
    [49]Stebbins G L.Chromosome Evolution in Higher Plants,Addison Wesley[M].1971
    [50]Ohno S.Trans.Amer.Fish.Soc.1970,1:120-130
    [51]单仕新,蒋一珪.银鲫染色体组型研究[J].水生生物学报,1988,12(4):381-384
    [52]陈敏容,杨兴棋,等.两性型天然雌核发育彭泽鲫染色体组型的研究[J].水生生物学报,1996,20(1):25-31
    [53]昝瑞光.滇池两种类型鲫鱼的性染色体和C-带核型研究[J].遗传学报,1982,9(1):32-39
    [54]吴敏.动物多倍体的遗传和进化[J].动物学杂志,1988,23(5):48-51
    [55]Vasil'ev V P,Makeeva A P,Ryabov I N.Triploidy of hybrids of carp with other respectives of the family Cyprinidae[J].Soviet Genetics,1975,11(8):980-985
    [56]Marian T,Kraszai Z.Karyological investigation on Ctenopharyngodon ideela and Hypohthalmichthys nibilis and their crossing-breeding[J].Aquaculture Hungarica,1978,1:44-50
    [57]Beck M C.Erythrocyte measurements of diploid and triploid Ctenopharyngodon idella×Hypophthalmichthys nobilis hybrids[J].Journal Fish Biology,1983,22:497-502
    [58]刘思阳.三倍体草鲂杂种及其双亲的红细胞(核)大小和DNA含量[J].遗传学报,1987,14(2):142-148
    [59]吴维新,林临安,徐大义.一个四倍体杂种-兴国红鲤×草鱼[J].水生生物学集刊.1981,7(3):433-436
    [60]陈敏容,杨兴棋,俞小牧,等.人工诱导异源四倍体、新四倍体及异源三倍体的细胞学研究[J].水生生物学报,1998,22(3):209-216
    [61]Cherfas N B,Gomelsky B N,Emei Yanova O V,et al.Induced diploid gynogenesis and polyploidy in crucian carp,Carassius auratus gibelio(Bloch) x common carp,Cyprinus carpio L.,hybrids[J].Aquaculture and Fisheries Management,1994,25:943-945
    [62]刘筠,周工建.红鲫(♀)×湘江野鲤(♂)杂交一代生殖腺的细胞学研究[J].水生生物学报,1986,10(2):101-108
    [63]Liu S J,Liu Y,Zhou G J,et al.The formation of tetraploid stocks of red cmcian carp×common carp hybrids as an effect of interspecific hybridization[J].Aquaculture,2001,192:171—186
    [64]孙远东,刘少军,张纯,等.异源四倍体鲫鲤F_9-F_(11)染色体和性腺观察[J].遗传学报,2003,5:414-418
    [65]楼允东.鱼类育种学[M].北京:中国农业出版社,1999,117-147
    [66]尤锋.黑鲷三倍体的人工诱导研究[J].海洋与湖沼,1993,24(3):248-255
    [67]马涛,朱才宝,朱秉仁.热休克诱导虹鳟四倍体[J].水生生物学报,1987,11(4):327-336
    [68]洪云汉.热休克诱导鳙鱼四倍体的研究[J].动物学报,1990,36(1):70-75
    [69]李群,宁小军,刘思阳,等.人工诱导鱼类三倍体的实验[J].动物学杂志,1991,26(5):10-11
    [70]俞豪祥,徐皓,关宏伟,等.冷休克诱导天然雌核发育银鲫♀×鲤鱼♂四倍体[J].水产科技情报,1991,18(6):165-168
    [71]桂建芳,孙建民,梁绍昌,等.鱼类染色体组操作的研究Ⅰ.静水压休克诱导三倍体水晶彩鲫[J].水生生物学报,1990,14(4):336-344
    [72]桂建芳,梁绍昌,孙建民,等.鱼类染色体组操作的研究Ⅱ.静水压处理和静水压与冷休克结合处理诱导水晶彩鲫四倍体[J].水生生物学报,1991,15(4):333-342
    [73]Song K M,Lu P,Tang K L.Rapid genome change in synthetic polyloids of B rasslca and its implications for evolution[J].Proc Natl Acad Sci USA,l995,92:77l9-7723
    [74]昝瑞光.鱼类中的多倍性及其在鱼类演化中的作用[J].云南大学学报,1985,7(3):331-337
    [75]White M J D.Animal Cytology and evolution[M],Combridge University Press. 1977
    [76]Kenton A,Parokonny A S,Gleba Y,et al.Characterization of the Nicotiana tabacum L.genome by molecular cytogenetics[J].Mol Gen Genet,1993,240:159-169
    [77]Jellen E N,Gill B S,COX T S,Genomic in situ hybridization difierentiates between A/D and C—genome chromatin and detects intergenomic trartslocations in polyploid oat species(genus Avena)[J].Genome,1994,37:613-618
    [78]Chen Q,Armstrong K C,Genomic in situ hybridization in Avena sativ[J].Gerlome,1994,37:607-612
    [79]KobayaSi H,Ochi H,Takeuchi N.Chromosome studies in the geous Carassius:comparison of C.aurarltusC,auratus butrgeri,C.auratus langsdorfii[J].Jpn.J.lchthyol,1973,20(1):7-12
    [80]Leitch IJ,Bennett M D,Polyploidy in angiosperms[J].Trends Plant Sci,1997,2:470-476
    [81]刘筠.中国养殖鱼类繁殖生物学[M].北京:农业出版社,1993,117
    [82]闵乃吉.鲤鲫杂交种的培育[J].生物学通报,1959,9:395-399
    [83]Wendel J F.Genome evolution in polyploids[J].Plant Mol,Biol,2000,42:225-249
    [84]Feldman M,L iu B,Segal G,et al.Rapid elimination of low-copy DNA sequences in polyploid wheat:A possible mechanism for differentiation of homoeolegous chromosomes[J].Genetics,1997,147(4):1381-1387
    [85]Liu B,Vega M J,Feldman M.Rapid genomic changes in newly synthesized amphiploids Of Triticum and A egilops.l.Changes in low-copy non-coding DNA sequences[J].Genome,1 998,4 1(2):272-277
    [86]Liu B,Vega M J,Feldman M.Rapid genomic changes in newly synthesized amphiploids of Triticum and egilops.II.Changes in low-copy non-coding DNA sequences[J].Gerlome,1998,41(4):535-542
    [87]Hanson R E,Zhao X P,Islam-Faridi M N,et al.Evolution of interspersed repetitive elements in Gossyp ium(M alvaceae)[J].Am J Bot,1998,85(10):1364-1368
    [88]L iu B,Wendel J F.Non-mendelian phenomena in allopolyploid genome evolut ion[J].Curr Genom ics,2002,3(6):489-505
    [89]Ozkan H,Levy A A,Feldman M.Allopolyploidy-induced rapid genome evolution in the wheat(Aegilops-Triticum) group[J].Plant Cell,2001,13(8):1735-1747
    [90]Soltis D E,Soltis P S.Molecular data and the dynamic nature of polyploidy[J].Crit Rev Plant Sci,1993,12:243-273
    [91]Dover G A.Concerted evolution,molecular drive and natural selection[J].Curr Biol,1994,4:1165
    [92]Wendel J F,Schnabel A,Seelanan T.Bidirectional interlocus concerted evolution following alloplyploid speciation in cotton(Gossyp ium)[J].Proc Natl Acad Sci USA,1995,92:280-284
    [93]Elder F,Turner B J.Concerted evolution of repetitive DNA sequence in eukaryotes[J].Quart Rev Biol,1995,70:279-319
    [94]Hillis D M,Moritz C,Porter C A,et al.Evidence for biased gene conversion in concerted evolution of ribosomal DNA[J].Science,1991,251:308-310
    [95]Arnold M L,Contreras N,Shaw D D.Biased gene conversion and asymmetrical introgression between subspecies[J].Chromosoma,1988,96:368-371
    [96]Cooke J,Nowak M A,Boerlijst M,et al.Evolutionary origins and maintenance of redundant gene expression during metazoan development[J].Trends Genet,1997,13:360-364
    [97]Larhammer D,Risinger C.Why so few pseudogenes in tetraploid species?[J].Trends Genet,1994,10:418-419
    [98]Pickett F B,Meeks-Wagner D R.Seeing double:appreciating genetic redundancy[J].Plant Cell,1995,7:1347-1356
    [99]Madlung A,Masuelli R W,Watson B,et al.Remolding of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids[J].PlantPhysiol,2002,129:733-746
    [100]Craig S P.Genomic change and gene silencing in polyploids[J].Trends in Genetics,2001,17(12):675-677
    [101]Stephens S G.Possible significance of duplication in evolution[J].Adv Genet,1951,4:247-265
    [102]Hughes M K,Hughes A L.Evolution of duplicate genes in a tetraploid animal Xenopus laevis[J].Mol Biol Evol,1993,10:1360-1369
    [103]Ohta T.Further examples of evolution by gene duplication revealed through DNA sequence comparisons[J].Genetics,1994,138:1331-1337
    [104]Ohta T.Multigene families and the evolution ofcomplexity[J].J Mol Evol,1991,33:34-41
    [105]Li W H.Accelerated evolution following gene duplication and its implications for the neutralist-selectionist controversy[M].In:Ohta T,Aoki K eds.Population Genetics and Molecular Evolution.Berlin:Spinger-Verlag,1985,333-353
    [106]刘少军,曹运长,何晓晓,等.异源四倍体鲫鲤群体的形成及四倍体化在脊椎动物中的作用[J].中国工程科学,2001,3(12):33-41
    [107]孙远东,刘少军,张纯,等.异源四倍体鲫鲤F9-F11染色体和性腺观察[J].遗传学报,2003,5:414-418
    [108]刘少军,赵如榕,刘锦辉,等.不同倍性鱼的血细胞和精子DNA含量比较[J].动物学报,2005,51(2):360-364
    [109]刘少军,冯浩,刘筠,.等.四倍体鲫鲤F3-F4、三倍体湘云鲫、湘云鲤及有关二倍体的DNA含量[J].湖南师范大学自然科学学报,1999,22(4):61-68
    [110]刘少军,孙远东,周工建,等.异源四倍体鲫鲤成熟性腺和红细胞超微结构观察[J].自然科学进展,2003,13(2):194-197
    [111]李建中,张轩杰,刘少军,等.异源四倍体鲫鲤的性腺发育研究[J].水生生物学报,2002,26(2):116-122
    [112]刘少军,黎双飞,刘筠.异源四倍体鱼早期胚胎发育观察.湖南师范大学自然科学学报,2001,24(1):55-57
    [113]李建中,张轩杰,刘少军,等.异源四倍体鲫鲤的受精细胞学[J].动物学报,2002.48(2):233-239
    [114]Liu S J,Duan W,Tao M,et al.Establishment of the diploid gynogenetic hybrid clonal line of red crucian carp×common carp[J].Sci China Ser C:Life Sci,2007,50(2):186-193
    [115]张纯,孙远东,刘少军,等.二倍体雌核发育鱼产生二倍体卵子的证据[J].遗 传学报,2005,32(2):136-144
    [116]刘少军,段巍,陶敏,等.雌核发育二倍体鲫鲤杂交克隆品系建立[J].中国科学C辑:生命科学,2007,50(2):186-193
    [117]Jinpeng Yan,Shaojun Liu,Yuandong Sun,et al.RAPD and microsatellite analysis of diploid gynogens from allotetraploid hybrids of red crucian carp(Carassius auratus)×common carp(Cyprinus carpio)[J].Aquaculture,2005,243:49-60
    [118]颜金鹏,刘少军,孙远东,等.异源四倍体鲫鲤雌核发育后代的RAPD分析[J].水生生物学报,2005,29(3):259-265
    [119]Sun Y D,Zhang C,Liu S J,et al.Induced interspecific androgenesis using diploid sperm from allotetraploid common carp × red crucian carp hybrids[J].Aquaculture,2007,264:47-53
    [120]段巍,覃钦博,陈松,等.用雄核发育方法制备改良异源四倍体鲫鲤群体[J].中国科学C辑:生命科学,2007,37(5):530-539
    [121]李建中,鲁双庆,刘少军,等.异源四倍体鲫鲤及其原始亲本遗传变异的RAPD分析[J].水产学报,2003,27(5):403-408
    [122]李建中,刘少军,张轩杰,等.异源四倍体鲫鲤群体遗传多样性的RAPD分析[J].水生生物学报,29(1):97-100
    [123]Xinhong Guo,Shaojun Liu,Chun Zhang,et al.Comparative and evolutionary analysis of the cytochrome b sequences in cyprinids with different ploidy levels derived from crosses[J].Genetica,2004,121:295-301
    [124]Xinhong Guo,Shaojun Liu,Yun Liu.Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level[J].Aquaculture,2003,24(1-4):25-38
    [125]郭新红,刘少军,颜金鹏,等.异源四倍体鲫鲤、三倍体湘云鲫和它们父母本线粒体DNA 12S rRNA基因遗传变异的分析[J].遗传,2004,26(6):875-880
    [126]王静,覃钦博,陈松,等.新型高背型鲫鱼的形成及其生物学特征研究[J].中国科学C辑:生命科学2008,38(7):635-642
    [127]Liu SJ,Qin QB,Xiao J,et al.The formation of the polyploid hybrids from different sub-family fish crossings and its evolutionary significance[J].Genetics,2007.176:1023-1034
    [128]Allendorf F W,Thorgaard G H.Tetraploid and the evolution of Salmonid fishes[A].In:Tumer B J.Evolutionary Genetics of Fishes[M].New York:Plenum Press,1984,35-44
    [129]Ferris S D.Tetraploid and the evolution of Catostomid fishes[A].In:Tumer B J.Evolutionary Genetics of Fishes[M].New York:Plenum Press,1984,55-93
    [130]刘季芳,刘少军,张纯,等.异源四倍体鲫鲤Sox9a基因保守区序列的克隆及内含子剪接位点分析[J].自然科学进展,2004,14(6):641-645
    [131]曾琛,陶敏,刘少军,等.不同倍性鱼cdc2基因cDNA部分序列的克隆及其在卵巢中的表达分析[J].湖南师范大学自然科学学报,2006,29(3):73-76
    [132]Zietikiewicz E,Rafalski A,Labuda D.Genome fingerlprinting by simple sequence repeat(ISSR)anchored and polymerase chain reaction amplification[J].Genomica,1994,20:178-183
    [133]Kojima T,Nagaoka T,Noda K.Genetic linkege map of ISSR and RAPD markers in Einkom wheat in relation to mat of RFLP markers[J].Theor Appl,Genet,1998,96:37-45
    [134]Jian S G,Tang T,Zhong Y,et al.Variation in inter-simple sequence repeat (ISSR)in mangrove and non-mangove populations of Heritiera littoralis (Sterculiaceae)from China and Australia[J].Aquatic Botany,2004,79:75-86
    [135]Reddy M P,Sarla N,Siddiq E A.Inter simple sequence repeat(ISSR)polymorphism and its application in plant breeding[J].Euphytica,2002,128:9-17
    [136】Ai H L,Jian B W.Genomic evolution of Brassica avopolyploids revealed by ISSR marker[J].Genetic Resources and Crop Evolution,2006,53:603-611
    [137]Apostol B L,Black W C,Reiter P,Miller B R.Population genetics with RAPD-PCR markers:the breeding structure of Aedes aegypti in Puerto Rico[J].Heredity,1996,76:325-334
    [138]Nei M,Li W H.Mathematical model for studying genetic Variation in terms of restriction endonucleases.Proc Natl Acad Sci USA.1979,76:5269-5273
    [139]夏德全,曹萤,杨弘,等.罗非鱼杂交Fl代与亲本德遗传关系及其杂种优势的利用[J].中国水产科学,1999,6(4):29-32
    [140]万俊芬,包振民,潘洁,等.日本盘鲍×皱纹盘鲍子代杂种优势的RAPD分析[J].青岛海洋大学学报,2001,31(4):506—512
    [141]刘爱华,王建波.序列消除与异源多倍体植物基因组的进化[J].武汉植物学研究,2004,22(2):158-162
    [142]Pikaard C S.Genomic change and gene silencing in polyploids[J].Trends Genet,2002.17:657-677
    [143]Ozkan H,Tuna M,Arumuganathan K.Nonadditive changes in genome size during alloploidization in the wheat(Aegilops-Triticum)group[J].J Hered 2003,94(5):260-264
    [144]Vos P,Hogers R,Bleeker M et al.AFLP:a new technique for DNA fingerprinting[J].Nucleic Acids Res,1995,23:4407-4414
    [145]朱伟铨,王义权.AFLP分子标记技术及其在动物学研究中的应用[J].动物学杂志,2003,38(2):101-107
    [146]Kim Y Y,Choi H S,Kang B Y.An AFLP-based linkage map ofJapanese red pine (Pinus densiflora) using haploid DNA samples of megagametophytes from a single maternal tree[J].Molecules and Cells,2005,20(2):201-209
    [147]Hori K,Kobayashi T,Sato K,et al.QTL analysis of Fusarium head blight resistance using a high-density linkage map in barley[J].Theoretical and Applied Genetics,2005,111:1661-1672
    [148]Cervera M T,Stome V,Soto A,et al.Interaspecific and interspecific genetic and phlogenetic relationships in the genus Populus based on AFLP markers[J].Theoretical,and Applied Genetics,2005,111:1440-1456
    [149]Ferdinandez Y S N,Coulman B E.Genentic relationships among smooth bromegrass cultivars of different ecotypes detected by AFLP markers[J].Crop Science,2004.44:241-247
    [150]Becker J,Vos P,Kuiper M,et al.Combined mapping of AFLP and RFLP markers in barIey[J].Mol Gen Genet,1995,24(1):65-73
    [151]Jun S,Zhao B S,Bi S Y Assessing genetic diversity of wild populations of Prenant's schizothoracin,Schizothorax prenanti,using AFLP markers[J].Environ Biol Fish.2006.77:79-86
    [152]Jin S B,Harold C,Mei S.Analysis of genetic diversity and relationships in waxy rice(Oryza sativa L.)using AFLP and ISSR markers[J].Genetic Resources and Crop Evolution,2006,53:323-330
    [153]Lehber C F,Ofarrell P H.The roles of Drosophila Cyclin A and B in mitotic control[J].Cell,1990,61:535-547
    [154]Draetta G,Luca F,Westendorf J,et al.Cdc2 protein kinase is complexed with cyclin A and B:evidence for proteolytic inactivation of MPF[J].Cell,1989,56:829-838
    [155]Minshull J,BlOW J J,Hunt T.Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis[J].Cell,1989,56:947-956
    [156]Parker L L,Atherton-Fessler S,Lee M S,et al.Cyclin promotes the tyrosine phosphorylation of p34~(cdc2) in a weel dependent manner[J].EMBO J,1991,10:1255-1263
    [157]Lorca T,Labbe J C,Devault A,et al.Cyclin A-cdc2 kinase does not trigger but delays cyclin degradation in interphase extracts of amphibian eggs[J].J Cell Sci,1992,102(1):55-62
    [158]Luca F C,Shibuya E K,Dohrmann C E,et al.Both cyclinA dela 60 and B delta 97 are stable and arrest cells in M-phase,but only cyclin B delta 97 turns on cyclin destruction[J].EMBO J,1991,10:4311-4320
    [159]Jones C,Smythe C.Activation of the Xenopus cyclin degradation machinery by full21ength cyclin A[J].Journal,of Cell Science,1996,109(5):1071-1079
    [160]Bruce A,Terry L O.Endoreplication cell cycles:more for less[J].Cell,2001,105(4):297-306
    [161]Katsu K,YamashitaW,Himi T,et al.Molecular cloing and immunological analysis of goldfish cyclin A during oocyte maturation[J].Dev Biol,1995,170(2):616-625
    [162]樊连春,谢京,汪洋,等.银鲫与彩鲫卵母细胞cDNA文库构建及周期蛋白A_(1)的cDNA克隆[J].水生生物学报,2000,24(6):573-581
    [163]Koichiro T,Joel D,Masatoshi N,Sudhir K.MEGA4:Molecular evolutionary genetics analysis(MEGA),software version 4.0[J].Mol Biol Evol,2007,24(8):11596-1599
    [164]Yang R,Morosetti R,Koemffler H P.Characterization of a second human Cyclin A that is highly expressed in testis and in several leukemic cell lines[J].CancerRes,1997,57(5):913-920
    [165]翟中和,王喜中,丁明孝主编.细胞生物学[M].北京:高等教育出版社,2001,394-401
    [166]Pines J.Cyclins and cyclin-dependent Kinase:a biochemical View[J].Biochem J,1995,308:697-711
    [167]Volkov R A,Borisjuk N V,Panchuk II,et al.Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum[J].Mol Biol Evof,1999,16:311-320
    [168]王超,王建波,施苏华,等.山羊草属异源多倍体物种核rDNAITS区的进化[J].植物分类学报,2000,38(3):211-217
    [169]The Intermational SNP Work Group.A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms[J].Nature,2001,409:928-933
    [170]Nurse P.Universal control mechanism regulating onset of M-phase[J].Nature,1990,344(6266):503-508
    [171]King R W,Jackson P K,Kirschner M W.Mitosis in transition[J].Cell,1994,79(4):563-571
    [172]Lew D J,Kornbluth S.Regulatory rolles of cyclin dependent kinase phosphoryIation in cell cycle control[J].Curr Opin Cell Biol,1996,8(6):795-804
    [173]Morgan D O.Cyclin-dependent kinases:engines,clocks,and micro-processors [J].Annu Rev Cell Dev Biol,1997,13:261-291
    [174]Hirai T,Yamashita M,Yoshikuni M,et al.Cyclin B in fish OOCytes:its cDNA and amino acid sequences,appearance during nlaturation,and induction of p34cdc2activation[J].Mol Reprod Dev,1992,33(2),13l-140
    [175]Xie J,Wen J J,Yang Z A,et al.Cyclin A2 is differentially expressed during oocyte maturation between gynogenetic silver crucian carp and gonochoristic color crucian carp[J].J Exp Zoolog A Comp Exp Biol.2003,295(1):1-16
    [176]Kajiura-Kobayashi H,Kobayashi T,Nagahama Y.The cloning of cyclin B3 and its gene expression during hormonally induced spermatogenesis in the teleost,Anguilla japonica[J].Biochem Biophys Res Commun,2004,323(1),288-292
    [177]张亚平.从DNA序列到物种树[J].动物学研究,1996,17(3):247-252
    [178]Zuckerkandl E,Pauling L.Evolutionary divergence and conver-gence in protein.BRYSON V,VOGEL H J.Evolving Genes and Proteins[M].New York:Academic Press,1965,97-166
    [l79]Liss M,Kirk D L,Beyser K,et al.Intron sequences provide a tool for high-resolution phylogenetic analysis of volvocine algae[J].Curr Genet,1997,31(3):214-227
    [180]王宁,陈润生.基于内含子和外显子的系统发育分析的比较[J].科学通报,1999,44(19):2095-2102
    [181]Prychitko TM,Moore W S.Comparative evolution of the mitochondrial cytochrome b gene and nuclear β-Fibrinogen intron 7 in Woodpeckers[J].Mol Biol Evol,2000,17(7):1101-1111
    [182]Tee M K,Babalola G O,Aza-Blanc P.A promoter within intron 35 of the human C4A gene initiates abundant adrenal-specific transcription of a 1kb RNA:location of a cryptic CYP21 promoter element?[J].Hum Mol,Genet,1995,4(11):2109-2116
    [l83]Kiss T,Filipowicz W.Exonucleolytic processing of small nucleolar RNAs from pre-mRNAintrons[J].Genes Dev,1995,9(11):1411-1424
    [184]陈湘粦,乐佩琦,林人端.鲤科的科下类群及其宗群发生关系.动物分类学报,1984,9(4):424-440
    [185]孙远东.异源四倍体鲫鲤和三倍体鱼的遗传改良[D].湖南师范大学博士论文,2006,37-49
    [186]汪堃仁,薛绍白,柳惠图.细胞生物学[M].北京师范大学出版社.1998,436-526
    [187]Swenson K I,Farrell K M,Ruderman J V.The clam embryo protein cyclin A induces entry into M phase and the resumption ofmeiosis in Xenopus oocytes[J].Cell,1986,47:861-870
    [188]Draetta G,Luca F,Westendorf J,et al.Cdc2 protein kinase is complexed with cyclin A and B:evidence for proteolytic inactivation of MPF[J].Cell,1989,56:829-838
    [189]Livark K J,Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2[-DeltaDelta C(T)]method[J].Methods,2001,25:402-408
    [190]Goda T,Ishii T,Nakajo N,et al.The RRASK motif in xenopus cyclin B_2 is required for the substrate recognition of Cdc25C by the cyclin B_2 Cdc2 complex[J].J Biol Chem,2003,278(21):19032-19037
    [191]Sun Y,Dilkes B P,Zhang C,et al.Characterization of maize(Zea mays L.) weel and its activity in developing endosperm[J].Proc Natl Acad Sci USA,1999,96:4180-4185
    [192]Peter M,Labbe J C,Doree M,et al.A new role for Mos in Xenopus oocyte maturation:targeting Mytl independently of MAPK[J].Development,2002,129(9):2129-2139
    [193]Karaiskou A,Lepretre A C,Pahlavan G,et al.Polo21ike kinase confers MPF autoamplification competence to growing Xenopus oocytes[J].Development,2004,131(7):1543-1552
    [194]Sigrist S J,Lehner C F.Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles[J].Cell,1997,90:671-681
    [195]Jan T,Martin H,Emmanuel G,et al.Endoreduplication and development:rule without dividing?[J].Curr Opin Plant Biol,1998,1:498-503

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700