甘油选择性氧化反应中负载型贵金属催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,石油资源日益紧缺,环境不断恶化,开发和利用可再生资源是社会可持续发展的重要组成部分。生物柴油因原材料来源广、可再生、安全性能好、环境友好、可替代石化柴油等优势被认为是一种极有发展前景的可再生能源,正逐步成为当今国际新能源开发的热点。作为生物柴油生产过程的主要副产物,甘油多相氧化制备具有高附加值的氧化产物是生物柴油产业链上的重要分支。目前,应用于该催化氧化体系的催化剂,主要为负载型单金属(Au、Pd和Pt)和双金属(Au-Pd、Au-Pt和Pt-Bi)催化剂。其中,与Au基和Pd基催化剂相比,Pt基催化剂可实现在酸性或者中性反应条件下甘油选择性氧化产物的一步生成,同时具有较好的催化活性及稳定性,且氧化产物收率较高。因此,本文主要对负载型Pt基催化剂及其甘油液相选择性氧化反应性能和机理进行了较深入的研究。
     研究过程中,主要以活性炭和多壁碳纳米管为载体,并利用物理和化学手段对载体进行改性制备出一系列单金属Pt催化剂和Pt-Cu、Pt-Bi和Pt-Sb等双金属催化剂;同时结合各种表征手段对催化剂结构、组成与催化性能之间的关系以及催化剂的作用机理作了详细的研究。得到的主要结果如下:
     在不添加无机碱的条件下,由活性炭负载的小粒径Pt颗粒(<6.0nm)催化剂在甘油选择性催化氧化反应中表现出较好的反应活性。其中Pt-1催化剂(Pt颗粒粒径=3.2nm),反应20min得到较高的转化频率(223h-1),与文献报道在碱性条件下Pt/C催化剂上的转化频率相近;同时该催化剂寿命较长。对化学改性活性炭及其负载Pt催化剂进行表征发现:活性炭载体中的含氧基团(C=O)是捕捉Pt的主要位点,Pt原子可以通过与活性炭载体表面含氧基团的相互作用而吸附和固载于其表面;另一方面,载体表面的含氧物种也能削弱Pt与载体间的相互作用,引发Pt颗粒的表面迁移和团聚。H202温和的氧化性能有助于改善活性炭的表面结构和表面化学性质,有利于Pt颗粒在其表面的高度分散,且得到Pt颗粒粒径小,甘油氧化反应活性高。此外,研究还发现Pt的分散度和粒径大小与催化剂制备过程中还原剂用量和反应温度有关。对经物理改性得到不同粒径活性炭及其负载Pt催化剂进行表征发现:随着活性炭颗粒的减小,其负载Pt催化剂的反应活性逐渐增加。我们认为这是因为,经球磨处理,活性炭的大量孔道结构遭到破坏,促使底物分子和活性金属的有效、充分的接触,促进了反应活性。由此可见,活性金属在活性炭载体上的高度分散和暴露,有利于甘油氧化反应过程中气-液-固三相反应物的有效接触,进而增强反应活性。
     对经液相氧化和硫化改性处理的多壁碳纳米管(MWNTs)为载体负载Pt催化剂表征发现:MWNTs表面含硫官能团比羧基和羟基对控制Pt粒子的尺寸和分布更有效,这可能是由于Pt和MWNTs表面的硫醇(-SH)基团具有更强的鳌合作用。将改性后碳纳米管负载的Pt催化剂用于甘油选择性氧化反应,发现非碱性条件下,Pt/S-MWNTs催化剂(反应6h甘油转化率90.4%,甘油酸选择性有68.3%)比Pt/MWNTs、Pt/HNO3-MWNTs和Pt/H2O2-MWNTs呈现更好的甘油氧化活性和甘油酸(GLYA)选择性;碱性条件下,Pt/S-MWNTs催化剂对甘油氧化有很高的初始反应活性,甘油转化率达到10%时单个Pt原子的转化频率达到932.2h-1,是非碱性条件下该TOF值的3倍。然而,随着反应的进行,甘油转化速率大大降低,同时C1裂解产物大量生成,产物分布随着甘油的转化而变化。反应6h后,甘油酸的选择性只有24.0%,C1裂解产物的选择性大大增加至30.4%。结合碱性或非碱性条件下,Pt/MWNTs吸附甘油后的Raman表征结果,我们认为:碱能够促进甘油在Pt催化剂表面的吸附和活化,但碱的副作用是加速了C-C裂解活性,导致GLYA选择性大大降低,同时致使产物分离困难、环境污染严重。
     将活性炭为载体负载的一系列Pt-M双金属催化剂用于酸性或中性条件下甘油选择性氧化反应发现:Cu、Bi、Sb改性的Pt/C催化剂显示了较好的催化活性和甘油酸(GLYA)或二羟基丙酮(DIHA)选择性。进一步深入研究表明,添加Cu后得到Pt-Cu/C双金属催化剂较Pt/C单金属催化剂有更高的反应活性和GLYA选择性。非碱性条件下,5Pt-Cu/C催化剂上(5wt.%Pt负载量,Pt/Cu原子比=1:1)反应6h后甘油转化率达到86.2%,且甘油酸选择性达到70.8%,远大于5Pt/C催化剂作用下活性结果。3Pt-Cu/C较5Pt/C的Pt负载量低,活性也远大于后者。XRD和TEM表征发现Pt-Cu/C催化剂表面形成大量高度分散的PtCu3合金颗粒,我们认为这一结构能够促进甘油伯位羟基的选择性脱氢过程的进行,同时减少反应过程中产生的过氧化氢,降低C-C裂解产物的生成。另外,研究发现适量Bi的添加可以改善催化剂中Pt的氧化还原性能,有利于催化剂活性的提高和DIHA的生成。在所制备的催化剂中,Pt-5Bi/C (Bi的负载量为5.0wt%)催化剂显示出最高的活性,甘油转化率达到91.5%,DIHA选择性达到49.0%。增加或减少Bi负载量,催化剂反应活性降低,DIHA选择性减小。结合TEM和XRD表征结果我们认为:添加适量的Bi有利于Pt的分散,从而促进反应活性;但是过量的Bi可能导致Bi对Pt颗粒的大面积包裹,从而阻碍Pt与反应底物的易接触性。
     将硫化改性多壁碳纳米管(S-MWNTs)载体负载Pt-Cu、Pt-Bi和Pt-Sb双金属催化剂用于酸性或中性条件下甘油选择性氧化反应。其中添加Cu后Pt/S-MWNTs催化剂的反应活性和甘油酸选择性有一定提升,但是促进作用并不明显;此外,与前期研究相似,经Bi改性后Pt催化剂有利于甘油选择性氧化生成二羟基丙酮(DIHA);值一提的是,催化剂Pt-Sb/S-MWNTs较Pt-Bi/S-MWNTs对甘油选择性生成DIHA有更高的活性,且具有高附加值的GLYA也大量生成。与Pt/S-MWNTs相比,Pt-Bi/S-MWNTs催化剂上转化频率(TOF)增加到500.8h-1,而Pt-Sb/S-MWNTs上TOF大大提升至878.1h-1,约为Pt/S-MWNTs TOF的2.5倍。表征结果证明,Bi或Sb的添加对Pt的分散都起到了促进作用,因此添加Bi或Sb后Pt/S-MWNTs催化剂的活性得到较大促进。此外,反应考评结果表明:对比Pt-Bi催化剂,Pt-Sb催化剂上DIHA进一步深度氧化反应得到抑制。采用XRD、TEM、STEM和XPS等手段对催化剂表征发现:Bi或Sb与Pt的结合形式存在很大差异。Pt-Sb/S-MWNTs催化剂中,Pt与Sb形成均一的Pt-Sb合金相。然而,在Pt-Bi/S-MWNTs催化剂中部分Bi物种与Pt物相分离,且Pt被嵌入Bi氧化态物种的包围中。结合反应考评结果我们认为催化剂上DIHA的稳定性与Pt-Bi和Pt-Sb双金属各自的结构特性有关,Pt-Sb合金结构更有利于甘油选择性氧化生成DIHA,且能够得到较高的DIHA产率。
With the progressive depletion of the fossil energy and the disruption of environment, the use of renewable feedstock is essential to the sustainable development of society. Nowadays, much attention has been devoted to development and application of bio-diesel in view of its extraordinary properties, including renewability, safety, environmental friendly and a good substitute of petro-diesel. Glycerol is the main byproduct during the production of bio-diesel, which is known as transesterification process. A major surplus of glycerol has resulted from the increasing expansion of biodiesel production, which lead to the heterocatalysis oxidation of glycerol into value-added fine chemicals will play a crucial role in future bioindustry. The corresponding oxidation reactions are catalyzed by various supported monometallic or bimetallic catalysts based on metal palladium, platinum, gold or bismuth. Au or Pd based catalysts were mainly invested lately based on the published works, however the activities of which depended strongly on the basicity of the reaction medium. Pt based catalysts exhibit good performance for the oxidation of glycerol in the base-free environment, during which the free oxidation products could be obtained directly without additional neutralization and acidification. Therefore, the aim of this work is to investigate the Pt based catalyst and its reactivity and catalytic mechanism in the glycerol oxidation reaction.
     A series of monometallic Pt catalysts and bimetallic Pt-M (such as Pt-Cu, Pt-Bi, Pt-Sb) catalysts were prepared by supported on the active carbon or multiwall carbon nanotubes, which were modified either physically or chemically. Meanwhile, various characterizations were taken to investigate the composition and structure of those catalysts and their influence on the reactivity of glycerol oxidation. Main conclusions are as follows:
     The selective oxidation of glycerol to glyceric acid could be performed successfully on small sized Pt (<6nm) nanoparticles supported on the active carbon in base-free conditions. The high turnover frequency (TOF,223h-1) was achieved after20min of reaction over catalyst Pt-1(3.2nm mean diameter of Pt particle). This performance is at same level as is reported in literatures in a strong base solution and this catalyst can be recycled with a stable activity. Characterizations disclosed that the oxygen groups (C=O) on the surface of active carbon play a essential role in the anchoring of Pt particle on the support; On the other hand, those oxygen groups could also decrease the interaction between the Pt and support, which lead to the migration and aggregation of Pt particles. The H2O2modified active carbon exhibited the best surface structure and chemistry environment which were in good favor of achieving catalyst with the highly dispersed fine Pt particles. Additionally, it was found that the dispersion and size of Pt particles also depended on the amount of reducing agent and the preparation temperature. A series of Pt catalysts on different sized carbon supports were prepared and characterized via SEM, N2-adsorption, TEM and XRD. It is quite interesting to find that the activity of Pt catalysts increased obviously with the decreasing particle size of carbon supports. We believe that the small sized pore structure of active carbon was destroyed by ball milling, which enabled a higher accessibility of substrates to the Pt nanoparticles, thus resulted in the improved reactivity. Therefore, we could draw the conclusion that the highly dispersed and exposed Pt on the support could ensure its effective and sufficient contact with reactants, and enhance the reactivity.
     Selective oxidation of glycerol with molecular oxygen was studied over different functionalized multiwall carbon nanotubes (MWNTs) supported Pt catalysts in base-free aqueous solution. Characterizations disclose that the stronger chelation of thiol groups (-SH) and Pt leads to its higher effectiveness for the control of dispersion and size of Pt nanoparticles than the hydroxyl and carboxyl groups on the surface of MWNTs. Thus, unique sized and highly dispersed Pt catalysts could be prepared on the surface of S-pretreated MWNTs. And this Pt/S-MWNTs catalyst was much more active (90.4%conversion) and capable for the selective oxidation of glycerol to free GLYA (68.3%selectivity) than Pt/MWNTs, Pt/HNO3-MWNTs and Pt/H2O2-MWNTs in a base-free aqueous solution. In the mixture solution of NaOH/glycerol (2:1), the conversion of glycerol increased quickly than that in base-free condition over Pt/S-MWNTs. The calculated turnover frequency (TOF, at10%conversion of glycerol) of Pt/S-MWNTs reached932.2h"1, which is about3times of that in base-free solution. Unfortunately, the conversion of glycerol increased slightly after3h, and the selectivity of the C-C cleavage products increased quickly to30.4%at6h of the reaction, while the selectivity of GLYA reduced to24.0%. Raman analysis of adsorbed glycerol on Pt catalysts in both base and base-free solutions in couple with the time courses of glycerol oxidation over Pt catalysts disclosed that base promoted the adsorption and activation of glycerol on the surface of Pt, but the main drawback of base is that it catalyzed the cleavage of C—C bonds.
     A series of carbon supported bimetallic Pt-M catalysts were prepared and used for glycerol oxidation with oxygen in a base-free aqueous solution. Among them, bimetallic Pt-Cu/C, Pt-Bi/C and Pt-Sb/C catalysts were found to be more active and efficient in the selective oxidation of glycerol to either glyceric acid (GLYA) or dihydroxyacetone (DIHA). The performance of monometallic Pt/C catalyst for glycerol oxidation in base-free conditions was greatly improved by addition of Cu.5Pt-Cu/C with the70.8%selectivity of free GLYA at an86.2%conversion of glycerol showed the best performance. Moreover,3Pt-Cu/C catalyst with a lower loading amount of Pt (3.0wt.%) was more active than5Pt/C (5.0wt.%loadings of Pt). Characterizations demonstrated that highly dispersed Pt-Cu nanoparticles with small particle size in dominant alloyed phase of PtCu3were formed in catalyst Pt-Cu/C, which is proposed to contribute to the improved performance. In addition, it was found that the performance of monometallic Pt/C catalyst for glycerol oxidation to DIHA was greatly improved by Bi. Pt-5Bi/C (5.0wt%loadings of Bi) was most selective for the production of DIHA from glycerol (49.0%selectivity of DIHA at a91.5%conversion of glycerol). Either reduced or increased loading amount of Bi leaded to the decreased reactivity and DIHA selectivity. TEM and XRD characterizations indicated that the dispersion of Pt was improved by added Bi, and the superior performance of Pt-5Bi/C catalyst may be attributed to that the presence of the well dispersed Pt in fine grain size which could be achieved when the loading amount of Bi is higher than5%. However, much higher loadings of Bi should be avoided, as the excess amount of Bi could also lead to a sever enwrapping of Pt particles which hindered the accessibility of Pt.
     Bimetallic Pt-Cu, Pt-Bi and Pt-Sb catalysts which supported on the thiol pretreated multiwall carbon nanotubes (S-MWNTs) were prepared and applied for glycerol oxidation with oxygen in a base-free aqueous solution. It was found that the reactivity of Pt/S-MWNTs was hardly improved by addition of Cu. Higher activity and dihydroxyacetone (DIHA) selectivity were observed when Pt/S-MWNTs was modified with Bi, which was in good accordance with previous result derived from the carbon supported Pt-Bi catalysts. However, it is noteworthy that catalyst Pt-Sb/S-MWNTs was found to be more efficient than Pt-Bi/S-MWNTs for the selective oxidation of glycerol to DIHA. In comparison with Pt/S-MWNTs, the calculated turnover frequency (TOF) over Pt-Bi/S-MWNTs increased to500.8h-1, and the TOF of Pt-Sb/S-MWNTs reached to878.1h-1, which is about2.5times of that of Pt/S-MWNTs. Characterizations suggest that the increased dispersion of Pt in Pt-Bi/S-MWNTs or Pt-Sb/S-MWNTs contributes to the improved activity. Moreover, the glycerol and DIHA oxidation reaction tests suggested that in comparison with Pt-Bi/S-MWNTs, the over-oxidization of DIHA was significantly suppressed over catalyst Pt-Sb/S-MWNTs. The further characterizations via XRD, TEM, STEM and XPS techniques disclosed that Sb homogenously entered into the lattice of Pt particles and formed Pt-Sb alloy in Pt-Sb/S-MWNTs, but Pt particles in Pt-Bi/S-MWNTs were embedded in Bi oxides. The results indicate that this specific structure of Pt-Sb nanoparticles could contribute to the higher stability of DIHA and enhanced performance for selective oxidation of glycerol to DIHA.
引文
[1]F. Ma, M.A. Hanna. Biodiesel production:a review. Bioresour. Technol.1999,70:1-15.
    [2]J.V. Gerpen, Biodiesel processing and production. Fuel Process. Technol.2005,86:1097-1107.
    [3]G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic. Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates. Science 2005,308:1446-1450.
    [4]D. Mohan, C.U. Pittman, Jr., P.H. Steele. Pyrolysis of Wood/Biomass for Bio-oil:A Critical Review. Energy Fuels 2006,20:848-889.
    [5]A. Murugesan, C. Umarani, R. Subramanian, N. Nedunchezhian. Bio-diesel as an alternative fuel for diesel engines—A review. Renewable and Sustainable Energy Reviews 2009,13: 653-662.
    [6]K.K. Hoinghaus, P. Oβwald, T.A. Cool, T. Kasper, N. Hansen, F. Qi, C.K. Westbrook, P.R. Westmoreland. Biofuel Combustion Chemistry:From Ethanol to Biodiesel. Angew. Chem. Int. Ed.2010,49:3572-3597.
    [7]忻耀年.生物柴油的发展现状和应用前景.中国油脂2005,3:49-53.
    [8]吴伟光,仇焕广,徐志刚.生物柴油发展现状、影响与展望.农业工程学报2009,25:298-302.
    [9]于晓红.生物柴油的商业化应用前景与对贸易影响的分析.江苏无锡江南大学江南大学2008,1-45.
    [10]李景明,王红岩,赵群.中国新能源资源潜力及前景展望.天然气工业2008,28:149-153.
    [11]C.H. Zhou, J.N. Beltramini, Y.X. Fan, G.Q. Lu. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev.2008, 37:527-549.
    [12]M. Pagliaro, M. Rossi. The Future of Glycerol:New Uses of a Versatile Raw Material (Chapter 10 Sustainability of bioglycerol). Green Chem.2008,109-123.
    [13]B. Katryniok, H. Kimura, E. Skrzynska, J.S. Girardon, P. Fongarland, M. Capron,. R. Ducoulombier, N. Mimura, S. Paul, F. Dumeignil. Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chem.2011,13:1960-1979.
    [14]P.J. Lammers, B.J. Kerr, T.E. Weber, W.A. Dozier, M.T. Kidd, K. Bregendahl, M.S. Honeyman. Digestible and metabolizable energy of crude glycerol for growing pigs. J. Anim. Sci.2008,86:602-608.
    [15]K. Wang, M.C. Hawley, S.J. DeAthos. Conversion of Glycerol to 1,3-Propanediol via Selective Dehydroxylation. Ind. Eng. Chem. Res.2003,42:2913-2923.
    [16]S.H. Chai, H.P. Wang, Y. Liang, B.Q. Xu. Sustainable production of acrolein:investigation of solid acid-base catalysts for gas-phase dehydration of glycerol. Green Chem.,2007,9: 1130-1136.
    [17]W.B. Hu, D. Knight, B. Lowry, A. Varma. Selective Oxidation of Glycerol to Dihydroxyacetone over Pt-Bi/C Catalyst:Optimization of Catalyst and Reaction Conditions. Ind Eng Chem Res,2010,49:10876-10882.
    [18]J.M. Thomas, J.C. Hernandez-Garrido, R.G. Bell. A General Strategy for the Design of New Solid Catalysts for Environmentally Benign Conversions. Top. Catal.2009,52:1630-1639.
    [19]M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, C.D. Pina. From Glycerol to Value-Added Products. Angew Chem. Int. Ed.2007,46:4434-4440.
    [20]A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner. Improved utilisation of renewable resources:New important derivatives of glycerol. Green Chem.2008,10:13-30.
    [21]J.J. Bozell, G.R. Petersen. Technology development for the production of biobased products from biorefinery carbohydrates. Green Chem.2010,12:539-554.
    [22]S. Carrettin, P. McMorn, P. Johnston, K. Griffin, G.J. Hutchings. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem.Commun. 2002,7:696-697.
    [23]卢发,张伟国.L-丝氨酸产生菌的分离筛选及发酵条件初步研究.氨基酸、呈味核苷酸生产技术交流会论文集.2004,139-143.
    [24]Grosch et al. Method for the production of glyceric acid. US Patent. No.6844467,2002
    [25]H. Habe, T. Fukuoka, D. Kitamoto, K. Sakaki. Application of electrodialysis to glycerate recovery from a glycerol containing model solution and culture broth. J. Biosci. Bioeng.2009, 107:425-428.
    [26]H. Habe, T. Fokuoka, D. Kitamoto, K. Sakaki. Biotransformation of glycerol to d-glyceric acid by Acetobacter tropicalis. Appl.Microbiol. Biotechnol.2008,81:1033-1039.
    [27]H.A. Stafford, A. Magaldi, B. Vennesland. The Enzymatic Reduction of Hydroxypyruvic acid to D-Glyceric Acid in Higher Plants. J. Biol. Chem.1954,207:621-629.
    [28]L.D. Kohn, W.B. Jakoby. Tartaric Acid Metabolism:Ⅲ. The Formation of Glyceric Acid. J. Biol. Chem.1968,243:2465-2471.
    [29]H. Kimura, K. Tsuto, T. Wakisawa, Y. Kazumi, Y. Inaya. Selective oxidation of glycerol on a platinum-bismuth catalyst. Appl. Catal. A 1993,96:217-228.
    [30]R. Garcia, M. Besson, P. Gallezot. Chemoselective catalytic oxidation of glycerol with air on platinum metals. Appl. Catal. A 1995,127:165-176.
    [31]A. Villa, G.M. Veith, L. Prati. Selective Oxidation of Glycerol under Acidic Conditions Using Gold Catalysts. Angew. Chem. Int. Ed.2010,49:4499-4502.
    [32]C.L. Bianchi, P. Canton, N. Dimitratos, F. Porta. L. Prati. Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catal. Today 2005,102-103:203-212.
    [33]B.N. Zope, D.D. Hibbitts, M. Neurock, R.J. Davis. Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis. Science 2010,330:74-78.
    [34]S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C.J. Kiely, G.J. Hutchings. Oxidation of glycerol using supported Pt, Pd and Au catalysts. Phys. Chem. Chem. Phys.2003,5:1329-1336.
    [35]N. Dimitratos, C. Messi, F. Porta, L. Prati, A. Villa. Investigation on the behaviour of Pt(0)/carbon and Pt(0),Au(0)/carbon catalysts employed in the oxidation of glycerol with molecular oxygen in water. J. Mol. Catal. A:Chem.2006,256:21-28.
    [36]N. Dimitratos, J.A. Lopez-Sanchez, D. Lennon, F. Porta, L. Prati, A. Villa. Effect of particle size on monometallic and bimetallic (Au,Pd)/C on the liquid phase oxidation of glycerol. Catal. Lett.2006,108:147-153.
    [37]F. Porta, L. Prati. Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst:an insight into reaction selectivity. J. Catal.2004,224:397-403.
    [38]W.C. Ketchie, M Murayama, R.J. Davis. Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top. Catal. 2007,44:307-317.
    [39]S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C.J. Kiely, G.A. Attard, G.J. Hutchings Oxidation of glycerol using supported gold catalysts. Top. Catal.2004,27:131-136.
    [40]A. Villa, D. Wang, D.S. Su, L. Prati. Gold Sols as Catalysts for Glycerol Oxidation:The Role of Stabilizer. ChemCatChem 2009,1:510-514.
    [41]S. Demirel-Gulen, M. Lucas, P. Claus. Liquid phase oxidation of glycerol over carbon supported gold catalysts. Catal. Today 2005,102-103:166-172.
    [42]W.C. Ketchie, Y.L. Fang, M.S. Wong, M. Murayama, R.J. Davis. Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol. J. Catal.2007,250: 94-101.
    [43]N. Dimitratos, F. Porta, L. Prati. Au, Pd (mono and bimetallic) catalysts supported on graphite using the immobilisation method. Synthesis and catalytic testing for liquid phase oxidation of glycerol. Appl. Catal. A:Gen.2005,291:210-214.
    [44]N. Dimitratos, J.A. Lopez-Sanchez, J.M. Anthonykutty, G. Brett, A.F. Carley, R.C. Tiruvalam, A.A. Herzing, C.J. Kiely, D.W. Knight, G.J. Hutchings. Oxidation of glycerol using gold-palladium alloy-supported nanocrystals. Phys. Chem. Chem. Phys.2009,11: 4952-4961.
    [45]W.C. Ketchie, M. Murayama, R.J. Davis. Selective oxidation of glycerol over carbon-supported AuPd catalysts. J. Catal.2007,250:264-273.
    [46]D. Wang, A. Villa, F. Porta, D.S. Su, L. Prati. Single-phase bimetallic system for the selective oxidation of glycerol to glycerate. Chem. Commun.2006,1956-1958.
    [47]L.D. Marks. Experimental studies of small particle structures. Rep. Prog. Phys.1994,57:603.
    [48]H. Hofineister. Forty Years Study of Fivefold Twinned Structures in Small Particles and Thin Films. Cryst. Res. Technol.1998,33:3-25.
    [49]L. Prati, A. Villa, F. Porta, D. Wang, D.S Su. Single-phase gold/palladium catalyst:The nature of synergistic effect. Catal. Today 2007,122:386-390.
    [50]A. Groβ. Reactivity of Bimetallic Systems Studied from First Principles. Top. Catal.2006, 37:29-39.
    [51]A. Villa, C. Campione, L. Prati. Bimetallic gold/palladium catalysts for the selective liquid phase oxidation of glycerol. Catal. Lett.2007,115:133-136.
    [52]D. Wang, A. Villa, F. Porta, L. Prati, D.S. Su. Bimetallic Gold/Palladium Catalysts: Correlation between Nanostructure and Synergistic Effects. J. Phys. Chem. C 2008,112: 8617-8622.
    [53]N. Dimitratos, A. Villa, L. Prati. Liquid Phase Oxidation of Glycerol Using a Single Phase (Au-Pd) Alloy Supported on Activated Carbon:Effect of Reaction Conditions. Catal. Lett. 2009,133:334-340.
    [54]L. Prati, A. Villa, C. Campione, P. Spontoni. Effect of gold addition on Pt and Pd catalysts in liquid phase oxidations. Top. Catal.2007,44:319-324.
    [55]P. McMorn, G. Roberts, G.J. Hutchings. Oxidation of glycerol with hydrogen peroxide using silicalite and aluminophosphate catalysts. Catal. Lett.1999,63:193-197.
    [56]S. Demirel, K. Lehnert, M. Lucas, P. Claus. Use of renewables for the production of chemicals:Glycerol oxidation over carbon supported gold catalysts. Appl. Catal. B:Environ. 2007,70:637-643.
    [57]E.G. Rodrigues, M.F.R. Pereira, X.W. Chen, J.J. Delgado, J.J.M. Orfao. Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation. J Catal.2011,281:119-127.
    [58]D. Sebastian, I. Suelves, R. Moliner, M.J. Lazaro. The effect of the functionalization of carbon nanofibers on their electronic conductivity. Carbon 2010,48:4421-4431.
    [59]Z. Hashisho, M.J. Rood, S. Barot, J. Bernhard. Role of functional groups on the microwave attenuation and electric resistivity of activated carbon fiber cloth. Carbon 2009,47:1814-1823.
    [60]S. Demirel, P. Kern, M. Lucas, P. Claus. Oxidation of mono-and polyalcohols with gold: Comparison of carbon and ceria supported catalysts. Catal. Today 2007,122:292-300.
    [61]N. Dimitratos, A. Villa, C.L. Bianchi, L. Prati, M. Makkee. Gold on titania:Effect of preparation method in the liquid phase oxidation. Appl. Catal. A:Gen.2006,311:185-192.
    [62]M. Sankar, N. Dimitratos, D.W. Knight, A.F. Carley, R. Tiruvalam, C.J. Kiely, D. Thomas, G.J. Hutchings. Oxidation of Glycerol to Glycolate by using Supported Gold and Palladium Nanoparticles. ChemSusChem 2009,2:1145-1151.
    [63]I. Sobczak, K. Jagodzinska, M. Ziolek. Glycerol oxidation on gold catalysts supported on group five metal oxides—A comparative study with other metal oxides and carbon based catalysts. Catal. Today 2010,158:121-129.
    [64]K. Musialska, E. Finocchio, I. Sobczak, G. Busca, R. Wojcieszak, E. Gaigneaux, M. Ziolek. Characterization of alumina-and niobia-supported gold catalysts used for oxidation of glycerol. Appl. Catal. A:Gen.2010,384:70-77.
    [65]A. Villa, A. Gaiassi, I. Rossetti, C.L. Bianchi, K.V. Benthem, G.M. Veith, L. Prati. Au on MgAl2O4 spinels:The effect of support surface properties in glycerol oxidation. J. Catal. 2010,275:108-116.
    [66]A.Tsuji, K.T.V. Rao, S. Nishimura, A. Takagaki, K. Ebitani. Selective Oxidation of Glycerol by Using a Hydrotalcite-Supported Platinum Catalyst under Atmospheric Oxygen Pressure in Water. ChemSusChem 2011,4:542-548.
    [67]L. Prati, M. Rossi. Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols. J. Catal.1998,176:552-560.
    [68]S. Biella, L. Prati, M. Rossi. Selectivity control in the oxidation of phenylethane-1,2-diol with gold catalyst. Inorg. Chem. Acta 2003,349:253-257.
    [69]S. Biella, L. Prati, M. Rossi. Selective Oxidation of D-Glucose on Gold Catalyst. J. Catal. 2002,206:242-247.
    [70]S. Biella, L. Prati, M. Rossi. Gold catalyzed oxidation of aldehydes in liquid phase. J. Mol. Catal. A 2003,197:207-212.
    [71]Y. Arai. The Behavior of Methylglyoxal in Weak Alkaline Solution. J. Biochem.1932, XV(1):151-161.
    [72]宋如,钱仁渊,仝艳,云志.二羟基丙酮生产研究进展.化工技术与开发2009,38:25-30.
    [73]张勇,郑裕国.1,3-二羟基丙酮的生物技术法生产及其在生物体内的代谢.长三角生物医药发展论坛论文集.2004,361-366.
    [74]J.G. Hauge, T.E. King, V.H. Cheldelin. Alternate conversions of glycerol to dihydroxyacetone in Acetobacter suboxydans. J. Biol. Chem.1954,203:1-9.
    [75]S. Blazejak, E. Sobcjak. Bioconversion of glycerol into dihydroxyacetone using Acetobacter xylinum. Acta Aliment Pol.1988,14:207-216.
    [76]O. Hoist, M. Lundback, B. Mattiasson. Hydrogen peroxide as all oxygen source for immobilized Gluconobacter oxydans converting glycerol to dihydroxyacetone. Appl. Microbiol. Biotechnol.1985,22:383-388.
    [77]N.V. Pomortseva, T.N. Krasu "Nikov, M. Paleeva. Production of dihydroxyacetone by a suspension of resting Acetobacter suboxydans cells. J. Appl. Biochem. Microbiol.1981,10: 46-49.
    [78]S. Wei,O. Song, D. Wei. Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone. Prep. Biochem. Biotechnol.2007, 37:67-76.
    [79]I.G. Morgunov, A.P. Ilchenko. Isolation, purification, and some properties of glycerol dehydrogenase from the yeast Candida valida. Biochem-Moscow,1995,60:883-890.
    [80]J.E. Pyle, H.B.Jr. Howe. Uptake and dissimilation of glycerol by wild type and glycerol nonutilizing strains of Neurospora crassa. Mol. Gen. Genet.1983,89(1):166-168.
    [81]马立娟.生物法生产1,3-二羟基丙酮产品研究.天津大学天津大学2009,1-125.
    [82]R. Ciriminna, G. Palmisano,C.D. Pina, M. Rossi, M. Pagliaro. One-pot electrocatalytic oxidation of glycerol to DHA. Tetrahedron Lett.2006,47:6993-6995.
    [83]Kimura H. Selective oxidation of glycerol on a platinum-bismuth catalyst by using a fixed bed reactor. Appl. Catal. A 1993,105:147-158.
    [84]A. Brandner, K. Lehnert, A. Bienholz, M. Lucas, P. Claus. Production of Biomass-Derived Chemicals and Energy:Chemocatalytic Conversions of Glycerol. Top. Catal.2009,52:278-287.
    [85]谢艳丽,赵振东,白洋,刘艳凤.含铂多金属催化剂的合成及其对甘油选择性催化氧化作用的研究.海南师范学院学报(自然科学版)2007,20:251-255.
    [86]N. Worz, A. Brandner, P. Claus. Platinum-Bismuth-Catalyzed Oxidation of Glycerol: Kinetics and the Origin of Selective Deactivation. J. Phys. Chem. C 2010,114:1164-1172.
    [87]W.B. Hu, B. Lowry, A. Varma. Kinetic study of glycerol oxidation network over Pt-Bi/C catalyst. Appl. Catal. B:Environ.2011,106:123-132.
    [88]P. Gallezot. Selective oxidation with air on metal catalysts. Catal. Today 1997,37:405-418.
    [89]T. Mallat, A. Baiker, J. Patscheider. Liquid phase oxidation of 1-methoxy-2-propanol with air: II. Structure and chemical properties of lead-promoted palladium catalysts. Appl. Catal. A: Gen.1991,79:59-75.
    [90]T. Mallat, A. Baiker, L. Botz. Liquid-phase oxidation of 1-methoxy-2-propanol with air Ⅲ: Chemical deactivation and oxygen poisoning of platinum catalysts. Appl, Catal. A:Gen.1992, 86:147-163.
    [91]M. Besson, P. Gallezot. Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today 2000,57:127-141.
    [92]P. Fordham, M. Besson, P. Gallezot. Catalytic oxidation with air of tartronic acid to mesoxalic acid on bismuth-promoted platinum. Catal. Lett.1997,46:195-199.
    [93]谢艳丽.甘油的选择性催化氧化及其产物分离的研究.浙江杭州.浙江大学2006,1-87.
    [1]Y.T. Kim, K. Ohshima, K. Higashimine, T. Uruga, M. Takata, H. Suematsu, T. Mitani. Fine size control of platinum on carbon nanotubes:From single atoms to clusters. Angew. Chem. Int. Ed.2006,45:407-411.
    [2]K.V.R. Chary, D. Naresh, V. Vishwanathan, M. Sadakane, W. Ueda. Vapour phase hydrogenation of phenol over Pd/C catalysts:A relationship between dispersion, metal area and hydrogenation activity. Catal. Commun.2007,8:471-477.
    [1]C.H. Zhou, J.N. Beltramini, Y.X. Fan, G.Q. Lu. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev.2008, 37:527-549.
    [2]B. Katryniok, H. Kimura, E. Skrzynska, J.S. Girardon, P. Fongarland, M. Capron,. R. Ducoulombier, N. Mimura, S. Paul, F. Dumeignil. Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chem.2011,13:1960-1979.
    [3]M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, C.D. Pina. From Glycerol to Value-Added Products. Angew Chem. Int. Ed.2007,46:4434-4440.
    [4]A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner. Improved utilisation of renewable resources:New important derivatives of glycerol. Green Chem.2008,10:13-30.
    [5]J.J. Bozell, G.R. Petersen. Technology development for the production of biobased products from biorefinery carbohydrates. Green Chem.2010,12:539-554.
    [6]H. Kimura, A. Kimura, I. Kokubo, T. Wakisaka, Y. Mitsuda, Appl. Catal. A:Gen.95 (1993) 143-169.
    [7]H. Kimura, K. Tsuto, T. Wakisawa, Y. Kazumi, Y. Inaya. Selective oxidation of glycerol on a platinum-bismuth catalyst. Appl. Catal. A 1993,96:217-228.
    [8]R. Garcia, M. Besson, P. Gallezot. Chemoselective catalytic oxidation of glycerol with air on platinum metals. Appl. Catal. A 1995,127:165-176.
    [9]P. Gallezot. Selective oxidation with air on metal catalysts. Catal. Today 1997,37:405-418.
    [10]S. Carrettin, P. McMorn, P. Johnston, K. Griffin, GJ. Hutchings. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem.Commun. 2002,7:696-697.
    [11]S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C.J. Kiely, G.J. Hutchings. Oxidation of glycerol using supported Pt, Pd and Au catalysts. Phys. Chem. Chem. Phys.2003,5:1329-1336.
    [12]N. Dimitratos, C. Messi, F. Porta, L. Prati, A. Villa. Investigation on the behaviour of Pt(0)/carbon and Pt(0),Au(0)/carbon catalysts employed in the oxidation of glycerol with molecular oxygen in water. J. Mol. Catal. A:Chem.2006,256:21-28.
    [13]W.C. Ketchie, M Murayama, R.J. Davis. Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top. Catal.2007,44: 307-317.
    [14]L. Prati, M. Rossi. Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols. J. Catal.1998,176:552-560.
    [15]S. Biella, L. Prati, M. Rossi. Selectivity control in the oxidation of phenylethane-1,2-diol with gold catalyst. Inorg. Chem. Acta 2003,349:253-257.
    [16]S. Biella, L. Prati, M. Rossi. Selective Oxidation of D-Glucose on Gold Catalyst. J. Catal. 2002,206:242-247.
    [17]S. Biella, L. Prati, M. Rossi. Gold catalyzed oxidation of aldehydes in liquid phase. J. Mol. Catal. A 2003,197:207-212.
    [18]N. Dimitratos, J.A. Lopez-Sanchez, D. Lennon, F. Porta, L. Prati, A.Villa. Effect of particle size on monometallic and bimetallic (Au,Pd)/C on the liquid phase oxidation of glycerol. Catal. Lett.2006,108:147-153.
    [19]F. Porta, L. Prati. Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst:an insight into reaction selectivity. J. Catal.2004,224:397-403.
    [20]S. Carretin, P. McMorn, P. Johnston, K. Griffin, C.J. Kiely, GA. Attard, G.J. Hutchings Oxidation of glycerol using supported gold catalysts. Top. Catal.2004,27:131-136.
    [21]S. Demirel-Gulen, M. Lucas, P. Claus. Liquid phase oxidation of glycerol over carbon supported gold catalysts. Catal. Today 2005,102-103:166-172.
    [22]S. Demirel, K. Lehnert, M. Lucas, P. Claus. Use of renewables for the production of chemicals:Glycerol oxidation over carbon supported gold catalysts. Appl. Catal. B:Environ. 2007,70:637-643.
    [23]E.G. Rodrigues, M.F.R. Pereira, X.W. Chen, J.J. Delgado, J.J.M. Orfao. Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation. J Catal. 2011,281:119-127.
    [24]A. Dandekar, R.T.K. Baker, M.A. Vannice. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS. Carbon 1998,36: 1821-1831.
    [25]C. Moreno-Castilla, F. Carrasco-Marin, F.J. Maldonado-Hodar, J. Rivera-Utrilla. Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content Carbon 1998,36:145-151.
    [26]J.H. Zhou, Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai, W.K. Yuan. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 2007,45:785-796.
    [27]Y.P. Guo, D.A. Rockstraw. Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon 2006,44:1464-1475.
    [28]J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Orfao. Modification of the surface chemistry of activated carbons Carbon 1999,37:1379-1389.
    [29]S. Kundu, Y.M. Wang., W. Xia, M. Muhler. Thermal Stability and Reducibility of Oxygen-Containing Functional Groups on Multiwalled Carbon Nanotube Surfaces:A Quantitative High-Resolution XPS and TPD/TPR Study. J. Phys. Chem. C 2008,112:16869-16878.
    [30]A.E. Aksoylu, M. Madalena, A. Freitas, M. Fernando, R. Pereira, J.L. Figueiredo. The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts. Carbon 2001,39:175-185.
    [31]S. Haydar, C. Moreno-Castilla, M.A. Ferro-Garcia; F. Carrasco-Marin, J. Rivera-Utrilla, A. Perrard, J.P. Joly. Regularities in the temperature-programmed desorption spectra of CO2 and CO from activated carbons. Carbon 2000,38:1297-1308.
    [32]J.J. Wang, G.P. Yin,, Y.Y. Shao, S. Zhang, Z.B. Wang, Y.Z. Gao. Effect of carbon black support corrosion on the durability of Pt/C catalyst. J. Power Sources 2007,171:331-339.
    [33]K.V.R. Chary, D. Naresh, V. Vishwanathan, M. Sadakane, W. Ueda. Vapour phase hydrogenation of phenol over Pd/C catalysts:A relationship between dispersion, metal area and hydrogenation activity. Catal. Commun.2007,8:471-477.
    [34]D. Liang, J. Gao, J.H. Wang, P. Chen, Z.Y. Hou, X.M. Zheng. Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts. Catal. Comm.2009,10: 1586-1590.
    [1]D. Liang, J. Gao, J.H. Wang, P. Chen, Z.Y. Hou, X.M. Zheng. Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts. Catal. Commun.2009,10: 1586-1590.
    [2]J. Gao, D. Liang, P. Chen, Z.Y. Hou, X.M. Zheng. Oxidation of Glycerol with Oxygen in a Base-free Aqueous Solution over Pt/AC and Pt/MWNTs Catalysts. Catal. Lett.2009,130: 185-189.
    [3]Z.Y. Lin, H.B. Chu, Y.H. Shen, L. Wei, H.C. Liu, Y. Li. Rational preparation of faceted platinum nanocrystals supported on carbon nanotubes with remarkably enhanced catalytic performance. Chem. Commun.2009,7167-7169.
    [4]M.H. Liu, Y.L. Yang, T. Zhu, Z.F. Liu, Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid. Carbon 2005,43:1470-1478.
    [5]J.K. Lim, W.S. Yun, M.H. Yoon, S.K. Lee, C.H. Kim, K. Kim. S.K. Kim. Selective thiolation of single-walled carbon nanotubes. Synth. Met.2003,139:521-527.
    [6]Y. Peng, H. Liu. Effects of Oxidation by Hydrogen Peroxide on the Structures of Multiwalled Carbon Nanotubes. Ind. Eng. Chem. Res.2006,45:6483-6488.
    [7]T.I. Koranyi, F. Moreau, V.V. Rozanov, E.A. Rozanova. Identification of SH groups in zeolite-supported HDS catalysts by FTIR spectroscopy. J. Mol. Struct.1997,410-411:103-110.
    [8]A.L.M. Reddy, S. Ramaprabhu. Hydrogen storage properties of nanocrystalline Pt dispersed multi-walled carbon nanotubes. Int. J. Hyd. Energy 2007,32:3998-4004.
    [9]C.M. Chen, Y.M. Dai, J.G. Huang, J.M. Jehng. Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 2006,44:1808-1820.
    [10]J. Zhang, H.L. Zou, Q. Qing, Y.L. Yang, Q.W. Li, Z.F. Liu, X.Y. Guo, Z.L. Du. Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2003,107:3712-3718.
    [11]Y.T. Kim, K. Ohshima, K. Higashimine, T. Uruga, M. Takata, H. Suematsu, T. Mitani. Fine Size Control of Platinum on Carbon Nanotubes:From Single Atoms to Clusters. Angew. Chem. Int. Ed.45 (2006) 407-411.
    [12]M.K. Kumar, S. Ramaprabhu. Nanostructured Pt Functionlized Multiwalled Carbon Nanotube Based Hydrogen Sensor. J. Phys. Chem. B 2006,110:11291-11298.
    [13]D.J. Guo, H.L. Li. High Dispersion and Electrocatalytic Properties of Platinum on Functional Multi-Walled Carbon Nanotubes. Electroanalysis 2005,17:869-872.
    [14]R.Q. Yu, L.W. Chen, Q.P. Liu, J.Y. Lin, K.L. Tan, S.C. Ng, H.S.O. Chan, G.Q. Xu, T.S. Andy Hor. Platinum Deposition on Carbon Nanotubes via Chemical Modification. Chem. Mater.1998,10:718-722.
    [15]R. Garcia, M. Besson, P. Gallezot. Chemoselective catalytic oxidation of glycerol with air on platinum metals. Appl. Catal. A 1995,127:165-176.
    [16]S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C.J. Kiely, G.J. Hutchings. Oxidation of glycerol using supported Pt, Pd and Au catalysts. Phys. Chem. Chem. Phys.2003,5:1329-1336.
    [17]B.N. Zope, D.D. Hibbitts, M. Neurock, R.J. Davis. Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis. Science 2010,330:74-78.
    [18]W.C. Ketchie, Y.L. Fang, M.S. Wong, M. Murayama, R.J. Davis. Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol. J. Catal.2007,250: 94-101.
    [19]W.C. Ketchie, M. Murayama, R.J. Davis. Selective oxidation of glycerol over carbon-supported AuPd catalysts. J. Catal.2007,250:264-273.
    [20]S. Demirel-Gulen, M. Lucas, P. Claus. Liquid phase oxidation of glycerol over carbon supported gold catalysts. Catal. Today 2005,102-103:166-172.
    [21]A. Villa, A. Gaiassi, I. Rossetti, C.L. Bianchi, K. van Benthem, G.M. Veith, L. Prati. Au on MgA12O4 spinels:The effect of support surface properties in glycerol oxidation. J. Catal. 2010,275:108-116.
    [22]N. Worz, A. Brandner, P. Claus. Platinum-Bismuth-Catalyzed Oxidation of Glycerol: Kinetics and the Origin of Selective Deactivation. J. Phys. Chem. C 2010,114:1164-1172.
    [23]N. Dimitratos, F. Porta, L. Prati. Au, Pd (mono and bimetallic) catalysts supported on graphite using the immobilisation method. Synthesis and catalytic testing for liquid phase oxidation of glycerol. Appl. Catal. A:Gen.2005,291:210-214.
    [24]L. Prati, A. Villa, F. Porta, D. Wang, D.S Su. Single-phase gold/palladium catalyst:The nature of synergistic effect. Catal. Today 2007,122:386-390.
    [25]N. Dimitratos, A. Villa, C.L. Bianchi, L. Prati, M. Makkee, Gold on titania:Effect of preparation method in the liquid phase oxidation Appl. Catal. A Gen.2006,311:185-192.
    [26]A. Mudalige, J.E. Pemberton. Raman spectroscopy of glycerol/D2O solutions. Vib. Spectrosc. 2007,45:27-35.
    [27]E. Mendelovici, R.L. Frost, T. Klooprogge. Cryogenic Raman spectroscopy of glycerol. J. Raman Spectrosc.2000,31:1121-1126.
    [28]S. Kojima. Anomalous behaviour of the O-H stretching vibrational mode in the liquid-glass transition of glycerol. J. Mol. Struct.1993,294:193-196.
    [1]C.L. Bianchi, P. Canton, N. Dimitratos, F. Porta. L. Prati. Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catal. Today 2005,102-103:203-212.
    [2]N. Dimitratos, F. Porta, L. Prati. Au, Pd (mono and bimetallic) catalysts supported on graphite using the immobilisation method. Synthesis and catalytic testing for liquid phase oxidation of glycerol. Appl. Catal. A:Gen.2005,291:210-214.
    [3]D. Wang, A.Villa, P. Spontoni, D.S. Su, L. Prati. In Situ Formation of Au-Pd Bimetallic Active Sites Promoting the Physically Mixed Monometallic Catalysts in the Liquid-Phase Oxidation of Alcohols. Chem. Eur. J.2010,16:10007-10013.
    [4]W.C. Ketchie, M. Murayama, R.J. Davis. Selective oxidation of glycerol over carbon-supported AuPd catalysts. J. Catal.2007,250:264-273.
    [5]W.C. Ketchie, M Murayama, R.J. Davis. Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top. Catal.2007,44: 307-317.
    [6]A.Villa, G.M. Veith, L. Prati. Selective Oxidation of Glycerol under Acidic Conditions Using Gold Catalysts. Angew. Chem. Int. Ed.2010,49:4499-4502.
    [7]H. Kimura, K. Tsuto, T. Wakisawa, Y. Kazumi, Y. Inaya. Selective oxidation of glycerol on a platinum-bismuth catalyst. Appl. Catal. A 1993,96:217-228.
    [8]R. Garcia, M. Besson, P. Gallezot. Chemoselective catalytic oxidation of glycerol with air on platinum metals. Appl. Catal. A 1995,127:165-176.
    [9]S. Demirel, K. Lehnert, M. Lucas, P. Claus. Use of renewables for the production of chemicals:Glycerol oxidation over carbon supported gold catalysts. Appl. Catal. B:Environ. 2007,70:637-643.
    [10]Kimura H. Selective oxidation of glycerol on a platinum-bismuth catalyst by using a fixed bed reactor. Appl. Catal. A 1993,105:147-158.
    [11]A. Stassi, C. Durso, V. Baglio, A. Diblasi, V. Antonucci, A.S. Arico, A.M. Castroluna, A. Bonesi, W.E. Triaca. Electrocatalytic behaviour for oxygen reduction reaction of small nanostructured crystalline bimetallic Pt-M supported catalysts. J. Appl. Electrochem.2006, 36:1143-1149.
    [12]Z.C. Liu, S. Koh, C.F. Yu, P. Strasser. Synthesis, Dealloying, and ORR Electrocatalysis of PDDA-Stabilized Cu-Rich Pt Alloy Nanoparticles. J. Electrochem. Soc.2007,154:B1192-B1199.
    [13]S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C.J. Kiely, G.J. Hutchings. Oxidation of glycerol using supported Pt, Pd and Au catalysts. Phys. Chem. Chem. Phys.2003,5:1329-1336.
    [14]R. Garcia, M. Besson, P. Gallezot. Chemoselective catalytic oxidation of glycerol with air on platinum metals. Appl. Catal. A 1995,127:165-176.
    [15]W.C. Ketchie, M Murayama, R.J. Davis. Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top. Catal. 2007,44:307-317.
    [16]B.N. Zope, D.D. Hibbitts, M. Neurock, R.J. Davis. Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis. Science 2010,330:74-78.
    [17]C.L. Bracey, P.R. Ellis, G.J. Hutchings, Application of copper-gold alloys in catalysis: current status and future perspectives. Chem. Soc. Rev.2009,38:2231-2243.
    [18]R.M. Rioux, M.A. Vannice, Dehydrogenation of isopropyl alcohol on carbon-supported Pt and Cu-Pt catalysts. J. Catal.2005,233:147-165.
    [19]D. Liang, J. Gao, J.H. Wang, P. Chen, Z.Y. Hou, X.M. Zheng. Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts. Catal. Commun. 2009,10:1586-1590.
    [20]J. Gao, D. Liang, P. Chen, Z.Y. Hou, X.M. Zheng. Oxidation of Glycerol with Oxygen in a Base-free Aqueous Solution over Pt/AC and Pt/MWNTs Catalysts. Catal. Lett.2009,130: 185-191.
    [21]D. Liang, J. Gao, H. Sun, P. Chen, Z.Y. Hou, X.M. Zheng. Selective oxidation of glycerol with oxygen in a base-free aqueous solution over MWNTs supported Pt catalysts. Appl. Catal. B2011,106:423-432.
    [22]D. Liang, J. Gao, J.H. Wang, P. Chen, Z.Y. Hou, X.M. Zheng. Bimetallic Pt-Cu catalysts for glycerol oxidation with oxygen in a base-free aqueous solution. Catal. Commun.2011,12: 1059-1062.
    [23]N. W6rz, A. Brandner, P. Claus. Platinum-Bismuth-Catalyzed Oxidation of Glycerol: Kinetics and the Origin of Selective Deactivation. J. Phys. Chem. C 2010,114:1164-1172.
    [1]D. Liang, J. Gao, J.H. Wang, P. Chen, Z.Y. Hou, X.M. Zheng. Bimetallic Pt-Cu catalysts for glycerol oxidation with oxygen in a base-free aqueous solution. Catal. Commun.2011,12: 1059-1062.
    [2]H. Kimura, K. Tsuto, T. Wakisawa, Y. Kazumi, Y. Inaya. Selective oxidation of glycerol on a platinum-bismuth catalyst. Appl. Catal. A 1993,96:217-228.
    [3]H. Kimura. Selective oxidation of glycerol on a platinum-bismuth catalyst by using a fixed bed reactor. Appl. Catal. A 1993,105:147-158.
    [4]R. Garcia, M. Besson, P. Gallezot. Chemoselective catalytic oxidation of glycerol with air on platinum metals. Appl. Catal. A 1995,127:165-176.
    [5]S. Demirel, K. Lehnert, M. Lucas, P. Claus. Use of renewables for the production of chemicals:Glycerol oxidation over carbon supported gold catalysts. Appl. Catal. B:Environ. 2007,70:637-643.
    [6]N. Worz, A. Brandner, P. Claus. Platinum-Bismuth-Catalyzed Oxidation of Glycerol:Kinetics and the Origin of Selective Deactivation. J. Phys. Chem. C 2010,114:1164-1172.
    [7]W.B. Hu, D. Knight, B. Lowry, A. Varma. Selective Oxidation of Glycerol to Dihydroxyacetone over Pt-Bi/C Catalyst:Optimization of Catalyst and Reaction Conditions. Ind Eng Chem Res,2010,49:10876-10882.
    [8]M. Besson, P. Gallezot. Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today 2000,57:127-141.
    [9]S. Demirel, P. Kern, M. Lucas, P. Claus. Oxidation of mono-and polyalcohols with gold: Comparison of carbon and ceria supported catalysts. Catal. Today 2007,122:292-300.
    [10]W.B. Hu, B. Lowry, A. Varma, Kinetic study of glycerol oxidation network over Pt-Bi/C catalyst. Appl. Catal. B Environ.2011,106:123-132.
    [11]J. Gao, D. Liang, P. Chen, Z.Y. Hou, X.M. Zheng. Oxidation of Glycerol with Oxygen in a Base-free Aqueous Solution over Pt/AC and Pt/MWNTs Catalysts. Catal. Lett.2009,130: 185-191.
    [12]Z.Y. Lin, H.B. Chu, Y.H. Shen, L.Wei, H.C. Liu, Y. Li. Rational preparation of faceted platinum nanocrystals supported on carbon nanotubes with remarkably enhanced catalytic performance. Chem. Commun.2009,7167-7169.
    [13]D. Liang, J. Gao, H. Sun, P. Chen, Z.Y. Hou, X.M. Zheng. Selective oxidation of glycerol with oxygen in a base-free aqueous solution over MWNTs supported Pt catalysts. Appl. Catal. B 2011,106:423-432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700