法洛四联症围术期磁共振波谱代谢组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、背景和目的
     我国有大量人口生活在高海拔缺氧地区,研究长期缺氧对机体的影响非常重要。法洛氏四联症由于心内异常的右向左分流,使得心肌和全身组织长期处于缺氧状态,引起一系列的病理生理改变,因而作为慢性缺氧模型得到了广泛研究。
     法洛氏四联症(Tetralogy of Fallot,TOF)是最常见的紫绀性先天性心脏病。典型的TOF包括室间隔缺损,右心室肥厚,右室流出道梗阻和主动脉骑跨。自从Lillehei及其同事在1954年第一次为一10岁病人成功施行根治术以来,这一最常见的紫绀性心脏病一直受到广泛的研究,是否一期根治术或二期手术仍有争论。手术年龄目前趋于低龄化。影响法洛四联症根治术效果的因素很多,术后患者病情复杂多变,短期内即出现明显的代谢紊乱,导致细胞及器官的功能障碍,是一个多因素、多环节、多途径的复杂过程,其病理生理机制尚未能得到准确而系统的阐述。
     体外循环(cardiopulmonary bypass,CPB)后继发出血仍是心内直视术后的严重并发症之一。CPB术中使用氨甲环酸(tranexamic acid,TA)可有效地减少术中和术后失血量,减少患者对血液制品的需求量,已得到众多学者的认同并在临床常规应用。TA的剂量和给药方式尚无统一定论。尽管TA不良反应少,也无研究表明不良反应随剂量增加而增加,但目前尚无该药的小儿药代动力学研究。
     代谢组学是近年迅速发展起来的新兴生命学科,它从代谢的角度研究生命的本质及疾病的发生、发展过程。基于核磁共振的代谢组学主要利用NMR波谱技术和模式识别方法,对生物体液或组织进行系统测量和分析,定量研究机体对病理生理刺激或遗传变异引起的代谢应答,对影响机体整体状况的多因素的研究对机体某一病理变化的全面情况进行探究。选择在全麻低温体外循环下行一期根治术的TOF病人,作为观察对象,应用模式识别与信号校正技术分析尿液一维~1H-NMR谱,研究婴幼儿法洛四联症患者手术前与CPB期间的尿液代谢组学特征,以尝试将基于NMR的代谢组学新技术用于研究个体差异显著的复杂先天性心脏病患者,探讨代谢组学方法在心脏围手术期的应用。并对小儿TA进行药代动力学研究。
     二、内容和方法
     1.经房-肺动脉施行施行婴幼儿法洛氏四联症根治术的临床研究
     方法:总结我院经房-肺动脉施行施行婴幼儿法洛氏四联症根治术的早期结果。
     2.婴幼儿TOF根治术体外循环期间氨甲环酸血液及尿药浓度及排泄率。
     方法:10例先天性TOF患儿,年龄(11±6.3)月,体重(7.36±2.08)kg,在开胸前应用TA100mg/kg,单次静脉缓慢注射(>10分钟),CPB开始前再次注射100mg/kg。应用~1H NMR方法,检测不同时间段TA的血液及尿液浓度,并计算TA排泄率。
     3.长期缺氧对婴幼儿TOF尿液代谢组的影响。
     方法:TOF患儿10例为缺氧组,健康10例为对照组。采集禁食后清晨尿液约3ml,分别进行~1H NMR检测,采用模式识别分析方法处理数据。
     4.体外循环对婴幼儿TOF尿液液代谢组的影响。
     10例TOF手术患儿为实验组,术前为自身对照组。采集禁食后术晨尿液,以及10例TOF患儿CPB期间尿液约3ml,分别进行~1H NMR检测,采用模式识别分析方法处理数据。
     5.长期缺氧对婴幼儿TOF心肌代谢组的影响。
     方法:TOF患儿5例为实验组。同年龄的室间隔缺损并右室流出道狭窄的患儿7例为对照组。
     在心脏停跳、切开右室疏通流出道时,切除肥厚的肌束作为实验样本,主动脉阻断4-8分钟内取出右室流出道标本,液氮快速冷冻,NMR分析前-80oC保存。
     三、结果
     1.经房-肺动脉入路组(A组)无死亡,经右心室入路组(B组)住院期间2例死亡。1例死于严重的低心排并多脏器功能衰竭,1例死于恶性心律失常包括室颤和室扑。CPB时间(95.02±23.8分:85.23±22.63分, p=0.032),主动脉阻断时间(69.4±10.36分:61.17±9.38分, p=0.035),正性肌力药物应用时间(1.63±0.97天:2.1±1.09天, p=0.02),机械通气时间(26.62±12.48小时,33.02±17.55小时, p=0.033), ICU滞留时间(2.25±1.28天;2.85±1.46天, p=0.026)和心律失常发生率(3例,5.7%;10例,18.9%,p=0.038),二组有显著性差异。RV/LV压力比值(0.45±0.13;0.41±0.1, p=0.091),住院时间(10.8±2.03天;10.6±2.37天, p=0.642),再次手术(3例,5.7%;0例, p=0.079),新诊断的肾功能不全(1例,1.9%;2例,3.8%, p=0.558),二组没有显著性差异。(表2-3)。A组中,2例婴儿因出血,一例因左肺动脉与跨瓣环补片处扭曲,再次开胸手术。
     2. CPB开始前(负荷剂量用药后约20min)、CPB开始后1h、手术结束时的血液TA浓度分别为(224.61±195.28)、(509.58±181.57)、(243.95±32.30)ug/ml。
     CPB开始前、CPB期间、关胸期间的尿液TA浓度(mg/ml,M±SD),分别为4.28±1.12;3.7±2.86;4.45±2.65mg/ml。CPB开始前、CPB期间、关胸期间尿液TA量(mg, M±SD),分别为199.7±142.1,341.6±302.3,400.1±357.0mg。至手术结束(用药后约3小时)TA总排泄量为57.48±19.66%。CPB开始前排泄率6.5±4.8mg/min,CPB期间排泄率4.5±4.9mg/min,关胸期间排泄率13.1±9.6mg/min,总排泄率6.2±3.4mg/min,各组均无显著性差异,p>0.05。TA在0.03~6.0mg/ml具有良好的线性关系(r=0.999);平均回收率为99.61%,RSD为0.45%(n=6)。
     3.核磁共振氢谱的PLS-DA结果显示,从得分图中可以看出TOF与健康儿童两组尿液代谢组呈聚类型分布(图3-1),TOF病人尿液与健康儿童尿液能区分。
     TOF与健康儿童代谢物积分与内标DSS相对指数比较见表3-1,TOF病人尿液胆汁酸(δ0.623)升高(p=0.03),二甲胺(δ2.76),三甲胺(δ2.82),马尿酸(δ7.82)均降低,(P分别为0.028,0.043,0.002),有显著性差异。
     4.法洛四联症CPB期间与术前尿液代谢组学比较
     核磁共振氢谱的PLS-DA结果显示,从得分图中可以看出两组尿样代谢组呈聚类型分布(图5-2)。
     统计分析亮氨酸(δ0.93),异亮氨酸(δ0.96,1.02),缬氨酸(δ0.99,1.06),异戊酸(δ1.13,1.35,1.60,2.03),谷氨酰胺(δ2.44),柠檬酸(δ2.53),琥珀酸(δ2.71),α-酮戊二酸(δ3.01),肌酐(δ3.04,4.04),3,4-去羟苯乙二醇(δ6.85),马尿酸(δ6.86,7.56,7.64,7.82),尼克酰胺(δ8.32),甲酸(δ8.44),CPB期间较术前下降,有显著性差异(P<0.05)。外源性甘露醇(δ3.67,3.77,3.80,3.88)CPB期间较术前升高,有显著性差异(P<0.05)。
     5. HR-MAS~1H NMR的PLS-DA结果显示,从得分图中可以看出两组心肌代谢组呈聚类型分布(图6-1)。TOF心肌与对照心肌中都出现乳酸峰,但无显著性差异;TOF心肌中甘油三酯-(CH2)-基团(δ1.31)的谱峰信号升高明显,含量高于对照组,有显著性差异。
     四、结论
     1.经房-肺动脉施行施行婴幼儿TOF根治术是可行的,对2岁以下的婴幼儿TOF效果满意。
     2.~1HNMR能够检测出TA的血液及尿液浓度。该TA用法血药浓度高,大于抑制有高度出血风险可能需要的血液浓度125ug/ml,提示可降低剂量。有约一半剂量在手术结束后排出体外。
     3.长期慢性缺氧影响婴幼儿肠道菌群的结构和活性,影响马尿酸的合成和排泄,影响胆红素的肠肝循环。
     4.婴幼儿TOF在CPB期间,肌肉分解增强,肠道菌群代谢受到进一步影响,肝脏肾脏功能出现损害,但基本能满足能量代谢需求。
     5.长期缺氧影响心肌有氧代谢,无氧酵解增强,但仍能维持静息状态下的能量需求。TOF心肌中甘油三酯-(CH2)-基团(δ1.31)的谱峰信号升高明显,可能意味着长期缺氧可能影响了在心肌细胞线粒体中进行的脂肪酸-氧化代谢的关键酶。
Background:
     Tetralogy of Fallot (TOF) is the common cyanosis congenital heart disease. Rightventricular (RV) dysfunction is an important cause of morbidity and mortality after surgicalcorrection of TOF. Transatrial/transpulmonary repair avoids a ventriculotomy (in contrast tothe transventricular approach) aiming to preserve right ventricular structure and function.We performed a prospective randomised controlled trial in infancy with TOF undergoingthe primary repair.
     Tranexamic acid (TA) is an antifibrinolytic agent, which faces difficulties in theachievement and maintenance of a therapeutic concentration. Hence, it is required tomonitor the TA level in blood/plasma during the administration.
     Metabolomics is a powerful new technology that allows for the assessment of globalmetabolic profiles in easily accessible biofluids and biomarker discovery in order todistinguish between diseased and non-diseased status. We utilized this approach in a pilotstudy in urine and intact myocardium samples from TOF patients and controls. Todistinguish TOF patients from matched controls with the global metabolic profiling andsubsequent multivariate analysis. To explore the urine metabonomic profile of TOF patientsbefore and during cardiopulmonary bypass.
     To detect specimens of hypertensive myocardium with high resolution magic anglespinning1-Hydrogen Nuclear Magnetic Resonance spectroscopy(HR-MAS~1H-NMRS),toanalyze their soluble metabolites,discuss its metabolism response to chronic hypoxia inmyocardium.
     1. Primary repair of Tetralogy of Fallot in infants: transatrial/transpulmonary ortransventricular approach.
     A prospective controlled clinical trial was conducted in infancy with TOF undergoingthe primary repair. One-hundred and six patients recruited were divided into transatrial-transpulmonary approach group (Group A)(n=53) and transventricular approachgroup (Group B)(n=53) depending on the different surgical technique.
     2. The plasma and urine concentration of tranexamic acid duringcardiopulmonary bypass in infants
     10patients with Tetralogy of Fallot received an initial dose100mg/kg of TA givenover10min followed by an infusion of100mg/kg before the initiation of cardiopulmonarybypass (CPB). Plasma and urine TA concentrations were detected by~1H NMR.
     3. Study on Urine Metabolomics of Tetralogy of Fallot Infants using Hydro-Nuclear Magnetic Resonance Spectrometer
     Total10infants with Tetralogy of Fallot (TOF) and10healthy infants were enrolled inthis study and their urine metabolites were analyzed using Hydro-Nuclear MagneticResonance (~1H NMR) spectrometer for the Partial Least Squares Discriminant Analysis(PLS-DA).
     4. Study on Urine Metabolomics of Tetralogy of Fallot patients during theCardiopulmonary Bypass Period
     The urine metabolites from total10TOF infants before and during thecardiopulmonary bypass period were detected by~1HNMR spectrometer analyzed for thePartial Least Squares Discriminant Analysis (PLS-DA).
     5.Intact myocardium metabolomics based on the HR-MAS~1H-NMRspectroscopy.
     There were total10infancy myocardiums from the right ventricular outflow tract withcyanotic (n=5) or acyanotic cardiac defects (n=7) were detected by HR-MAS~1H-NMRspectroscopy.
     Results
     1. Patient preoperative characteristics and procedure-related variables were similar.There was no death in Group A, while2patients died in Group B. There were significantdifferences in CPB time (95.02±23.8minutes versus85.23±22.63minutes, p=0.032),Cross-clamp time (69.4±10.36minutes versus61.17±9.38minutes, p=0.035), inotropicsupport (1.63±0.97days versus2.1±1.09days, p=0.02), intubation time (26.62±12.48hoursversus33.02±17.55hours, p=0.033), ICU stays (2.25±1.28days versus2.85±1.46days,p=0.026) and the incidence of arrhythmia (3,5.7%versus10,18.9%, p=0.038). No significant difference in RV/LV pressure ratio and hospital stay.
     2. Plasma TA concentrations were (224.61±195.28)ug/ml at20min after bolus,(509.58±181.57)ug/ml after60min on CPB,(243.95±32.30)ug/ml at the end of operation.
     Urine TA concentrations(mg/mL; M±SD) before CPB、during CPB、thoracic closing,4.28±1.12;3.7±2.86;4.45±2.65mg/ml respectively.Total urine TA dose(mg; M±SD)before CPB,during CPB, and thoracic closing,199.7±142.1,341.6±302.3,400.1±357.0mg/lrespectively.The total TA excreted (M±SD) is57.48±19.66%until operation finished about3hours.
     3. PLS-DA of urine~1H-NMR spectra revealed different metabolic spectra betweenTOF and the healthy control.
     The urine concentration of dimethylmine(δ2.76), trimethylmine(δ2.82)mandhippurate(δ7.82) is decreased significantly in TOF group compared with the control,(p=0.028,0.043,0.002, respectively), the urine concentration of bile acid(δ0.623) isencreased significantly in TOF group compared with the control,(p=0.03).
     4. PLS-DA of urine~1H-NMR spectra revealed different metabolic spectra betweenbefore and during CPB, demonstrated that the metabolic characteristics of the two groupswere significantly different. Compared with before operation, Leucine(δ0.93),isoleucine(δ0.96,1.02), valine(δ0.99,1.06), isovalerate(δ1.13,1.35,1.60,2.03),glutamine(δ2.44),Citrate(δ2.53), succinic acid(δ2.71), α-ketoglutarate(δ3.01), creatine(δ3.04,4.04),Hippurate(δ7.82), Nicotinamide (δ8.32),Formic acid(δ8.44),decreased significantly duringCPB, while exogenous Mannitol(δ3.67)encreased significantly.
     5. PLS-DA of myocardium NR-MAS~1H-NMR spectra revealed different metabolicspectra between TOF and control, demonstrated that the metabolic characteristics of the twogroups were significantly different. Only the triglyceride(δ1.31) is higher significant in theTOF myocardium than that of control.
     Conclusion
     1. Transatrial/transpulmonary repair of TOF is associated with excellent surgicalresults and immediately follow-up.
     2. A100mg/kg initial dose of TA followed by an infusionof100mg/kg before theinitiation of CPB is sufficient enough to provide an effective plasma concentration125ug/ml for the bleeding patients with high risk. The dose of TA could be decreased. About50%of total dose excreted off in3hours.
     3. Chronic Hypoxia alters metabolism of intestinal flora in infants.
     4.Characteristic metabolic products in two groups can be identified by~1H-NMR basedmetabonomics analysis. Metabonomic study is a feasible and promising way to detect thevariation of urine metabonomics of complex open heart operation patients.
     5. Chronic hypoxia effect the energy metabolism of myocardium and the key enzymeof fatty acid oxidative metabolism in the myocardial mitochondria.
     These findings highlight the potential of metabonomics as a novel approach forfundamental investigations of hypoxia interactions as well as for disease surveillance andcontrol. It holds promise for development of novel diagnostic approaches at individual andpopulation levels. Future studies should look at extending this work to other aged patientsmodels. We believe that metabonomics also represents an ‘omics’ science that now requirescomprehensive assessment and validation for its potential in individual and communitydiagnosis, particularly with regard to responses to treatment.
引文
[1] Murphy JG, Gersh BJ, Mair DD, et al. Long-term outcome in patients undergoingsurgical repair of tetralogy of Fallot. N Engl J Med.1993;329:593-599.
    [2] Kirklin JW, Black stone EH, Kirklin JK,et al.Surgical results and protocols in thesurgical spectrum of Tetralogy of Fallot. Ann Surg.1983;198:251-265
    [3] van Arsedell GS, Maharaj GS, Tom J, et al. What is the optimal age for repair ofTetralogy of Fallot? Circulation.2000;102(Suppl.3):123-129.
    [4] Mahle WT, McBride MG, Paridon SM. Exercise performance in tetralogy of Fallot:the impact of primary complete repair in infancy. PediatrCardiol.2002;23(2):224-229.
    [5] Ben Khalfallah A, Annabi N, Ousji M. Longterm outcome of surgically treatedteratology of Fallot. Tunis Med.2004;82Suppl1:88-93.
    [6]孙国林,靳树仁,泮思林,等.经房-肺动脉施行婴幼儿法洛四联症根治术的临床研究[J].第三军医大学学报,2011,33(02):84-88.
    [7] Miura T, Nakano S, Shimazaki Y, Kobayashi J, Hirose H, Sano T,et al. Evaluation ofright ventricular function by regional wall motion analysis in patients aftercorrection of tetralogy of Fallot: comparison of transventricular andnontransventricular repairs. J Thorac Cardiovasc Surg.1992;104:917-23.
    [8] Ammash RM, Laamberti J, BurrkhartHM,et_al.Pulmonary regurggitationaftertetralogy of Fallot repair:Clinical features,sequelae,and timing of pulmonaryvalve replaement[J].Congen Heart Dis.2007;2:386-403.
    [9] Khairy P, Harris L, Landzberg MJ, et_al.Implantable cardiaoverter-defibrillators intetralogy of Fallot,Circulation.2008;117:363-370.
    [10] Frigiola A,Glamberti A,Chessa M,et_al.forthe RESTORE group:right vemtricularreatore during pulmonary valve implantation in adults with congenital heart disease[J].Eur J Cardiothorac Surg.2006;29:s279-285.
    [11] Kawashima Y, Kitamura S, Nakano S, Yagihara T. Corrective surgery for tetralogy ofFallot without or with minimal right ventriculotomy and with repair of thepulmonary valve. Circulation.1981;64(Suppl2):147-153.
    [12] Hudspeth AS, Cordell AR, Johnston FR. Transatrial approach to total correction oftetralogy of Fallot. Circulation.1963;27:796-800.
    [13] Hoohenkerk GJ, Schoof PH, Bruggemans EF et al.28years' experience withtransatrial-transpulmonary repair of atrioventricular septal defect with tetralogy ofFallot. Ann Thorac Surg.2008;85(5):1686-1689.
    [14]王玉华.围手术期氨甲环酸有效减少心脏手术后渗血[J].临床麻醉学杂志,2002,18(9):495.
    [15]王丽红,钟慧,邓萌等.氨甲环酸在婴儿先心手术中的应用[J].中国临床医学,2010,17(1):123-125.
    [16]肖娟,肖颖彬,陈林,等.发绀型先天性心脏病心肌线粒体生物合成观察[J].重庆医学,2008,37,(9):962-965.
    [17]肖娟,肖颖彬,陈林,.紫绀型先天性心脏病心肌线粒体DNA拷贝数的变化[J].西部医学,2008,20(4):693-695.
    [18]冒海蕾,徐曼,王斌,等.正交信号校正技术在正常成人血清1HNMR谱的代谢组分析中的滤噪作用及其评价[J].化学学报,2007,65(2):152—158.
    [19] Lillehei CW, Varco RL, Cohen M, Warden HE, Gott VL, DeWall RA, Patton C,Moller JH. The first open heart corrections of tetralogy of Fallot. A26-31yearfollow-up of106patients[J].Ann Surg.1986;204:490–502.
    [20] Van Arsdell GS, Maharaj GS, Tom J, Rao VK, Coles JG, Freedom RM, Williams WG,McCrindle BW. What is the optimal age for repair of tetralogy of Fallot?[J].Circulation,2000;102(III):123–129.
    [21] Derby CD, Pizarro C. Routine primary repair of tetralogy of Fallot in theneonate[J].Expert Rev Cardiovasc Ther,2005;3(5):857-863.
    [22] Giannopoulos NM, Chatzis AK, Karros P, et al: Early results aftertransatrial/transpulmonary repair of Tetralogy of Fallot[J]. Eur J Cardiothorac Surg.2002;22:582-586.
    [23] Giannopoulos NM, Chatzis AC, Tsoutsinos AI et al. Surgical results after totaltransatrial/transpulmonary correction of tetralogy of Fallot[J].Hellenic J Cardiol.2005;46(4):273-282.
    [24] Bacha EA, Scheule AM, Zurakowski D, et al. Long-term results after early primaryrepair of tetralogy of Fallot[J]. J Thorac Cardiovasc Surg,2001;122:154–161.
    [25] Kirklin JK, Kirklin JW, Blackstone EH, Milano A, Pacifico AD. Effect oftransannular patching on outcome after repair of tetralogy of Fallot[J].Ann ThoracSurg,1989;48:783–791.
    [26] Roest AAW, Helbing WA, Kunz P, et al. Exercise MR imaging in the assessment ofpulmonary regurgitation and biventricular function in patients after tetralogy ofFallot repair[J].Radiology.2002;223:204–211.
    [27] Gatzoulis MA, Balaji S, Webber SA, et al. Risk factors for arrhythmia and suddencardiac death late after repair of tetralogy of Fallot: a multicentrestudy[J].Lancet.2000;356:975–981.
    [28] Therrien J, Harris L, Dore A, et al. Impact of pulmonary valve replacement onarrhythmia propensity after repair of tetralogy of Fallot[J]. Circulation.2001;103:2489-2494.
    [29] Eyskens B, Reybrouck T, Bogaert J, et al. Homograft insertion for pulmonaryregurgitation after repair of tetralogy of Fallot improves cardiorespiratory exerciseperformance[J].Am J Cardiol.2000;85:221-225.
    [30] M.S. Sachdev, A. Bhagyavathy, R. Varghese, R et al. Right Ventricular DiastolicFunction after Repair of Tetralogy of Fallot[J].Pediatr Cardiol.2006;27:250–255.
    [31] Richard A.Jonas.Early primary repair of tetralogyof Fallot[J].Semin ThoracCardiovasc Surg Pediatric Cardiac Surgery Annual.2009;12(1):39-47.
    [32] d'Acoz YU, Pasquet A, Lebreux L,et al. Does right ventricular outflow tract damageplay a role in the genesis of late right ventricular dilatation after tetralogy of Fallotrepair?[J]. Ann Thorac Surg.2003;76(2):555-561.
    [33] Asou T, Rachmat J. Slicing technique of the RV outflow tract in transatrial-transpulmonary repair for tetralogy of Fallot[J].J Cardiovasc Surg.2001;42:639-642.
    [34] Stewart R. D, Backer C. L., Young L, et al. Tetralogy of Fallot:results of a pulmonaryvalve sparing strategy[J].Ann Thorac surg.2005;80(4):1431-1439.
    [35] de Ruijter FTH, Weenink I, Hitchcock FJ, et al. Right ventricular dysfunction andpulmonary valve replacement after correction of tetralogy of Fallot[J]. Ann ThoracSurg.2002;73:1794-1800.
    [36] AbulAzm A,Abdullah K M.Effect of topical tranexamic acid in open heartsurgery[J]. Eur J Anaesthesiol,2006,23:380-384.
    [37]王强,汪茂田,张志权.核磁共振法定量测定替米考星含量[J].分析测试学报,2003,22(6):101-103.
    [38]胡敏,胡昌勤.核磁共振波谱法测定药物基准物质的绝对含量[J].分析化学,2004,32(4):451-455.
    [39] Dowd N P,Karski J M,Cheng D C,et a1.Pharmacokinetics of tranexamie acidduring cardiopulmonary bypass[J].Anesthesiology,2002,97(2):390-399.
    [40]郑金凤,朱迎军,黄莉.高效液相色谱法测定氨甲环酸片的溶出度[J].中南药学,2009,7(4):280-282.
    [41] Chang Q, Yin O Q, Chow M S. Liquid chromatographytandem mass spectrometrymethod for the determination of tranexamic acid in human plasma[J]. J ChromatogrB Analyt Technol Biomed Life Sci,2004,805(2):275-280.
    [42] S. Grassin Delyle, E. Abe, A. Batisse, B. et al. A validated assay for the quantitativeanalysis of tranexamic acid in human serum by liquid chromatography coupled withelectrospray ionization mass spectrometry[J].Clin. Chim. Acta,2010,41:438-441.
    [43] Martin K,Wiesner G,Breuer T,et a1.The Risks of aprotinin and tranexamic add incardiac surgery:A one-Year follow-up of1188consecutive patients[J].AnesthAnalg,2008,107:1783-1790.
    [44] Chauhan S,Bisoi A,Kumar N,et a1.Dose comparison of tranexamic acid in pediatriccardiac surgery[J].Asian Cardiovasc Thorac Ann,2004,12(2):121-124.
    [45] Andersson L, Nilsson IM, Collen S, et al. Role of urokinase and tissue activator insustaining bleeding and the management there of with EACA and AMCA[J]. AnnNY Acad Sci1968;146:642-58.
    [46] Nicholson JK,Holmes E,Lindon JC,et a1.The challenges of modeling mammalianbiocomplexity[J].Nature Biotechnology,2004,22(10):1268-1274.
    [47] Brindle J T,Antti H,Holmes E,et a1.Rapid and noninvasive diagnosis of thepresence and severity of coronary heart disease usinglH-NMR-basedmetabolomics[J].Nat Med,2002,8(12):1439-1444.
    [48]刘喜红,丁宗一.重视开展儿科领域内代谢组学研究[J].中国儿童保健杂志,2010,18(12):925-926.
    [49]刘作义.肝功能障碍与肠道微生态[J].小儿急救医学2004,11(6);356-357.
    [50] Holmes E, Loo RL, Stamler J,et al. Human metabolic phenotype diversity and itsassociation with diet and blood pressure. Nature2008,453:396-400.
    [51] Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiomewith increased capacity for energy harvest[J]. Nature2006,444:1027-1031.
    [52] Finegold SM: Therapy and epidemiology of autism-clostridial spores as keyelements[J]. Med Hypotheses2008,70:508-511.
    [53] Marchesi JR, Holmes E, Khan F,et al. Rapid and noninvasive metabonomiccharacterization of inflammatory bowel disease[J]. J Proteome Res2007,6:546-551.
    [54] Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut[J]. Science2001,292:1115-1118.
    [55] Clayton TA, Lindon JC, Cloarec O, et al. Pharmaco-metabonomic phenotyping andpersonalized drug treatment[J]. Nature2006,440:1073-1077.
    [56] Kinross JM, Alkhamesi N, Barton RH, et al. Global metabolic phenotyping in anexperimental laparotomy model of surgical trauma. J Proteome Res2011,10:277-287.
    [57] Macpherson AJ, Gatto D, Sainsbury E, et al. A primitive Tcell-independentmechanism of intestinal mucosal IgA responses to commensal bacteria[J]. Science2000,288:2222-2226.
    [58] Nicholson JK, Holmes E, Wilson ID: Gut microorganisms, mammalian metabolismand personalized health care[J]. Nat Rev Microbiol,2005,3:431-438.
    [59] Wei L,Liao P Q,Wu H F,et al.Metabolic profiling studies on the toxicologicaleffects of realgar in rats by1H NMR spectroscopy[J].Toxicology and AppliedPharmacology,2009,234:3l4-325.
    [60] Goodwin, B L, Colin R.J. Ruthven, Merton Sandler.Gut flora and the origin of someurinary aromatic phenolic compounds [J]. Biochem Pharmacol.1994,47,2294–2297.
    [61] Gordon J I, Stappenbeck T S&Hooper LV. Commensal bacteria make adifference[J].Trends Microbiol,2003,11,150–151.
    [62] Phipps A N,Stewart J,Wright B.Effect of diet on the urinary excretion of hippuricacid and other dietary-derived aromatics in rat. A complex interaction between diet,gut microflora and substrate specificity [J].Xenobiotica,1998,28(5):527-537.
    [63] Wei L,Liao PQ,wu HF,et al.Toxicological effects of cinnabar in rats by NMR-basedmetabolic profiling of urine and serum[J].Toxicology and Applied Pharmacology,2008,227(3):417-429.
    [64] Yoshida K, Kuroda K, Zhou X, et al. Urinary sulfur-containing metabolite producedby intestinal bacteria following oral administration of dimethylarsinic acid to rats.[J]. Chem. Res. Toxicol,2003,16(9),1124–1129.
    [65] Liebig J: über die S ure, welche in dem Harn der grasfressenden vierfüssigen Thiereenthalten ist[J]. Poggendorfs Ann Phys Chem,1829,17:389-399.
    [66] Lewis HB: Studies in the synthesis of hippuric acid in the animal organism. II. Thesynthesis and rate of elimination of hippuric acid after benzoate ingestion in man [J].J Biol Chem,1914,18:225-231.
    [67] Schachter D, Taggart JV: Benzoyl coenzyme A and hippurate synthesis[J]. J BiolChem,1953,203:925-934.
    [68] Caldwell J, Moffatt JR, Smith RL: Post-mortem survival of hippuric acid formation inrat and human cadaver tissue samples [J]. Xenobiotica,1976,6:275-280.
    [69] Gatley SJ, Sherratt HS: The synthesis of hippurate from benzoate and glycine by ratliver mitochondria Submitochondrial localization and kinetics[J]. Biochem J,1977,166:39-47.
    [70] Nicholls AW, Mortishire-Smith RJ, Nicholson JK: NMR spectroscopic-basedmetabonomic studies of urinary metabolite variation in acclimatizing germ-freerats[J]. Chem Res Toxicol,2003,16:1395-1404.
    [71] Farrell PC, Gotch FA, Peters JH, et al. Binding of hippurate in normal plasma and inuremic plasma pre and postdialysis[J]. Nephron,1978;20(1):40-46.
    [72] Nowak A.Libudzisz Z.Influence of phenol,p-CreSOl and indole on growth andsurvival of intestinal lactic acid bacteria[J].Anaerobe,2006,12(2):80.
    [73] Horace RT Williams, I Jane Cox, David G Walker,et al.Differences in gut microbialmetabolism are responsible for reduced hippurate synthesis in Crohn’s disease[J].BMC Gastroenterology2010,10:108.
    [74] Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human metabolicphenotypes[J]. Proc Natl Acad Sci USA,2008,105:2117-2122.
    [75] Balkan J,Kanbagl II O,Ayka-yokur.G, et a1.Taurine treatment reduces hepatic lipids and oxidative stress in chronically ethanol-treated rats[J].Biol Pharm Bull,2002,25(9):1231.
    [76] Yin P,Wan D,Zhao C,et al.A metabonomic study of hepatitis B-induced livercirrhosis and hepatocellular carcinoma by using RP-LC and HILIC coupled withmass spectrometry[J]. Mol Biosyst,2009,5(8):868-876.
    [77]邱晓岩,胡富荣.尿中马尿酸值的高效液相色谱法及正常值的探讨[J].化工劳动保护(工业卫生与职业病分册),1997,18(6);251-252.
    [78] JE Fischer.Metabplism and Nutrition in liver Diseases[J].MTP press.Lan caster:Holm E,1984:259.
    [79] Solanky K S, Bailey N J C, Holmes E, et al. NMR-based metabonomic studies on thebiochemical effects of epicatechin in the rat[J]. J Agric Food Chem,2003,51(14):4139-4145.
    [80] Kroes B H, van den Berg A J, Quarles van Ufford H C, et al. Anti-inflammatoryactivity of gallic acid[J]. Planta Med,1992,58(6):499-504.
    [81] Pummer S;Dantzler w.H;Lien Y.H.et a1. Reabsorption of betaine in Henle'sloops of rat kidney in vivo[J].Am.J.Physio1.Renal Physiol,2000,278:434-439.
    [82]李建新,华嘉,何翠翠,等.中药毒性的代谢组学研究(I):雷公藤甲素的肾脏毒性[J].亚太传统医药,2007,3(7):41-45.
    [83] Williams R E,Twomey K,Jacobsen M, et al. N-phenylanthranilic acid inducednephrotoxicity-a metabonomics approach [J]. Toxicology2003,192(1),77-78.
    [84] Phipps A N, Stewart J, Wright B, et al. Effect of diet on the urinary excretion ofhippuric acid and other dietary-derived aromatics in rat. a complex interactionbetween diet, gut microflora and substrate specificity[J]. Xenobiotica,1998,28(5):527-537.
    [85] Waters N J,Waterfield c J,Farrant R D,et a1.Integrated metabonomic analysis ofbromobenzene-induced hepatotoxicity: Novel induction of5-oxoprolinosis[J].JProteome Res,2006,5:1448-1459.
    [86] Daykin CA,Van Duynhoven J P M,Groenewegen A,et a1.Nuclear magneticresonance spectroscopic based studies of the metabolism of black tea polyphenols inhumans[J].J Agric Food Chem,2005,53(5):1428-1434.
    [87]李晓晶,冯江华,装奉奎,等.稀土对大鼠尿液成分影响的核磁共振研究[J].高等学校化学学报,2001,22(11):1904-1906.
    [88]王克强,王利民,夏薇,等.一种脑代谢研究的有效方法-高分辨率磁共振波谱分析[J].波谱学杂志,2001,18(2):99-104.
    [89]杨云龙,王克强,刘雯等.磁共振波谱在分析心肌代谢中的应用[J].中国临床医学,2008:480-482.
    [90]张钢,高钰琪,张璐.缺氧对大鼠血液流变学特性的影响[J].重庆医学,2006,35(17):1574-1576.
    [91]孙桂媛,石玉秀,祝淑文,等.法鲁四联症心肌细胞光电镜变化的研究[J].中国医科大学学报,1998,27(3):233-235.
    [92]李晓峰,李仲智,郎志奇,等.法洛四联症右心室流出道心肌的超微结构及力学特性[J].中华小儿外科杂志,2000,21,(5)268-271.
    [93] Mitsuno M, Nakano S, Shimazaki Y, Taniguchi K, Kawamoto T, Kobayashi,J,Matsuda H, Kawashima Y. Fate of right ventricular hypertrophy in Tetralogy ofFallot after corrective surgery[J]. Am J Cardiol1993;72:694-698.
    [94] Lee YS, Chen YC. Alteration in ultrastructure and anionic sites in basementmembranes of myocardial cells and capillaries in patients with congenital heartdisease due to Tetralogy of Fallot[J]. Jpn Heart J1987;28:333–47.
    [95] Vtiurin BV, Kharmas SSSH, Klamanova ES. Changes in the ultrastructure of musclecells of the heart in congenital defects[J]. J Kardiologia1963;9:26.
    [96] Kato M. Right ventricular hypertrophy in Tetralogy of Fallot; pathohistologic study[J].Jpn Assoc Thorac Surg1976;25:1436–45.
    [97] Jones M, Ferrans VJ, Morrow A, Robert WC. Ultrastructure of crista ventricularismuscle in patients with congenital heart disease associated with right ventricularoutflow tract obstruction[J]. Circulation1975;51:39–67.
    [98] Borow KM, Green LH, Castaneda AR, et al. Left ventricular function after repair oftetralogy of Fallot and its relationsh ip to age at surgery[J]. Circulation,1980;61:1150.
    [99] Chen X, Wilson R M, Kubo H, et al. Adolescent feline heart contains a population ofsmall, proliferative ventricular myocytes with immature physiological properties[J].Circ Res,2007,86(100):536-544.
    [100] Arslan A, Sezgin A, Guhekin B, et al. Low-dose histidine-tryptophan-ketoglutaratesolution for myocardial protection [J]. Transplant Proc,2005,37(7):3219-3222.
    [101] Bollard M E, Murray A J,Clarke K,et al. A study of metabolic compartmentation inthe rat heart and cardiac mitochondria using high-resolution magic angle spinning1H NMR spectroscopy[J].FEBS Letters2003,553(6):73-78.
    [102] Hakumaki J M, Brindle K M.Techniques: Visualizing apoptosis using nuclearmagnetic resonance[J]. Trends Pharmacol Sci,2003,24(3):146-149.
    [103] Andrew E R,Bradbury A,Geads R.Nuclear magnetic resonance spectra from acrystal rotated at high speed[J].Nature,1958,182:1659-l661.
    [104] Kevin K. Millis, Werner E. Maas, David G. Cory,et al. Gradient, high-resolution,magic-angle spinning nuclear magnetic resonance spectroscopy of human adipocytetissue. Magnetic Resonance in Medicine[J].1997,38(3):399–403.
    [105] Jia V Li, Elaine Holmes, Jasmina Saric, et al. Metabolic profiling of a Schistosomamansoni infection in mouse tissues using magic angle spinning-nuclear magneticresonance spectroscopy[J]. International Journal for Parasitology,2009,39:547–558.
    [106] Wu Huifeng, Zhang Xiaoyu, Li Xiaojing,et al.Investigation on acute biochemicaleffects of Ce(NO3)3on liver and kidney tissues by MAS1H NMRspectroscopic-based metabonomic approach[J]. Journal of rare earth2006,24:357-363.
    [107]李谊,魏锐利,陶晓峰.眼眶及脑部肿瘤磁共振波谱的应用[J].国际眼科杂志.2004,4(1):132-136.
    [108] Nakae I, Mit sunami K, Mat suo S, et al. Myocardial creatine concent ration invarious nonischemic heart diseases assessed by1H magnetic resonance spectroscopy[J]. Circ J,2005,69(6):711-716.
    [109]王艳飞,曹雪滨,徐淑乐,等.心复康口服液对慢性压力超负荷大鼠心肌能量代谢的影响[J].第三军医大学学报,2009,31(18):1720-1723.
    [110] del Nido PJ, Mickle DA, Wilson GJ, et al.Inadequate myocardial protection with coldcardioplegic arrest during repair of tetralogy of Fallot[J]. J Thorac Cardiovasc Surg,1988,95(2):223-9.
    [111] Santosh B Shinde, Vipul C Save, Neela D Patil,et al.Impairment of mitochondrialrespiratory chain enzyme activities in tetralogy of fallot[J].Clinica ChimicaActa,2007,377:138–143.
    [112]郜发宝,赵海涛,索丽,等.离体心肌磁共振波谱的实验研究[J].中华放射学杂
    志,1999,33(6):425-427.
    [1] Pigula FA,Khalil PN,Mayer JE, et al.Repair of Tetralogy of Fallot in neonates andyoung infants.Circulation.1999;100(Suppl.):II157-1161.
    [2] Bacha EA,Scheule AM,Zurakowski D, et al. Long-term results after early primaryrepair of Tetralogy of Fallot. J thorac Cardiovasc Surg.2001;122(1):154-161.
    [3] Chun Soo Park,Jeong RyulLee,Woong-HanKim, et al. The long-term result of totalrepair for tetralogy of Fallot European Journal of Cardio-thoracic Surgery.2010;38(3):311-7.
    [4] HirschJC, MoscaRS, BoveEL:Complete repair of tetralogy of Fallot in theneonate:Results in the modern era.Ann Surg.232:508-514,2000.
    [5] KaulitzR,JuxC,BertramH, et al aul.Primary repair of Tetralogy of Fallot in infancy!Theeffect of growth of the pulmonary arteries and the risk for late reinterventions.CardiolYoung.2001;11(4):391-398
    [6] AdrianOoi,GiedriusBaliulis,NarainMoorjani Medium term outcome for infant repairin tetralogy of Fallot: indicators for timing of surgery. European Journal ofCardio-thoracic Surgery.2006;(30):917-922.
    [7].孙宏涛、沈向东、刘迎龙等.6个月以下婴儿法洛四联症的外科治疗.中国胸心血管外科临床杂志.2009,Vol.16,No.5:336-338.
    [8]孙江滨。查光彦梁德刚等.低体重婴儿法洛四联症根治术.中国现代医学杂志.2006;16(3):454-456.
    [9]韩宏光;张南滨;汪曾炜等.婴儿法洛四联症一期根治术后早期并发症的处理.心血管康复医学杂志.2006;15(3):254-256.
    [10]孙英民,卫向阳,郭小峰等.法洛四联症根治术后并发症的临床探讨.中国实用医药.2008,3(30):129-130.
    [11]贺东,沈向东,刘迎龙等.小儿法洛四联症根治手术死亡病例的临床分析.中日友好医院学报.2010;24(1):18-24.
    [12]王晓武,张卫达,袁彬彬等.法洛四联症根治术后死亡原因分析附20例死亡报告.南方医科大学学报.2009;19(6):1150-1152.
    [13]张陈,刘豫阳,盛锋等.法洛四联症一期根治术后早期死亡危险因素分析.中国实用儿科杂志.2005;20;(6):357-359.
    [14] Seghaye MC,Engelhardt W,Grabitz RG, etal.Multiple system organ failure after openheart surgery in infants and children. Thorac Cardiovasc Surg.1993;41:49-53.
    [15] Hoffman TM,Wernovsky G, Atz AM,etal. Effecacy and safety of milrinone inpreventing low cardiac output syndrome in infants and children after corrective surgeryfor congenital heart disease. Circulation.2003;107:996-1002.
    [16].Ira M.Cheifetz,FrankH.Kern,ScottR.Schulman, Serum Lactates Correlate WithMortality After Operations for Complex Congenital Heart Disease.Ann ThoracSurg.1997;64:735-8.
    [17].Murat Basaran,Kenan Sever,Eylul Kafali, et al.Serum Lactate Level Has PrognosticSignificance After Pediatric Cardiac Surgery.Journal of Cardiothoracic and VascularAnesthesia,2006;20(1):43-47.
    [18] Silver MA, Maisel A, Yancy CW, et al. BNP Consensus Panel2004: A clinicalapproach for the diagnostic, prognostic, screening, treatment monitoring, andtherapeutic roles of natriuretic peptides in cardiovascular diseases. Congest Heart Fail.2004;10(5Suppl3):1–30.
    [19] Fabio Carmona,Paulo H.Manso,Walter V.A.Vicente。Risk stratication in neonates andinfants submitted to cardiac surgery with cardiopulmonary bypass:A multimarkerapproach combining flammatory mediators, N-terminal pro-B-type natriuretic peptideand troponin I F.Carmonaetal.Cytokine.2008;42:317-324.
    [20] Muehlschlegel JD, Perry TE, Liu K,Yet al.Heart-Type Fatty Acid Binding Protein Is anIndependent Predictor of Death and Ventricular Dysfunction After Coronary ArteryBypass Graft Surgery. Anesth Analg.2010;111(5):1101-9.
    [21] Manjula Maganti, Mitesh Badiwala, Amir Sheikh.Predictors of low cardiac outputsyndrome after isolated mitral valve surgery.The Journal of Thoracic andCardiovascular Surgery.2010;140(4):790-6.
    [22] Tomaso Bottio,Massimo Padalino, Massimo Padalino et al.Early and long-termprognostic value of Troponin-I after cardiac Surgery in new borns and children.European Journal of Cardio-thoracic Surgery.2006;30:250-255.
    [23] Nicholson J K, Bollard M E, LindonJ C, Holmes E. Metabonomics: a platform forstudying drug toxicity and gene function.Nat Rev Drug Discov.2002Feb;1(2):153-161.
    [24] TaylorJ, King RD, Altmann T, Fiehn O. Application of metabolomics to plantgenotype discrimination using statistics and machine learning. Bioinformatics.2002;18Suppl2:S241-8.
    [25] Lewis GD, Asnani A, Gerszten RE.Application of metabolomics to cardiovascularbiomarker and pathway discovery.J Am Coll Cardiol.2008;52(2):117-123.
    [26] Sabatine MS,Liu E,Morrow DA, et al. Metabolomic identification of novelbiomarkersof myocardial ischemia[J]. Circulation.2005;112(25):3868-3875.
    [27] Brindle JT,Antti H,Holmes E,Tranter G,Nicholson JK,Bethell HW,Clarke S,SchofieldPM,McKilligin E,Mosedale DE,Grainger DJ:Rapid and noninvasive diagnosis of thepresence and severity of coronary heart disease using1H-NMR-based metabonomics.Nat Med.2002;8:1439-1444.
    [28] RichardD.Beger,RickyD.Holland,Jinchun Sun.Metabonomics of acute kidney injury inchildren after cardiac surgery PediatrNephrol.2008;23:977-984.
    [1] Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gutmicrobiome. Science2006,312:1355-1359.
    [2] Lederberg J: Infectious history. Science2000,288:287-293.
    [3] Dethlefsen L, McFall-Ngai M, Relman DA: An ecological and evolutionaryperspective on human-microbe mutualism and disease. Nature2007,449:811-818.
    [4] Qin J, Li R, Raes J, et al.. A human gut microbial gene catalogue established bymetagenomic sequencing. Nature2010,464:59-65.
    [5] Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gutmicrobiome with increased capacity for energy harvest. Nature2006,444:1027-1031.
    [6] Marchesi JR, Holmes E, Khan F, et al. Rapid and noninvasive metabonomiccharacterization of inflammatory bowel disease. J Proteome Res2007,6:546-551.
    [7] Holmes E, Loo RL, Stamler J, et al. Human metabolic phenotype diversity and itsassociation with diet and blood pressure. Nature2008,453:396-400.
    [8] Finegold SM.Therapy and epidemiology of autism-clostridial spores as keyelements. Med Hypotheses2008,70:508-511.
    [9] Hooper LV, Gordon JI.Commensal host-bacterial relationships in the gut. Science2001,292:1115-1118.
    [10] Clayton TA, Lindon JC, Cloarec O, et al. Pharmaco-metabonomic phenotyping andpersonalized drug treatment. Nature2006,440:1073-1077.
    [11] Kinross JM, Alkhamesi N, Barton RH, et al. Global metabolic phenotyping in anexperimental laparotomy model of surgical trauma. J Proteome Res2011,10:277-287.
    [12] Macpherson AJ, Gatto D, Sainsbury E, et al. A primitive T cell-independentmechanism of intestinal mucosal IgA responses to commensal bacteria. Science2000,288:2222-2226.
    [13] Nicholson JK, Holmes E, Wilson ID: Gut microorganisms, mammalian metabolismand personalized health care. Nat Rev Microbiol2005,3:431-438.
    [14] Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al.Recognition of commensalmicroflora by toll-like receptors is required for intestinal homeostasis. Cell2004,118:229-241.
    [15] Mazmanian SK, Liu CH, Tzianabos AO, et al. An immunomodulatory molecule ofsymbiotic bacteria directs maturation of the host immune system. Cell2005,122:107-118.
    [16] Wilson ID, Nicholson JK. The role of gut microbiota in drug response. Curr PharmDes2009,15:1519-1523.
    [17] Ley RE, Knight R, Gordon JI.The human microbiome: eliminating thebiomedical/environmental dichotomy in microbial ecology. Environ Microbiol2007,9:3-4.
    [18] Manichanh C, Varela E, Martinez C, et al. The gut microbiota predispose to thepathophysiology of acute postradiotherapy diarrhea. Am J Gastroenterol2008,103:1754-1761
    [19] Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation inhuman body habitats across space and time. Science2009,326:1694-1697.
    [20] Ley RE, Peterson DA, Gordon JI.Ecological and evolutionary forces shapingmicrobial diversity in the human intestine. Cell2006,124:837-848.
    [21] Jia W, Li H, Zhao L, Nicholson JK.Gut microbiota: a potential new territory fordrug targeting. Nat Rev Drug Discov2008,7:123-129.
    [22] Raibaud P. Experimental models for studying the microbial ecology in theintestinal tract. Acta Gastroenterol Latinoam1989,19:219-226.
    [23] Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinalmicrobiota. PLoS Biol2007,5:e177.
    [24] Martin FP, Wang Y, Sprenger N, et al. Top-down systems biology integration ofconditional prebiotic modulated transgenomic interactions in a humanizedmicrobiome mouse model. Mol Syst Biol2008,4:205.
    [25] Nicholson JK, Lindon JC, Holmes E.‘Metabonomics’: understanding the metabolicresponses of living systems to pathophysiological stimuli via multivariate statisticalanalysis of biological NMR spectroscopic data. Xenobiotica1999,29:1181-1189.
    [26] Alverdy JC, Chang EB. The re-emerging role of the intestinal microflora in criticalillness and inflammation: why the gut hypothesis of sepsis syndrome will not goaway. J Leukoc Biol2008,83:461-466.
    [27] Nicholson JK, Holmes E.Global systems biology and personalized healthcaresolutions. Discov Med2006,6:63-70.
    [28] Li M, Wang B, Zhang M, Rantalainen M, et al. Symbiotic gut microbes modulatehuman metabolic phenotypes. Proc Natl Acad Sci U S A2008,105:2117-2122.
    [29] Nicholson JK, Connelly J, Lindon JC, et al. Metabonomics: a platform for studyingdrug toxicity and gene function. Nat Rev Drug Discov2002,1:153-161.
    [30] Stella C, Beckwith-Hall B, Cloarec O, et al. Susceptibility of human metabolicphenotypes to dietary modulation. J Proteome Res2006,5:2780-2788.
    [31] Dumas ME, Wilder SP, Bihoreau MT, et al. Direct quantitative trait locus mappingof mammalian metabolic phenotypes in diabetic and normoglycemic rat models.Nat Genet2007,39:666-672.
    [32] Brindle JT, Antti H, Holmes E, et al. Rapid and noninvasive diagnosis of thepresence and severity of coronary heart disease using1H-NMR-basedmetabonomics. Nat Med2002,8:1439-1444.
    [33] Clayton TA, Baker D, Lindon JC, et al. Pharmacometabonomic identification of asignificant host-microbiome metabolic interaction affecting human drugmetabolism. Proc Natl Acad Sci U S A2009,106:14728-14733.
    [34] Saric J, Wang Y, Li J, et al. Species variation in the fecal metabolome gives insightinto differential gastrointestinal function. J Proteome Res2008,7:352-360.
    [35] Martin FP, Wang Y, Yap IK, et al. Topographical variation in murine intestinalmetabolicprofiles in relation to microbiome speciation and functional ecologicalactivity. J Proteome Res2009,8:3464-3474.
    [36] Martin FP, Dumas ME, Wang Y, et al. A top-down systems biology view ofmicrobiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol2007,3:112.
    [37] Sousa T, Paterson R, Moore V, et al. The gastrointestinal microbiota as a site forthe biotransformation of drugs. Int J Pharm2008,363:1-25.
    [38] Aura AM, Mattila I, Hyotylainen T, et al. Drug metabolome of the Simvastatinformed by human intestinal microbiota in vitro. Mol Biosyst2011,7:437-446.
    [39] Scanlan PD, Shanahan F, Clune Y, et al. Culture-independent analysis of the gutmicrobiota in colorectal cancer and polyposis. Environ Microbiol2008,10:789-798.
    [40] Lakhdari O, Cultrone A, Tap J, et al. Functional metagenomics: a high throughputscreening method to decipher microbiota-driven NF-kappaB modulation in thehuman gut. PLoS One2010,5:e13092.
    [41] Singhal S, Dian D, Keshavarzian A, et al. The role of oral hygiene in inflammatorybowel disease. Dig Dis Sci2010,56:170-175.
    [42] Rehman A, Lepage P, Nolte A, et al. Transcriptional activity of the dominant gutmucosal microbiota in chronic inflammatory bowel disease patients. J MedMicrobiol2010,59:1114-1122.
    [43] Wagner J, Short K, Catto-Smith AG, et al. Identification and characterisation ofPseudomonas16S ribosomal DNA from ileal biopsies of children with Crohn’sdisease. PLoS One2008,3:e3578.
    [44] Sokol H, Seksik P, Furet JP, et al. Low counts of Faecalibacterium prausnitzii incolitis microbiota. Inflamm Bowel Dis.2009;15(8):1183–1189.
    [45] Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in theintestine. Cell.2010;140(6):859–870.
    [46] Collins SM, Denou E, Verdu EF, et al. The putative role of the intestinal microbiotain the irritable bowel syndrome. Dig Liver Dis.2009;41(12):850–853.
    [47] Jansson J, Willing B, Lucio M, et al. Metabolomics reveals metabolic biomarkersofCrohn’s disease. PLoS ONE.2009;4(7):e6386.
    [48] Rasquin A, Di Lorenzo C, Forbes D, et al. Childhood functional gastrointestinaldisorders: child/adolescent. Gastroenterology.2006;130(5):1527–1537.
    [49] Malinen E, Rinttil T, Kajander K, et al.Analysis of the fecal microbiota of irritablebowel syndrome patients and healthy controls with real-time PCR. Am JGastroenterol.2005;100(2):373–382.
    [50] Kassinen A, Krogius-Kurikka L, M kivuokko H, et al. The fecal microbiota ofirritable bowel syndrome patients differs significantly from that of healthy subjects.Gastroenterology.2007;133(1):24–33.
    [51] Saulnier DM, Riehle K, Mistretta TA, et al. Gastrointestinal microbiome signaturesof pediatric patients with irritable bowel syndrome. Gastroenterology.2011;141(5):1782–1791.
    [52] Fell JM. Neonatal inflammatory intestinal diseases: necrotising enterocolitis andallergic colitis. Early Hum Dev.2005;81(1):117–122.
    [53] Martin CR, Walker WA. Intestinal immune defences and the inflammatoryresponse in necrotising enterocolitis. Semin Fetal Neonatal Med.2006;11(5):369–377.
    [54] Wang Y, Hoenig JD, Malin KJ, et al.16S rRNA gene-based analysis of fecalmicrobiota from preterm infants with and without necrotizing enterocolitis. ISME J.2009;3(8):944–954.
    [55] Mshvildadze M, Neu J, Shuster J, et al. Intestinal microbial ecology in prematureinfants assessed with nonculture-based techniques. J Pediatr.2010;156(1):20–25.
    [56] Mai V, Young CM, Ukhanova M, et al. Fecal microbiota in premature infants priorto necrotizing enterocolitis. PLoS ONE.2011;6(6):e20647.
    [57] Cotten CM, Taylor S, Stoll B, et al; NICHD Neonatal Research Network.Prolonged duration of initial empirical antibiotic treatment is associated withincreased rates of necrotizing enterocolitis and death for extremely low birth weightinfants. Pediatrics.2009;123(1):58–66.
    [58] Deshpande G, Rao S, Patole S, et al. Updated meta-analysis of probiotics forpreventing necrotizing enterocolitis in preterm neonates. Pediatrics.2010;125(5):921–930.
    [59] Meinzen-Derr J, Poindexter B, Wrage L, et al. Role of human milk in extremelylow birth weight infants’ risk of necrotizing enterocolitis or death. J Perinatol.2009;29(1):57–62.
    [60] Sokol H, Seksik P, Furet JP, et al. Low counts of Faecalibacterium prausnitzii incolitis microbiota. Inflamm Bowel Dis.2009;15(8):1183–1189.
    [61] Penders J, Thijs C, van den Brandt PA,et al. Gut microbiota composition anddevelopment of atopic manifestations in infancy: the KOALA Birth Cohort Study.Gut.2007;56(5):661–667.
    [62] Strachan DP. Hay fever, hygiene, and household size. BMJ.1989;299(6710):1259–1260.
    [63] Vassallo MF, Walker WA. Neonatal microbial flora and disease outcome. NestleNutr Workshop Ser Pediatr Program.2008;61:211–224.
    [64] Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants.Acta Paediatr.2009;98(2):229–238.
    [65] Gr nlund MM, Arvilommi H, Kero P, et al. Importance of intestinal colonisation inthe maturation of humoral immunity in early infancy: a prospective follow up studyof healthy infants aged0–6months. Arch Dis Child Fetal Neonatal Ed.2000;83(3):F186–F192.
    [66] Debley JS, Smith JM, Redding GJ, et al. Childhood asthma hospitalization riskafter cesarean delivery in former term and premature infants. Ann Allergy AsthmaImmunol.2005;94(2):228–233
    [67] Negele K, Heinrich J, Borte M, et al; LISA Study Group. Mode of delivery anddevelopment of atopic disease during the first2years of life. Pediatr AllergyImmunol.2004;15(1):48–54
    [68] Laubereau B, Filipiak-Pittroff B, von Berg A, et al; GINI Study Group. Caesareansection and gastrointestinal symptoms,atopic dermatitis, and sensitisation duringthe first year of life. Arch Dis Child.2004;89(11):993–997
    [69] Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses bygut microbiota and chemoattractant receptor GPR43. Nature2009,461:1282-1286.
    [70] Fukata M, Abreu MT. TLR4signalling in the intestine in health and disease.Biochem Soc Trans2007,35:1473-1478.
    [71] Bjorksten B. Effects of intestinal microflora and the environment on thedevelopment of asthma and allergy. Springer Semin Immunopathol2004,25:257-270.
    [72] Girard SA, Bah TM, Kaloustian S, et al. Lactobacillus helveticus andBifidobacterium longum taken in combination reduce the apoptosis propensity inthe limbic system after myocardial infarction in a rat model. Br J Nutr2009,102:1420-1425.
    [73] O’Mahony SM, Marchesi JR, Scully P, et al. Early life stress alters behavior,immunity, and microbiota in rats: implications for irritable bowel syndrome andpsychiatric illnesses. Biol Psychiatry2009,65:263-267.
    [74] Rao AV, Bested AC, Beaulne TM, et al. A randomized, double-blind,placebo-controlled pilot study of a probiotic in emotional symptoms of chronicfatigue syndrome. Gut Pathog2009,1:6.
    [75] Song Y, Liu C, Finegold SM.Real-time PCR quantitation of clostridia in feces ofautistic children. Appl Environ Microbiol2004,70:6459-6465.
    [76] Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation inhuman body habitats across space and time. Science.2009;326(5960):1694–1697.
    [77] Arumugam M, Raes J, Pelletier E, et al;MetaHIT Consortium. Enterotypes of thehuman gut microbiome. Nature.2011;473(7346):174–180.
    [78] Tiihonen K, Ouwehand AC, Rautonen N.Human intestinal microbiota and healthyageing. Ageing Res Rev.2010;9(2):107–116.
    [79] Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinalmicrobiota. PLoS Biol.2007;5(7):e177.
    [80] Eckburg PB, Bik EM, Bernstein CN, et al.Diversity of the human intestinalmicrobial flora. Science.2005;308(5728):1635–1638.
    [81] Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinalmicrobiota. PLoS Biol.2007;5(7):e177.
    [82] Morowitz MJ, Denef VJ, Costello EK, et al. Strain-resolved community genomicanalysis of gut microbial colonization in a premature infant. Proc Natl Acad SciUSA.2011;108(3):1128–1133.
    [83] Benno Y, Sawada K, Mitsuoka T. The intestinal microflora of infants: compositionof fecal flora in breast-fed and bottle-fed infants. Microbiol Immunol.1984;28(9):975–98629.
    [84] Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in thedeveloping infant gut microbiome. Proc Natl Acad Sci USA.2011;108(suppl1):4578–4585
    [85] Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. JPhysiol.2009;587(pt17):4153–4158
    [86] Agans R, Rigsbee L, Kenche H, et al. Distal gut microbiota of adolescent childrenis different from that of adults. FEMS Microbiol Ecol.2011;77(2):404–412.
    [87] Vaishampayan PA, Kuehl JV, Froula JL, et al. Comparative metagenomics andpopulation dynamics of the gut microbiota in mother and infant. Genome BiolEvol.2010;2:53–66.
    [88] Murgas Torrazza R, Neu J. The developing intestinal microbiome and itsrelationship to health and disease in the neonate. J Perinatol.2011;31(suppl1):S29–S34.
    [89] Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes theacquisition and structure of the initial microbiota across multiple body habitats innewborns. Proc Natl Acad Sci USA.2010;107(26):11971–11975.
    [90] Biasucci G, Rubini M, Riboni S, et al. Mode of delivery affects the bacterialcommunity in the newborn gut. Early Hum Dev.2010;86(suppl1):13–15.
    [91] Hanson LA, Korotkova M, Telemo E. Breastfeeding, infant formulas, and theimmune system. Ann Allergy Asthma Immunol.003;90(6suppl3):59–63.
    [92] Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, et al. Analysis of intestinal floradevelopment in breast-fed and formula-fed infants by using molecular identificationand detection methods. J Pediatr Gastroenterol Nutr.2000;30(1):61–67.
    [93] Ninonuevo MR, Park Y, Yin H, et al. A strategy for annotating the human milkglycome. J Agric Food Chem.2006;54(20):7471–7480.
    [94] Newburg DS, Ruiz-Palacios GM, Morrow AL. Human milk glycans protect infantsagainst enteric pathogens. Annu Rev Nutr.2005;25:37–58.
    [95] Sela DA, Chapman J, Adeuya A, et al. The genome sequence of Bifidobacteriumlongum subsp. infantis reveals adaptations for milk utilization within the infantmicrobiome. Proc Natl Acad Sci USA.2008;105(48):18964–18969.
    [96] Knol J, Scholtens P, Kafka C, et al. Colon microflora in infants fed formula withgalacto-and fructo-oligosaccharides: more like breast-fed infants. J PediatrGastroenterol Nutr.2005;40(1):36–42.
    [97] Penders J, Vink C, Driessen C, London N, Thijs C, Stobberingh EE. Quantificationof Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecalsamples of breast-fed and formula-fed infants by real-time PCR. FEMS MicrobiolLett.2005;243(1):141–147.
    [98] Vael C, Desager K. The importance of the development of the intestinal microbiotain infancy. Curr Opin Pediatr.2009;21(6):794–800.
    [99] Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinalmicrobial flora. Science.2005;308(5728):1635–1638.
    [100] McGuire W, Anthony MY. Donor human milk versus formula for preventingnecrotizing enterocolitis in preterm infants: systematic review. Arch Dis Child FetalNeonatal Ed.2003;88(1):F11–F14.
    [101] Ruiz-Palacios GM, Calva JJ, Pickering LK, et al. Protection of breast-fed infantsagainst Campylobacter diarrhea by antibodies in human milk. J Pediatr.1990;116(5):707–713.
    [102] Owen CG, Martin RM, Whincup PH, et al. Does breastfeeding influence risk oftype2diabetes in later life? A quantitative analysis of published evidence. Am JClin Nutr.2006;84(5):1043–1054.
    [103] Owen CG, Martin RM, Whincup PH, et al. Effect of infant feeding on the risk ofobesity across the life course: a quantitative review of published evidence.Pediatrics.2005;115(5):1367–1377.
    [104] Schwiertz A, Gruhl B, L bnitz M, et al. Development of the intestinal bacterialcomposition in hospitalized preterm infants in comparison with breast-fed,full-term infants. Pediatr Res.2003;54(3):393–399.
    [105] el-Mohandes AE, Keiser JF, Johnson LA, et al. Aerobes isolated in fecal microfloraof infants in the intensive care nursery: relationship to human milk use andsystemic sepsis. Am J Infect Control.1993;21(5):231–234.
    [106] H llstr m M, Eerola E, Vuento R, et al. Effects of mode of delivery and necrotisingenterocolitis on the intestinal microflora in preterm infants. Eur J Clin MicrobiolInfect Dis.2004;23(6):463–470.
    [107] Jacquot A, Neveu D, Aujoulat F, et al. Dynamics and clinical evolution of bacterialgut microflora in extremely premature patients. J Pediatr.2011;158(3):390–396.
    [108] Chang JY, Antonopoulos DA, Kalra A, et al. Decreased diversity of the fecalmicrobiome in recurrent Clostridium difficileassociated diarrhea. J Infect Dis.2008;197(3):435–438.
    [109] B ckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the humanintestine. Science.2005;307(5717):1915–1920.
    [110] Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gutmicrobial enterotypes. Science.2011;334(6052):105–108.
    [111] Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gutmicrobiome: a metagenomic analysis in humanized gnotobiotic mice. Sci TranslMed.2009;1(6):6ra14.
    [112] De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gutmicrobiota revealed by a comparative study in children from Europe and ruralAfrica. Proc Natl Acad Sci USA.2010;107(33):14691–14696.
    [113] Littman DR, Pamer EG. Role of the commensal microbiota in normal andpathogenic host immune responses. Cell Host Microbe.2011;10(4):311–323.
    [114] Jakobsson HE, Jernberg C, Andersson AF, et al. Short-term antibiotic treatment hasdiffering long-term impacts on the human throat and gut microbiome. PLoS ONE.2010;5(3):e9836.
    [115] Nyberg SD, Osterblad M, Hakanen AJ, et al. Long-term antimicrobial resistance inEscherichia coli from human intestinal microbiota after administration ofclindamycin. Scand J Infect Dis.2007;39(6-7):514–520.
    [116] Sj lund M, Wreiber K, Andersson DI, et al. Long-term persistence of resistantEnterococcus species after antibiotics to eradicate Helicobacter pylori. Ann InternMed.2003;139(6):483–48769.
    [117] Marciniak C, Chen D, Stein AC, et al.Prevalence of Clostridium difficilecolonization at admission to rehabilitation. Arch Phys Med Rehabil.2006;87(8):1086–1090.
    [118] FAO/WHO. Health and Nutritional Properties of Probiotics in Food IncludingPowder Milk With Live Lactic Acid Bacteria.2001.
    [119] Kunze WA, Mao YK, Wang B, et al. Lactobacillus reuteri enhances excitability ofcolonic AH neurons by inhibiting calciumdependent potassium channel opening. JCell Mol Med.2009;13(8B):2261–2270128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700