蒸发皿蒸发过程的微气象观测及其模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管全球平均温度在不断增加,但对过去近50年蒸发皿观测结果分析表明,全球大多数区域蒸发皿蒸发量存在稳定的下降趋势,这就是著名的“蒸发佯谬”。为了解释“蒸发佯谬”这一现象,本文通过设置蒸发皿蒸发野外试验,借助近地层微气象观测方法来研究蒸发皿蒸发的物理过程和代表意义。利用试验所获得资料,不仅对蒸发皿蒸发过程与周围环境之间的相互作用进行分析,讨论了环境非均匀性对蒸发皿蒸发的影响,而且借助试验结果概括出蒸发皿蒸发的物理数学模型,从数值角度研究了蒸发皿蒸发特征。研究得到以下主要结论:
     (1)三种不同型号的蒸发皿(分别为E601B、Class A、20cm,下同)平行对比观测结果分析显示,日蒸发量最大的是20cm蒸发皿,其次是Class A蒸发皿,E601B的日蒸发量最小;统计分析得到20cm蒸发皿与E601B蒸发皿日蒸发量的折算系数为1.659,Class A蒸发皿与E601B蒸发皿日蒸发量的折算系数为1.351。
     (2)蒸发皿不同深度的水温日变化观测结果显示,E601B蒸发皿水体10~20cm深处水温在加热时段存在明显的热力层结现象,两层之间的最大温差超过2-C,而Class A蒸发皿水体没明显的热力层结现象。
     (3)利用辐射仪器观测的Class A蒸发皿水面反照率呈W型日变化,其日平均值为0.087。
     (4)在日时间尺度上,将涡旋相关系统观测的实际蒸发LE和利用观测的微气象要素计算的潜在蒸发Ep、平衡蒸发P-T,参考蒸发E%,以及观测的三种蒸发皿蒸发量对比显示,它们之间的大小关系为:LE     (5)利用三种型号的蒸发皿蒸发量和涡旋相关系统测量土壤实际蒸散发,依据能量平衡原理和相互反馈机制,分析发现蒸发皿蒸发与土壤蒸散发之间呈现明显的互补行为,并且随着E601B、Class A和20cm蒸发皿与周围环境之间非均匀性的依次增加,三种蒸发皿蒸发所对应的非对称互补关系中的比例系数6依次增大。从蒸发速率的角度,定义了蒸发皿蒸发强度Ipan,发现互补关系中的比例系数6与Ipan存在很好的线性关系,即蒸发强度越大,比例系数也越大。能量分析显示,蒸发面与周围环境之间的非均匀性越强,蒸发面的蒸发强度Ipan越大,互补关系中的比例系数6也就越大。
     (6)在不涉及土壤、植被以及近地层大气之间复杂相互作用过程的条件下,依据普遍的反馈机制建立了实际蒸发与蒸发皿蒸发之间的互补对应关系,借助这一互补关系,可以利用蒸发皿蒸发量与观测的局地净辐射、地表热通量和近地面空气温度来估计局地实际蒸散发。同时,这也为估计实际蒸散发提供了一种新的方法。
     (7)以能量守恒原理和边界层梯度输送理论为基础,借助陆面过程研究结果,并考虑非均匀下垫面造成的局地能量平流和对边界层混合速度的影响,参数化蒸发皿侧壁发生的能量通量,应用Monin-Obukhov相似理论计算蒸发皿水面感、潜热通量,构建了20cm蒸发皿蒸发的数学物理模型。模型模拟结果表明,模型能够较好的模拟水面与周围地表之间的净辐射、感热通量所形成的非均匀性差异:同时也能模拟20cm蒸发皿的水温和蒸发的日变化过程。整个试验期间,模拟的逐时水温均方根误差(RMSE)为1.84℃,平均相对误差(MAER)为9.8%;逐时蒸发量模拟的RMSE和MRER分别为0.018(mm.h-1)和39.8%;逐时水体重量模拟的RMSE和MRER分别为26(g)和4.2%。在沙漠和农田进一步检验模型性能显示,沙漠下垫面逐时水温RMSE为2.24℃,MAER为9.2%;逐时蒸发量RMSE为0.013mm·h-1, MRER为33.8%;沙漠下垫面模拟的逐日蒸发量RMSE和MRER分别为0.44(mm·d-1)和3.7%;农田下垫面模拟的日蒸发量RMSE为0.57,MRER为6.8%。这表明模型同样能够较好的模拟干旱和湿润两种环境中的蒸发皿蒸发量。另外,用Class A和E601B两种蒸发皿观测结果分别对模型进行检验显示,该模型同样能够较好的反映这两种蒸发水温和蒸发量的逐时变化过程。
Despite the global average temperature was increasing, observations in most regions of the world showed that the rate of pan evaporation has been steadily decreasing over the past50years. This was known as the pan evaporation paradox. Order to explain the phenomenon of evaporation paradox, in this paper, a pan evaporation experiment at field was set up to reveal the physical mechanism of pan evaporation process, with the micrometeorological observation methods near the land surface layer. Using the data which obtained from the field experiment, the interaction between pan evaporation and the surrounding environment was analyzed, and the impact of non-uniformity environment on pan evaporation was discussed. The physical and mathematical model of pan evaporation was summarized with the observations. The pan evaporation characteristics were studied by numerical method, with the model which was summarized from the observation data. The main conclusions as following:
     (1) Comparison of the measurements between three types of pans (were E601B, Class A, and20cm pan, following was same) showed that the20cm pan have the largest rate of the daily evaporation, followed by the Class A pan and the E601B pan. The proportional coefficients of20cm pan and Class A pan to E601B pan were1.659and1.351, respectively, which were determined by statistical the daily evaporation rate of three types of pans.
     (2) Measurements of the pan water temperature at different depths showed that the E601B pan have a clear thermal stratification between10and20cm depths during the water heated period, and the maximum temperature difference between two layer was more than2℃. However, Class A pan did not have a significance temperature difference.
     (3) The albedo of water surface in Class A pan had a "W" shape variation at daytime which was measured with Four-component net radiometer, and the daily mean albedo was0.087.
     (4) The daily equilibrium evaporation (P-T), potential evaporation (LEp), reference evapotranspiration(ET0) were estimated by the observed meteorological data in pan experiment. At the same time, the actual evapotranspiration (LE) was measured by eddy correlation system, and the pan evaporation rates (LEpan) was measured by three type of pans. Finally, the differences between these evaporations have been compared, and the results showed that these evaporations have a magnitude relationship as LE     (5) Based on the principle of energy balance and mutual feedback mechanism, the complementary behavior has been revealed between actual evapotranspiration and pan evaporation which were measured by Eddy correlation system and three types of pans, respectively. With the non-uniformity intensity between pans and surrounding environment successively increasing from E601B pan to Class A pan, and to20cm pan, the proportionality coefficient b in asymmetric complementary relationship which was corresponding to three type of pans were increasing. Moreover, from the perspective of the evaporation rate, the intensity of pan evaporation rate (Ipan) was defined, so we can see the proportionality coefficient b was linear increasing with the pan evaporation intensity Ipan. Energy analysis showed that the stronger the non-uniformity between the evaporation surface and the surrounding environment, the evaporation intensity of evaporation surface (Ipan) was larger, and the proportionality coefficient b was greater.
     (6) According to the general feedback mechanism, a complementary relationship between actual evaporation and pan evaporation was established, which without involve complex soil, vegetation and near surface atmospheric processes and interrelation. This complementary relationship could be used to estimate actual evaporation with data of pan evaporation, net radiation, soil heat flux, and air temperature. Meanwhile, it was provided a new approach to estimate the soil actual evapotranspiration.
     (7) Based on the energy conservation principle and the boundary layer gradient transport theory, a single layer20cm pan evaporation model has been built. In this model, both sensible and latent heat fluxes of the evaporation pan were calculated by Monin-Obukhov similarity function. Meanwhile, the heat transport of the lateral wall was parameterized. The results showed that the model could reflect the non-uniformity of net radiation and sensible heat flux between water surface and land surface, and the model could also simulate the20cm pan water temperature and evaporation diurnal fluctuation successfully. During the whole experiment, the simulated root mean square error (RMSE) and the mean relative error ratio (MRER) of hourly water temperature were1.84'C and9.8%. The simulated RMSE and MAER of hourly pan evaporation rate were0.018mm/h and39.8%, and for water weight were26(g) and4.2%, respectively. Furthermore, the model performance was tested in desert and farmland. It was found that the RMSE and MRER of hourly water temperature by simulating were2.24℃癈and9.2%, and the RMSE and MRER of hourly pan evaporation rate were0.013mm·h-1and33.8%in desert, while the RMSE and MRER of daily pan evaporation were0.44(mm-d-1) and3.7%. In farmland the RMSE and MRER of daily pan evaporation by simulating were0.57(mm·d-1) and6.8%. This indicated that the model could simulate pan evaporate process well in both arid and humid environment. In addition, the model was also able to simulate the water temperature and pan evaporation when it was tested with the observations of Class A pan and E601B pan.
引文
Ali, S., Ghosh, N.C., Singh, R. Evaluating best evaporation estimate model for water surface evaporation in semi-arid region, India[J]. Hydrological Processes,2008,22:1093-1106.
    Allen, R.G., Pereira, L.S., Raes, D., et al. Crop evapotranspiration:guidelines for computing crop water requirements. Irrig. Drainage Pap.56, Food and Agriculture Organization[M]. Rome, 1998.
    Alveniis, G., Jansson, P. Model for evaporation, moisture and temperature of bare soil:calibration and sensitivity analysis[J]. Agricultural and Forest Meteorology,1997,88:47-56.
    Baumgartner A. and Reichel E. The World Water Balance[M]. New York (Elsevier),1975.
    Bouchet, R. J. Evapotranspiration reelle, evapotranspiration potentielle, et production agricole[J]. Ann. Agron.,1963,14:543-824.
    Brouwer, C., Heibloem, M. Irrigation water management:irrigation water needs. FAO[M]. Rome, 1986.
    Brustreat, W. Hydrology:An introduction[M]. Univ. of Cambridge Press, New Youk.2005,605pp.
    Bruton, J.M., Hoogenboom, G, McClendon, R.W. A comparison of automatically and manually collected pan evaporation data[J]. Trans ASAE,2000,43:1097-1101.
    Bruton, J.M., Hoogenboom, G., McClendonm, R.W. A comparison of automatically and manually collected pan evaporation data[J]. Trans ASAE,2000,43:1097-1101.
    Brutsaert, W., Stricker, H. An advection-aridity approach to estimate actual regional evapotranspiration[J]. Water Resources Research,1979,15:443-450.
    Brutsaert, W., Parlange, M. B. Hydrologic cycle explains the evaporation paradox[J], Nature,1998, 396(6706),30, doi:10.1038/23845.
    Burn, D.H., Hesch, N.M. Trends in evaporation for the Canadian prairies[J]. J.Hydrol.,2007, 336(1-2):61-73.
    Chattopadhyay, N., Hulme, M. Evaporation and potential evapotranspiration in India under condition of recent and future climate change[J]. Agric. For. Meteorol.,1997,87:55-73.
    Chen, D., Gao, G., Xu, C.Y., et al. Comparison of the Thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China[J]. Clim. Res., 2005,28:123-132.
    Chu, C.R., Li, M.H., Chen, Y.Y., et al. A wind tunnel experiment on the evaporation rate of Class A evaporation pan[J]. J. Hydrol,2010,381:221-224.
    Cohen, S., Ianetz, A., Stanhill, G. Evaporative climate changes at Bet Dagan, Israel,1964-1998[J]. Agric. For. Meteorol.,2002,111:83-91.
    Cong, Z.T., Yang, D.W., Ni, G.H.,-Does evaporation paradox exist in China?[J]. Hydrol. Earth Syst. Sci.,2009,13(3):357-366.
    Crago, R., Crowley, R. Complementary relationships for near-instantaneous evaporation[J]. J. Hydrol.,2005,300:199-211.
    Dai, A., Fung, I.Y., Del Genio A.D. Surface observed global 1 and precipitation variations during 1900-88[J]. J. Clim.,1997,10:2943-2962.
    DeBrnin, H.A.R. Temperature and energy balance of a water reservoir determined from standard weather data of a land station[J]. Journal of Hydrology,1981,59:261-274.
    Donohue, R.J., McVicar, T.R., Roderick, M.L. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate[J]. J. Hydrol.,2010,386(1-4):186-197.
    Ertek, A., Sensoy, S., Gedikm, I., et al. Irrigation scheduling based on pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions [J]. Agric. Water Manag.,2006,81: 159-172.
    Fu, G B., Liu, C., Chen, S., et al. Investigating the conversion coefficients for free water surface evaporation of different evaporation pans[J]. Hydrol Process,2004,18:2247-2262.
    Fu, G.B., Charles, S.P., Yu J.J. A critical overview of pan evaporation trends over the last 50 years[J]. Climatic Change,2009,97:193-214.
    Gianniou, S. K., Antonopoulos, V. Z. Evaporation and energy budget in Lake Vegoritis, Greece[J]. Journal of Hydrology,2007,345(3-4):212-223.
    Golubev, V.S., Lawrimore, J.H., Groisman, P.Y. et al. Evaporation changes over the contiguous United States and the former USSR:a reassessment[J]. Geophys. Res. Lett.,2001,28(13): 2665-2668.
    Gong, L.B., Xu, C.Y., Chen, D.L., et al. Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin[J]. Journal of Hydrology,2006,329:620-629.
    Granger, R.J. A complementary relationship approach for evaporation from nonsaturated surfaces[J]. J. Hydrol.,1989a,111:31-38.
    Granger, R.J. An examination of the concept of potential evaporation[J]. J. Hydrol.,1989b,111: 9-19.
    Granger, R.J., Gray, D.M. Evaporation from natural nonsaturated surfaces[J]. J.Hydrol.,1989,111: 21-29.
    Grismer, M.E., Orang, M., Snyder, R., et al. Pan evaporation to reference evapotranspiration conversion methods[J]. J. Irrig. Drain. Eng.,2002,128:180-184.
    Gundekar, H.G., Khodke, U. M., Sarkar, E. S. Evaluation of pan coefficient for reference crop evapotranspiration for semi-arid region[J]. Irrig. Sci.,2008,26:169-175.
    Han, S.J., Hu, H., Tian, F. Evaluating the advection-aridity model of evaporation using data from field-sized surfaces of HEIFE[J]. International Association of Scientific Hydrology Publication, 2008,322:9-14.
    Haque, A. Estimating actual areal evapotranspiration from potential evapotranspiration using physical models based on complementary relationships and meteorological data[J]. Bull Eng. Geol. Env.,2003,62:57-63.
    Harleman, D.R.F. Hydrothermal analysis of lakes and reservoirs[J]. Journal of the Hydrology Division, ASCE,1982,108:302-325.
    Hoffman, M.T., Cramer, M.D., Gillson, L., et al. Pan evaporation and wind run decline in the Cape Floristic Region of South Africa (1974-2005):implications for vegetation responses to climate change[J]. Climatic Change,2011, DOI 10.1007/s10584-011-0030-z.
    Huntington, J.L., Szilagyi, J., Tyler, S.W., et al. Evaluating the complementary relationship for estimating evapotranspiration from arid shrublands[J]. Water Resour. Res.,2011,47, W05533, doi:10.1029/2010WR009874.
    Irmak, S., Haman, D.Z. Evaluation of five methods for estimating Class A pan evaporation in a humid climate,2003[J]. Florida Agricultural Experiment Station journal,2003,13(2):500-508.
    Jacobs, A.F.G., Heusinkveld, B.G., Nieveen, J. P. Temperature Behavior of a Natural Shallow Water Body during a Summer Period[J]. Theor. Appl. Climatol.,1998,59:121-127.
    Jacobs, A.F.G., Jetten, T.H., Lucassen, D.C., et al. Daily temperature variation in a natural shallow water body[J]. Agric. Forest Meteorol.,1997,88:269-277.
    Jacobs, A.F.G., Heusinkveld, B.G., Lucassen, D.C. Temperature variation in a class A evaporation pan[J]. J. Hydrology,2006,318:75-83.
    Jaswal, A.K., Rao, G.S.P., De, U.S. Spatial and temporal characteristics of evaporation trends over India during 1971-2000[J]. Mausam,2008,59(2):149-158.
    Jhajharia, D., Shrivastava, S.K., Sarkar, D. Temporal characteristics of pan evaporation trends under the humid conditions of northeast India[J]. Agric. For. Meteorol.,2009,149(5):763-770.
    Jhajharia, D., Dinpashoh, Y., Kahya, E., et al. Trends in reference evapotranspiration in the humid region of northeast India[J]. Hydrol. Process.,2011, doi:10.1002/hyp.8140.
    Ji, Y.H., Zhou., GS. Important factors governing the incompatible trends of annual pan evaporation: evidence from a smallscale region[J]. Climatic Change,2011,106:303-314.
    Jung, M., Reichstein, M., Ciais, P., et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature,2010,467 (7318):951-954.
    Kahler, D.M., Brutsaert, W. Complementary relation between daily evaporation in the environment and pan evaporation[J]. Water Resour. Res.,2006,42:W05413. doi:10.1029/2005 WR004541
    Kanemasu, E.T., Verma, S.B., Smith, E.A., et al. Surface flux measurements in FIFE:An overview[J]. J. Geophys. Res.,1992,97(D17):18547-18555.
    Karl, T.R., Knight, R.W., Easterling, D. R. Indices of climate change for the United States[J]. Bull. Am. Meteorol. Soc.,1996,77:279-292.
    Karl, T. R., Knight, R. W. Secular trends of precipitation amount, frequency, and intensity in the USA[J]. Bull. Am. Meteorol. Soc.,1998,79:231-241.
    Kay, A.L., Davies, H.N. Calculating potential evaporation from climate model data:A source of uncertainty for hydrological climate change impacts[J]. Journal of Hydrology,2008,358: 221-239.
    Kim, C., Entekhabi, D. Examination of two methods for estimating regional evaporation using a coupled mixed layer and land surface model[J]. Water Resour. Res.,1997,33:2109-2116.
    Kim, C., Entekhabi, D. Feedbacks in the land-surface and mixed-layer energy budgets[J]. Boundary Layer Meteorol.,1998,88:1-21.
    Kirono, D.G.C., Jones, R.N., Cleugh, H. A. Pan-evaporation measurements and Morton-point potential evaporation estimates in Australia:are their trends the same?[J]. Int. J. Climatol.,2009, 29:711-718.
    Lawrimore, J.H., Peterson, T.C. Pan Evaporation Trends in Dry and Humid Regions of the United States[J]. Journal of Hydrometeorology,2000,1:543-546.
    LeDrew, E.F. A diagnostic examination of a complementary relationship between actual and potential evapotranspiration[J]. J. Appl. Meteorol.,1979,18:495-501.
    Lennart B., The global atmospheric water cycle[J]. Environ. Res. Lett.,2010,025001, doi:10.1088/1748-9326/5/2/025001.
    Lhomme, J.P., Guilioni, P. Comments on some articles about the complementary relationship[J]. J. Hydrol.,2006,323:1-3.
    Lim, W.H., Roderick, M.L., Hobbins, M.T. The Aerodynamics of pan evaporation[J]. Agricultural and Forest Meteorology,2012,152:31-43.
    Limjirakan, S.C., Limsakul, A. Trends in Thail and pan evaporation from 1970 to 2007[J]. Atmospheric Research,2012,108:122-127.
    Liu, B., Xu, M., Henderson, M., et al. A spatial analysis of pan evaporation trends in China, 1955-2000[J]. J. Geophys. Res.,2004,109, D15102. doi:10.1029/2004JD004511.
    Liu, Q., Xia, X.H. Contribution of meteorological variables to changes in potential evaporation in Haihe River Basin, China[J]. Procedia Environmental Sciences,2012,13:1836-1845.
    Liu, Q., Yang, Z.F., Xia, X.H. Trends for pan evaporation during 1959-2000 in China[J], Procedia Environmental Sciences,2010,2:1934-941.
    Lorenz, D.J., DeWeaver, E.T. The response of the extratropical hydrological cycle to global warming[J]. J. Clim.,2007,20(14):3470-3484.
    Losordo, T.M., Piedrahita, R.H. Modelling temperature variation and thermal stratification in shallow aquaculture ponds[J]. Ecological Modelling,1991,54:189-226.
    Mahrt, L., Vickers, D. Bulk formulation of the surface heat flux[J], Boundary-Layer Meteorology, 2004,110:357-379.
    Martinez, J.M.M., Alvarez, V.M., Real, M.M.G., et al. A simulation model for predicting hourly pan evaporation from meteorological data[J]. Journal of Hydrology,2006,318(1-4):250-261.
    Martinez, A.V., Gallego, E.B., Maestre, V.J.F., et al. Simultaneous solution for water, heat and salt balances in a Mediterranean coastal lagoon (Mar Menor, Spain), Estuarine[J]. Coastal and Shelf Science,2011,91:250-261.
    McNaughton, K.G., Spriggs, T.W. An evaluation of the Priestley and Taylor equation and the complementary relationship using results from a mixed layer model of the convective boundary layer. In:Black, T.A., (Ed.), Estimation of Areal Evapotranspiration. International Association of Hydrological Science[M]. Gentbrugge, Belgium, pp.89-104,1989.
    McVicar, T.R., VanNiel, T.G., Li, L.T., et al. Wind speed climatology and trends for Australia, 1975-2006:capturing the stilling phenomenon and comparison with near-surface reanalysis output[J]. Geophysical Research Letters,2008,35(20), L20403, doi:20410.21029/22008 GL035627.
    McVicar, T.R., Roderick, M.L., Donohue, R. J., et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds:Implications for evaporation[J]. Journal of Hydrology,2012,416-417:182-205.
    Moller, M., Stanhill, G. Hydrological impacts of changes in evapotranspiration and precipitation: two case studies in semi-arid and humid climates[J], Hydrological Sciences-Journal-des Sciences Hydrologiques,2007,52(6):1216-1231.
    Monteith, J.L. Evaporation and the environment. XIXth Symposia of the Society for Experimental Biology[M]. University Press, Swansea, Cambridge, pp.205-234,1965.
    Moonen, A.C., Ercoli, L., Mariotti, M., et al. Climate change in Italy indicated by agrometeorological indices over 122 years[J]. Agric. For. Meteorol.,2002,111:13-27.
    Morton, F.I. Climatological estimates of evapotranspiration[J]. J. Hydraul. Div. Proc. Am. Soc. Civ. Eng.,1976,102(HY3):275-291.
    Morton, F.I. Potential evaporation as a manifestation of regional evaporation[J]. Wat. Resour. Res., 1969,5:1244-1255.
    Morton, F.I. Estimating evaporation and transpiration from climatological observations[J]. J. Appl. Meteorol.,1975,14:488-497.
    Morton, F.I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology[J]. J. Hydrol.,1983,66:1-76.
    Morton, F.I. Comment on 'Estimating nonpotential evapotranspication by means of the equilibrium evaporation concept.' by J.A. Mawdsley and M.F. Ali[J]. Water Resour. Res.,1986, 22:2115-2118.
    Mukammal E.I., Neumann H. H. Application of the priestlay-taylor evaporation model to assess the influence of soil moisture on the evaporation from a large weighing lysimeter and Class A pan[J]. Boundary-Layer Meteorology,1977,12:243-256.
    Oki, T., Kanae, S. Global hydrological cycles and world water resources[J]. Science,2006, 313(5790):1068-1072.
    Ozdogan, M., Salvucci, GD. Irrigation-induced changes in potential evapotranspiration in southeastern Turkey:test and application of Bouchet's complementary hypothesis[J]. Water Resour. Res.,2004,40, W04301.
    Parlange, M.B., Katul, GG. An advection-Aridity evaporation model, Water Resources Research, 1992,28(1):127-132.
    Penman, H.L. Natural evaporation from open water, bare soil, and grass[J]. Proc. R. Soc. London, A,1948,193:120-145.
    Pereira, A.R., Nova, N., Pereira, A.S., et al. A model for the Class-A pan coefficient[J]. Agr. Forest Meteorol.,1995,76(2):75-82.
    Peterson, T.C., Golubev, V.S., Groisman, P.Y. Evaporation losing its strength[J]. Nature,1995, 377(6551):687-688.
    Pettijohn, J.C., Salvucci, GD. Impact of an unstressed canopy conductance on the Bouchet Morton complementary relationship[J]. Water Resour. Res.,2006,42, W09418, doi:10.1029/2005WR004385.
    Pettijohn, J.C., Salvucci, GD. A new two-dimensional physical basis for the complementary relation between terrestrial and pan evaporation[J]. J. Hydrometeorol,2009,10:565-574.
    Priestley, C.H.B. Turbulent Transport in iha Lower Atmosphere[M]. University of Chicago Press, Chicago.1959.
    Priestley, C.H.B., Taylor, R.J. On the assessment of the surface heat flux and evaporation using large-scale parameters[J].Mon.Weather Rev.,1972,100:81-92.
    Qian, Y., Kaiser, D.P., Leung, L.R., et al. More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000[J]. Geophys. Res. Lett.,2006,33, L01812, doi:10.1029/2005GL024586.
    Rayner, D.P. Wind run changes:the dominant factor affecting pan evaporation trends in Australia[J]. J. Clim.,2007,20:3370-3394.
    Roderick, M.L., Farquhar, G.D. Changes in New Zeal and pan evaporation since the 1970s[J]. Int. J. Climatol,2005,25 (15):2031-2039.
    Roderick, M. L., Farquhar, G. D. The cause of decreased pan evaporation over the past 50 years[J]. Science,2002,298 (5597):1410-1411.
    Roderick, M.L., Farquhar, G.D., Changes in Australian pan evaporation from 1970 to 2002[J]. Int. J. Climatol.,2004,24(9):1077-1090.
    Roderick, M. L., Hobbins M. T., Farquhar G. D. Pan evaporation trends and the terrestrial water balance:I. Principles and observations[J]. Geography. Compass,2009a,3(2):746-760.
    Roderick, M.L., Hobbins, M.T., Farquhar, GD. Pan evaporation trends and the terrestrial water balance II. Energy balance and interpretation[J]. Geogr. Compass,2009b,3(2):761-780.
    Romano, E., Giudici, M. On the use of meteorological data to assess the evaporation from a bare soil[J]. Journal of Hydrology,2009,372:30-40.
    Rong, Y. S., Wang,W., Jiang, H. Y. Change of pan evaporation in the upper reach of the Yangtze river[J]. Journal of Hydrodynamics,2011,23(4):503-509.
    Rosenberry, D.O., Winter, T.C., Buso, D.C., et al. Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA[J]. Journal of Hydrology,2007,340:149-166.
    Rotstayn, L.D., Roderick, M.L., Farquhar, G.D. A simple pan-evaporation model for analysis of climate simulations:evaluation over Australia[J]. Geophys. Res. Lett.,2006,33, L17715. doi:10.1029/2006GL027114.
    Sabziparvar, A.A., Tabari, H., Aeini, A., et al. Evaluation of Class A Pan Coefficient Models for Estimation of Reference Crop Evapotranspiration in Cold Semi-Arid and Warm Arid Climates[J]. Water Resour. Manage.,2010,24:909-920.
    Sacks, L.A., Lee, T.M., Radell, M.J., et al. Comparison of energy-budget evaporation losses from 2 morphometrically different Florida Seepage Lakes[J]. Journal of Hydrology,1994,156: 311-334.
    Salam, M.A., Mazrooei, S.A. Crop water and irrigation water requirements of date palm (Phoenix dactylifera) in the loamy s and s of Kuwait[J]. Acta Hort.,2007,736:309-315.
    Sellers, P.J., Dichinson, R.E., R and all, D.A., et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere[J]. Science,1997,275(5299):502-509.
    Seneviratne, S. I., Luthi, D. M., Litschi, et al. Land-atmosphere coupling和climate change in Europe[J]. Nature,2006,443(7108):205-209.
    Shen, Y.J., Liu, C.M., Liu, M. Change in pan evaporation over the past 50 years in the arid region of China[J]. Hydrol. Process.,2010,24:225-231.
    Shirsath, P.B., Singh, A.K. A Comparative Study of Daily Pan Evaporation Estimation Using ANN, Regression and Climate Based Models[J]. Water Resour. Manage.,2010,24:1571-1581.
    Snyder, R.L. Equation for evaporation pan to evapotranspiration conversions[J]. Journal of Irrigation and Drainage Engineering, ASCE,1992,118(6):977-980.
    Snyder, R.L., Orang, M., Matyac, S., et al. Simplified estimation of reference evapotranspiration from pan evaporation data in California[J]. J. Irrig. Drain. Eng.,2005,131(3):249-253.
    Stanhill, G Is the Class A evaporation pan still the most practical and accurate meteorological method for determining irrigation water requirements?[J]. Agricultural and Forest Meteorology, 2002,112(3-4):233-236.
    Stanhill, G, Moller, M. Evaporative climate change in the British Isles[J]. Int. J. Climatol.,2008, 28:1127-1137.
    Sugita, M., Usui, J., Tamagawa, I., et al. Complementary relationship with a convective boundary layer to estimate regional evapotranspiration[J]. Water Resources Research,2001,37:353-365.
    Szilagyi, J. On Bouchet's complementary hypothesis[J]. J. Hydrol,2001,246(1-4):155-158.
    Szilagyi, J. On the inherent asymmetric nature of the complementary relationship of evaporation[J]. Geophys. Res. Lett.,2007,34 (1),L02405. DOI:02410.01029/02006GL028708.
    Szilagyi, J., Jozsa, J. New findings about the complementary relationship based evaporation estimation methods[J]. J. Hydrol.,2008,354(1-4):171-186.
    Szilagyi, J., Jozsa, J. An evaporation estimation method based on the coupled 2-D turbulent heat and vapor transport equations[J]. J. Geophys. Res.,2009a,114, D06101. doi:10.1029/2008JD010772.
    Szilagyi, J., Jozsa, J. Analytical solution of the coupled 2-D turbulent heat and vapor transport equations and the complementary relationship of evaporation[J]. Journal of Hydrology,2009b, 372:61-67.
    Tabari, H., Marofi, S. Changes of Pan Evaporation in the West of Iran[J]. Water Resour. Manage., 2011,25:97-111.
    Tang, R.S., Etzion, Y. Comparative studies on the water evaporation rate from a wetted surface and that from a free water surface[J]. Building and Environment,2004,39:77-86.
    Tebakari, T., Yoshitani, J., Suvanpimol, C., Time-space trend analysis in pan evaporation over Kingdom of Thailand[J]. J. Hydrol. Eng.,2005,10(3):205-215.
    Thom, A.S., Thony, J.L., Vauclin, M. On the proper employment of evaporation pans and atmometers in estimating potential transpiration[J]. Quart. J. R. Meteorological Society,1981, 107:711-736.
    Thomas, A. Spatial and temporal characteristics of potential evapotranspiration trends over China[J]. Int. J. Climatol.,2000,20:381-396.
    Valiantzas, J.D. Simplified versions for the Penman evaporation equation using routine weather data[J]. Journal of Hydrology,2006,331:690-702.
    Wallace, J.S. Calculating evaporation:resistance to factors[J]. Agricultural and Forest Meteorology,1995,73:353-366.
    Wang, K., Dickinson R.E., A review of global terrestrial evapotranspiration:Observation, modeling, climatology, and climatic variability [J]. Rev. Geophys.,2012,50, RG2005, doi:10.1029/2011RG000373.
    Wang, Y., Jiang, T., Bothe, O., et al. Changes of pan evaporation and reference evapotranspiration in the Yangtze River basin[J]. Theor. Appl. Climatol.,2007,90(1-2):13-23.
    Ward, C.A., Stanga, D. Interfacial conditions during evaporation or condensation of water[J]. Phys. Rev.,2001,64,051509, doi:10.1103/PhysRevE.64.051509.
    Xu, C.Y., Singh V.P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions[J]. J. Hydrol.,2005,308:105-121.
    Xu, C.Y., Gong, L., Jiang, T., et al. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment[J]. J. Hydrol., 2006,327(1-2):81-93.
    Xu, J.Q., Haginoya, S., Saito, K., et al. Surface heat balance and pan evaporation trends in Eastern Asia in the period 1971-2000[J]. Hydrol. Process.,2005,19(11):2161-2186.
    Xu, J.Q., Yu, S.M., Liu, J.S. The Implication of Heat and Water Balance Changes in a Lake Basin on the Tibetan Plateau[J]. Hydrological Research Letters,2009,3:1-5.
    Xu, Z. X., Li, J. Y., Liu, C. M. Long-term trend analysis for major climate variables in the Yellow River basin[J] Hydrological processes,2007,21:1935-1948.
    Yang, D.W., Sun, F., Liu, Z.D., et al. Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses[J]. Geophysical Research Letters, 2006,33, L18402. DOI:18410.11029/12006GL027657.
    Yang, H.B., Yang, D.W. Climatic factors influencing changing pan evaporation across China from 1961 to 2001[J]. Journal of Hydrology,2012,414-415:184-193.
    Yang, H.B., Yang, D.W., Lei, Z.B., et al. Variability of complementary relationship and its mechanism on different time scales[J]. Science in China Series E:Technological Sciences,2009, 52:1059-1067.
    You, G.Y., Zhang, Y.P., Liu Y.H. On the attribution of changing pan evaporation in a nature reserve in SW China[J], Hydrol. Process.,2012, DOI:10.1002/hyp.9394.
    Zhang, X.Q., Ren, Y., Yin, Z.Y., et al. Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971-2004[J], Journal of Geophysical Research,2009,114,D15105, doi:10.1029/2009JD011753.
    Zheng, H., Liu, X., Liu C., et al. Assessing contributions to panevaporation trends in Haihe River Basin, China [J]. J.Geophys. Res.,2009,114, D24105, doi:10.1029/2009JD012203.
    Zuo, H.C., Li, D.L., Hu, Y.Q.,et al. Characteristics of climatic trends and correlation between pan-evaporation and environmental factors in the last 40 years over China[J]. Chin. Sci. Bull., 2005,50(12):1235-1241.
    Zveryaev, I.I., Allan R.P. Summertime precipitation variability over Europe and its links to atmospheric dynamics and evaporation[J].2010, J, Geophys. Res.,115, D12102, doi:10/1029/2008JD011213.
    崔英,刘廷玺,杜艳霞.黄河内蒙古段蒸发皿蒸发量变化特征[J].干旱地区农业研究,2011,29(4):252-256.
    范伶俐,郭品文,张福颖等.广东省年蒸发量的时空演变特征[J].大气科学学报,2010,33(3):321-327.
    范伶俐,郭品文,管勇等.广东蒸发皿蒸发量的变化特征及成因[J].地理学报,2010,65(7):863-872.
    范伶俐,郭品文,张福颖等.广东蒸发皿蒸发量的季节变化特征及其影响因素的灰色关联分析[J].大气科学学报,2010,33(6):703-710.
    刘蓓.43年来青海蒸发皿蒸发量变化及其影响因子[J].干旱区研究,2010,27(6):892-897.
    刘敏,沈彦俊,曾燕等.50年中国蒸发皿蒸发量变化趋势及原因[J].地理学报,2009,64(3): 259-279。
    刘波,肖子牛,马柱国.中国不同干湿区蒸发皿蒸发和实际蒸发之间关系的研究[J].高原气象,2010,29(3):629-636.
    刘波,马柱国,丁裕国.中国北方近45年蒸发变化的特征及与环境的关系[J].高原气象,2006,25(5):840-848.
    刘学锋,于长文,任国玉.河北省近40年蒸发皿蒸发量变化特征及影响因素初探[J].干旱区地理,2007,30(4):507-512.
    邱新法,刘昌明,曾燕.黄河流域近40年蒸发皿蒸发量的气候变化特征[J].自然资源学报,2003,18(4):437-442.
    申双和,盛琼.45年来中国蒸发皿蒸发量的变化特征及其成因[J].气象学报,2008,66(3):452-460.
    王素萍,张存杰,韩永翔.甘肃省不同气候区蒸发量变化特征[J].中国沙漠,2010,30(3):675-680.
    王艳君,姜彤,许崇育.长江流域20 cm蒸发皿蒸发量的时空变化[J].水科学进展,2006,17(6):830-833.
    王艳君,姜彤,许崇育.长江流域蒸发皿蒸发量及影响因素变化趋势[J].自然资源学报,2005,20(6):864-870.
    王兆礼,陈晓宏,黄国如等.东江流域蒸发皿蒸发量时空演变特征及其原因分析[J].灌溉排水学报,2009,28(6):22-25.
    王兆礼,覃杰香,陈晓宏.珠江流域蒸发皿蒸发量的变化特征及其原因分析[J].农业工程学报,2010,26(11):73-77.
    谢平,陈晓宏,王兆礼等.东江流域实际蒸发量与蒸发皿蒸发量的对比分析[J].地理学报,2009,64(3):270-277.
    谢平,陈晓宏,王兆礼等.东江流域蒸发皿蒸发量及其影响因子的变化特征分析[J].热带地理,2008,28(4):306-310.
    谢贤群,王菱.中国北方近50年潜在蒸发的变化[J].自然资源学报,2007,22(5):683-691.
    徐宗学,和宛琳.黄河流域近40年蒸发皿蒸发量变化趋势分析[J].水文,2005,25(6):6-11.
    杨汉波,杨大文,雷志栋等.蒸发互补关系在不同时间尺度上的变化规律及其机理[J].中国科学E辑:技术科学,2009,39(2):333-340.
    杨汉波,杨大文,雷志栋等.蒸发互补关系的区域变异性[J].清华大学学报(自然科学版),2008,48(9):34-36.
    杨秀芹,钟平安.蒸发皿蒸发量变化及其研究进展[J].地球物理学进展,2008,23(5):1494-1498.
    曾燕,邱新法,刘昌明等.1960-2000年中国蒸发皿蒸发量的气候变化特征[J].水科学进展,2007,18(3):311-318.
    左洪超,鲍艳,张存杰等.蒸发皿蒸发量的物理意义、近40年变化趋势的分析和数值实验研究[J].地球物理学报,2006,49(3):680-688.
    Aubinet M., Grelle A., Ibrom A., et al. Estimates of the annual net carbon and water exchange of 1 and surface flux measurements."[J]. Am. Meteorol. Soc.,1995,76:1191-1193.
    Foken T.50 years of the Monin-Obukhov similarity theory[J]. Boundary-layer Meteor.,2006, 119(3):431-447.
    Foken, T., Oncley, S.P. Results of the workshop "Instrumental and methodical problems of forests:The EUROFLUX methodology [J]. Adv. Eco.Res.,2000,30:113-175.
    Gu, J., Smith, E.A., Merritt, J.D. Testing energy balance closure with GOES-retrieved net radiation and in situ measured eddy correlation flux in BOREAS[J]. J. Geophys. Res.,1999, 104(22):27881-27893.
    Kanemasu E.T., Verma S.B., Smith E.A., et al. Surface flux measurements in FIFE:an overview[J]. J. Geophys. Res.,1992,97:18547-18555.
    Linacre, E.T. Estimating U.S. Class A pan evaporation from few climate data[J]. Water International,1994,19:5-14.
    List R. J. Smithsonian Meteorological Tables[M]. Smithsonian Institution Press,527pp,1951.
    Mahrt L. Flux sampling errors for aircraft and towers[J]. J. Atmos. Ocean.Tech.,1998,15: 416-429.
    Meek, D.W., Prueger, J.H. Solutions for three regression problems commonly found in meteorological data analysis[J]. In:Proceedings of the 23rd Conference on Agr. Forest Meteorol. American Meteorological Society, Albuquerque, NM,1998, November 2-6: 141-145.
    Oncley S.P., Foken T., Vogt R., et al. Then energy balance experiment EBEX-2000. Part Ⅰ: overview and energy balance[J]. Bound.-Lay. Meteorol.,2007,123:1-28.
    Sanchez, J.M., Caselles V., Rubio E.M., et al. Analysis of the energy balance closure over a FLUXNET boreal forest in Finl and [J]. Hydrology & Earth System Sciences,2010,14(8): 1487-1497.
    Sellers P. J., Randall D. A., Collatz G. J., et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 1:model formulation[J]. J. Climate.,1996,9:676-705.
    Shuttleworth W.J. Evaporation. In:Maidment DR (ed.), Hand book of hydrology[M]. McGraw-Hill, New York,1993.
    Sumner, D. M. and Jacobs, J. M. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and Pan evaporation methods to estimate pasture evapotranspiration[J]. Journal of Hydrology,2005,308:81-104.
    Tsvang L. R., Fedorov M. M., Kader B. A., et al. Turbulent exchange over a surface with chessboard-type inhomogeneities[J]. Bound.-Lay. Meteorol.,1991,55:141-160.
    Wilson K. B., Goldstein A., Falge E., et al.Energy balance closure at FLIXNET sites[J]. Agr. Forest Meteorol.,2002,113:223-243.
    陈伯龙,左洪超,高晓清等,20cm蒸发皿蒸发量的数学物理模型研究[J].地球物理学报,2013,56(2):422-430.
    盛裴轩,毛节泰,李建国等.大气物理学[M].北京:北京大学出版社,62pp,2003.
    杨启东,左洪超,杨扬等.近地层能量闭合度对陆面过程模式影响[J].地球物理学报,2012,55(9):2876-2888.
    中国气象局,地面气象观测规范[M].北京:气象出版社,2005.
    左洪超,鲍艳,张存杰等.蒸发皿蒸发量的物理意义、近40年变化趋势的分析和数值实验研究[J].地球物理学报,2006,49(3):680-688.
    Allen, R.G., Pereira, L.S., Raes, D., et al.,. Crop evapotranspiration, guidelines for computing crop water requirements. FAO Irrig. and Drain. Paper 56[M]. Food and Agric. Orgn. of the United Nations, Rome, Italy.300 pp,1998.
    Brutsaert, W. Evaporation into the atmosphere:theory, history, and applications. Dordrecht, The Netherlands:Kluwer Academic Publishers.299 pp,1982.
    Brutsaert, W., Sugita, M. Sensible heat transfer parameterization for surfaces with anisothermal dense vegetation[J]. J. Atmos. Sci.,1996,53(2):209-216.
    Fortin, J.P., Seguin, B. Estimation de I'ETR rdgionale a partir de I'ETP locale:utilisation de la relation de Bouchet a differentes echelles de temps[J]. Ann. Agron.,1975,26(5):553-554.
    Garratt,J.R. Potential evaporation-Some comments, internal note[M].CSIRO,1994.
    Granger, R.J. A complementary relationship approach for evaporation from nonsaturated surfaces[J]. J. Hydrol.,1989,111:31-38.
    Granger, R.J. An examination of the concept of potential evaporation[J]. J. Hydrol.,1989,111: 9-19.
    Monteith J L. Evaporation and the environment. XIXth Symposia of the Society for Experimental Biology[M]. University Press, Swansea, Cambridge, pp.205-234,1965.
    Morton, F.I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology[J]. J. Hydrol.,1983,66:1-76.
    Oleson K. W., Lawrence D. M., Bonan G. B. et al., Technical Description of version 4.0 of the Community Land Model (CLM)[M]. NCAR TECHNICAL NOTE.2010.
    Penman, H.L. Natural evaporation from open water, bare soil, and grass[J]. Proc. R. Soc. London, 1948, A 193:120-145.
    Penman, H.L. The physical basis of irrigation control[J]. Rep.13th Intl. Hort. Congr.,1953,2: 913-914.
    Penman, H.L. Evaporation:An introductory survey[M]. Netherlands J. Agric. Sci.,1:9-29, 87-97,151-153.1956.
    Penman, H.L. Vegetation and hydrology[M]. Tech. Comm. No.533. Harpenden, Engl 和: Commonwealth Bureau of Soils, pp 125,1963.
    Priestley, C.H.B., Taylor, R.J.. On the assessment of surface heat flux and evaporation using large-scale parameters [J]. Mon. Weather Rev.,1972,100(2):81-92.
    Priestley, C.H.B., Turbulent Transfer in the Lower Atmosphere[M]. University of Chicago Press. Chicago,Ill.,130,1959.
    Shuttleworth, W. J. Evaporation. In Maidment, D.R. (Ed.) H和 book of Hydrology[M]. New York, McGraw-Hill Inc.,1993.
    Slatyer, R.O., McIlroy, I.C. Practical Microclimatology[M]. CSIRO, Melbourne, Vic.,310,1961.
    Thompson, M.A., Campbell, D.I., Spronken-Smith, R.A. Evaporation from natural 和 modified raised peat bogs in New Zeal 和[J]. Agricultural和Forest Meteorology,1999,95:85-98.
    Thornthwaite, C.W., An approach towards a rational classification of climate[J]. Geogr. Rev.,1948, 38:55-94.
    VanBavel, C.H.M. Potential evaporation:The combination concept and its experimental verification[J]. Water Resour. Res.,1966,2(3):455-467.
    World Meteorological Organization, International glossary of hydrology. WMO Rep. No. pp 385, 393,1974.
    Allen, R.G., Pereira, L.S. Raes, D., et al. Crop evapotranspiration guidelines for computing crop water requirements, Food Agric. Org. U. N. FAO Irrig. Drain. Pap[M].56, Rome, Italy. (1998)
    Bouchet, R.J. Evapotranspiration reelle, evapotranspiration potentielle, et production agricole[J]. Ann. Agron.,1963,14:543-824.
    Brutsaert, W. Indications of increasing 1和 surface evaporation during the second half of the 20th century[J]. Geophysical Research Letters,2006,33:L20403
    Brutsaert,W., Parlange, M.B. Hydrologic cycle explains the evaporation paradox[J]. Nature,1998, 396,30.
    Brutsaert,W., Stricker, H. An advection-aridity approach to estimate actual regional evapotranspiration[J]. Water Resour. Res.,1979,15:443-450.
    Han, S.J., Hu, H., Tian, F. Evaluating the advection-aridity model of evaporation using data from field-sized surfaces of HEIFE[J]. International Association of Scientific Hydrology Publication, 2008,322:9-14.
    Hobbins, M.T., Ramirez, J.A., Brown, T.C. Trends in pan evaporation and actual evaporation across the conterminous U.S.:Paradoxical or complementary?[J]. Geophys. Res. Lett.,2004,31, L13503,doi:10.1029/2004GL019846.
    Huntington J.L., Szilagyi, S.W.J., Tyler, et al. Evaluating the complementary relationship for estimating evapotranspiration from arid shrublands[J]. Water resources research 2011,47, W05533, doi:10.1029/2010WR009874.
    Kahler, D.M., Brutsaert, W. Complementary relationship between daily evaporation in the environment and pan evaporation, Water resources research[J].2006,42, W05413.
    Penman, H.L. Natural evaporation from open water, bare soil, and grass[J]. Proc. R. Soc. London, A,1948,193:120-145.
    Pettijohn, J.C., Salvucci, G.D. Impact of an unstressed canopy conductance on the Bouchet-Morton complementary relationship[J]. Water Resour. Res.,2006,42, W09418, doi:10. 1029/2005WR004385.
    Priestley, C.H.B., Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters [J]. Mon. Weather Rev.,1972,100:81-92.
    Roderick, M.L, Farquar, G.D. The cause of decreased pan evaporation over the past 50 years[J]. Science,2002,298:1410-1411.
    Sabziparvar, A.A., Tabari, H., Aeini, A., et al. Evaluation of Class A Pan Coefficient Models for Estimation of Reference Crop Evapotranspiration in Cold Semi-Arid and Warm Arid Climates[J], Water Resour. Manage.,2010,24:909-920.
    Szilagyi, J. On the inherent asymmetric nature of the complementary relationship of evaporation [J]. Geophys. Res. Lett.,2007,34, L02405,doi:10.1029/2006GL028708.
    Foken, T.50 years of the Monin-Obukhov similarity theory[J]. Boundary-layer Meteor.,2006,119(3):431-447.
    Gallego-Elvira, B., Baille, A., Mart'm-G'orriz B., et al. Energy balance 和 evaporation loss of an agricultural reservoir in a semi-arid climate (south-eastern Spain)[J]. Hydrol. Process.,2010,24:758-766.
    Gianniou, S. K., Antonopoulos, V.Z. Evaporation和 energy budget in Lake Vegoritis, Greece[J]. Journal of Hydrology,2007,345(3-4):212-223.
    Jacobs A.F.G., Hweusinkveld, B.G., Kraai, A. Diurnal temperature fluctuations in an artificial small shallow water body[J]. Int J Biometerol,2008,52(4):271-280.
    Jacobs, A.F.G,. Heusinkveld, B.G., Lucassen, D.C. Temperature variation in a class A evaporation pan[J]. Journal of Hydrology,1998,206(1-2):75-83.
    Linacre, E.T. Estimating U.S. class-A pan evaporation from few climate data[J]. Water Int.,1994,19(1):5-14.
    Mahrt, L, Vickers, D. Bulk formulation of the surface heat flux[J]. Boundary Layer Meteorology,2004,110(3):357-379.
    Mahrt,L., Vickers, D. Bulk formulation of the surface heat flux[J]. Boundary Layer Meteorology,2004,110:357-379.
    Martinez, J.M.M., Alvarez, V.M., Real, M.M.G., et al. A simulation model for predicting hourly pan evaporation from meteorological data[J]. Journal of Hydrology,2006,318(1-4):250-261.
    Mascart, P., Noilhon, J., Giordani, H. A modified parameterization of flux-profile relationships in the surface layer using different roughness length values for heat and momentum[J]. Boundary Layer Meteorology,1995,72(4):331-344.
    Stull, R.B. An Introduction to Boundary Layer Meteorology[M]. Kluwer, The Netherlands.1988.
    Tanny, J., Cohen,S., Assouline, S., et al. Evaporation from a small water reservoir: Direct measurements 和 estimates[J]. Journal of Hydrology,2008,351:218-229.
    Winter, T.C., Rosenberry, D.O., Sturrock, A.M. Evaluation of 11 equations for determining evaporation for a small lake in the north central United States[J]. Water Resour. Res.,1995,31 (4):983-993.
    陈伯龙,左洪超,高晓清等.20 cm蒸发皿蒸发量的数学物理模型研究[J],地球物理学报,2013,56(2):422-430.
    戴永久,曾庆存,王斌.一个简单的陆面过程模式[J].大气科学,1997,21(6):705-716.
    苗曼倩,钱峻屏.陆面上总体输送系数的特征[J].气象学报,1996,54(1):95-101.。
    盛裴轩,毛节泰,李建国等.大气物理学[M].北京:北京大学出版社,2003,251pp.
    王丽娟,左洪超,陈继伟等.遥感估算绿洲-沙漠下垫面地表温度及感热通量[J].高原气象,2012,31(3):646-656.
    赵鸣,苗曼倩,王彦昌.边界层气象学教程[M].北京:气象出版社,1989,84pp.
    左洪超,鲍艳,张存杰等.蒸发皿蒸发量的物理意义、近40年变化趋势的分析和数值实验研究[J].地球物理学报,2006,49(3):680-688.
    左洪超,胡隐樵.黑河试验区沙漠和戈壁的总体输送系数[J].高原气象,1992,11(4):371-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700