无线网络视频流传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代无线通信技术的发展,无线通信传输速率及通信可靠性在不断提高,这些新技术也很快被应用在了各种无线通信网络中,包括方便快捷成本低廉的无线局域网络和广为覆盖的蜂窝无线接入网络,目前最新的采用IEEE802.11n标准的无线局域网,其物理层(PHY)采用了多天线技术(MIMO)和正交频分复用技术(OFDM),最高传输速率可达600Mbps,当前正在发展的IEEE802.11ac和IEEE802.11ad标准,其目标传输速率预计取得吉比特量级。较高的通信速率使得在无线局域网上传输大流量高清视频流成为可能;蜂窝无线接入网络中也因为采用先进的多天线技术(MIMO),码分多址技术(CDMA)等,使得当前正计划实施的第四代(4G)无线接入网络其下行传输速率可达500Mbps,这为实施高清视频流的传输服务提供了有力的保证。但是视频流媒体传输不同于普通的数据传输,视频流传输具有错误敏感,延时敏感的特点,错误敏感来自于视频流数据包所具有的优先级区分的特点,一些高优先级数据包的错误或丢失将会带来比其它低优先级数据包更严重的后果;延时敏感来自于视频流传输的实时性要求,比如视频会议,实时视频内容分享等。基于这些新特性,需要重新研究无线网络体系结构中各个层的传输控制协议及相关参数。视频流传输的新特性也决定了其性能评价准则和普通数据包传输的百分百可靠,延时无关的准则不同。为了评价视频流传输服务给用户提供的观看体验,提出了可解码帧比率的概念,以及后来进一步的体验质量(QoE)的概念。因此,在现有技术条件下,为了给用户提供更好的视频流观看体验,无线网络的视频流传输服务还有很多值得研究改进的地方。
     本论文正是针对上述问题,以无线网络视频流传输为主要的研究对象,在深入学习当今无线网络传输技术,视频流编解码技术的基础上,对无线网络视频流传输的相关技术进行了一些讨论和研究。主要工作为:
     1.无线局域网视频流下行传输竞争接入协议改进设计。针对视频流主要从无线局域网接入点(AP)下行传输给无线终端用户(User),提出了一种改进的无线局域网竞争接入协议参数调整技术来保证下行传输吞吐量的同时又使系统最优。IEEE802.11无线局域网主要在媒体接入控制层(MAC)采用分布式协调功能(DCF)的公平随机竞争接入协议,但是通过理论分析表明该机制不能保证在接入点处下行视频流传输的吞吐量,也就不能保证视频流下行传输的时延,因此,在基于现有的马尔可夫理论分析模型的基础上,建立了新改进接入协议的分析模型,并扩展到了有错信道的情况,提出了新的接入协议参数调整技术,使得在保证下行视频流传输吞吐量的同时,也使系统取得最优,即最大化系统总吞吐量。
     2.无线局域网视频流传输发送速率控制和重传次数限制控制技术。在无线局域网络中,低的发送速率增加了传输的可靠性,但是传输吞吐量降低,易造成队尾溢出丢包,类似的,高的重传次数限制值增加了传输的可靠性,但是传输吞吐量降低,也易造成队尾溢出丢包,因此在视频流传输过程中采用最优的控制参数设置是最大化传输效率的重要保证。为此,针对发送速率控制和重传次数限制控制,分别提出了基于马尔可夫决策过程理论(MDP)的优化算法和基于马尔可夫状态转移的优化模型,并验证了其改进性能的有效性。最后,联合发送速率和重传次数限制,研究设计了在有重传次数限制情况下最优的发送速率控制策略。
     3.无线局域网视频流多播(Multicast)传输技术。一般情况下的视频流传输主要是单播,即一对一的服务。但是在某些应用场景中,往往需要广播或多播给一组用户,目前的无线局域网广播或多播设定采用最低速率的传输方式,以保证广播或多播组成员内信道最差的用户也能可靠的接收到数据包,这种简单的速率设定方式严重降低了具有较好信道质量用户的观看体验。为此,基于视频流数据包的优先级特性,结合多播组内成员用户无线信道差异化且相互独立,考虑视频传输延时限制的要求,利用动态规划(DP)来优化多播传输中发送速率控制,有效提升了广播或多播组内成员用户接收到的视频流的可解码帧比率。
     4.无线接入网视频流下行传输统计QoS保证技术。无线接入网下行传输中,在基站处的调度算法决定了给多个用户提供的服务质量,根据经典且实用的基于队列长度信息的最大速率(QLBRM)调度算法,利用有效容量理论分析了在该调度算法下,多个用户之间最大输入数据流量和渐进稳态队列长度分布律上限的关系。基于此分析,在延时限制或者说队列长度阀值限制设定的情况下,可以估计每个用户队尾的溢出丢包率上限,也就是所谓的统计意义上的QoS保证,从而可以在系统设计时综合考虑用户的输入流量,延时限制,统计QoS保证之间的权衡关系。并且,在队尾溢出丢包发生时,利用视频流数据包的优先级特性,引入了视频流数据包的优先级丢包机制,最大化视频流传输后的解码质量,最终给用户提供一定满意度的视频流传输服务。
With the development of modern wireless communication technology, the wirelessdata transmission rate and reliability increase continually. These technologies are alsorapidly applied to all kinds of wireless communication networks, including convenient,fast and low cost Wireless Local Area Networks (WLANs) and wide coverage cellularwireless access networks. Recently the newest WLANs based on the IEEE802.11nstandard, which adopts the innovative multi-antenna technology (MIMO) andorthogonal frequency division multiplexing technology (OFDM) in Physical layer(PHY), have the transmission data rate of up to600Mbps. Nowadays, the IEEE802.11acand the IEEE802.11ad standard that all are under development have the goal ofachieving data rate up to Gigabit order of magnitude. The increasing of transmissionrate makes it possible to delivery large flow high definition video streams over WLANs;In cellular wireless access networks, due to the advanced MIMO and Code DivisionMultiple Access (CDMA) technology applied, the4G wireless access network that isplanning to be deployed can also achieve500Mbps downlink transmission rate, whichefficiently guarantees the delivery of high definition video streams over wireless accessnetworks. However, video streams are different from general data traffic and have thecharacteristics of error-sensitivity and delay-sensitivity. Error-sensitivity is caused bythe priority structure of video stream data packets. The error or loss of high priority datapackets will result worse consequences than that of low priority data packets.Delay-sensitivity is produced due to the request of real-time, such as video conference,real-time video content sharing, etc. Based on these new characteristics, we need torestudy the transmission control protocol and related parameters in each layer ofnetwork system architecture. The characteristics of video streams also result that theirevaluation criteria are different from that of general data transmissions which usecriteria such as100%reliability and delay unconcerned. To evaluate the users’ watchingexperience offered by video stream transmission service, the concept of decodableframe ratio and then the Quality of Experience (QoE) are presented. So, based on theoff-the-shelf network technology, to provide better video watching experience for users, we fund many aspects worth to research in video delivery over wireless networks.
     In this dissertation, we focus on the video streams transmission over wirelessnetworks. Based on the knowledge of wireless network transmission and video codec,the key technology of video streams transmission over wireless networks is discussedand studied. The main contributions are:
     1. Improvement on downlink video streaming contention access protocol inWLANs. The usual application scenario in WLANs is the video streams downlinktransmission which is from Access Point (AP) to the wireless users. For this scenario,we design a new parameters adjustment technology for WLANs contention accessprotocol to guarantee the downlink transmission throughput and also achieve theoptimal system performance. IEEE802.11WLANs applies Distributed CoordinationFunction (DCF) in Media Access Control (MAC) layer to perform fair random accessprotocol. But, by theory analysis, we find this protocol can’t guarantee the throughputand delay of downlink video streams transmission over WLANs. Based on the existingMarkov chain analysis model, the new model is established for our improved accessprotocol and extended to error channel conditions. We proposed the new parameteradjustment technology to guarantee the downlink video streams transmissionthroughput and also achieve the optimal system performance, that is, maximum systemthroughput.
     2. Video streaming transmission rate control and retry limit setting technology overWLANs. In WLANs, lower transmission rate increases the transmission reliability butdegrades the throughput, which is easier to result the queue overflow. The same thing isthat higher retry limit increases the transmission reliability but degrades the throughput,which is also easier to result the queue overflow. So, using optimal control parametersset in video stream transmission is the guarantees of maximum transmission efficiency.To resolve the transmission rate control and retry limit setting, we proposed twooptimization models. One is based on the Markov decision process (MDP) and the otherone is based on the Markov state transition model. Finally we validate theireffectiveness for performance improvement. At last, combining the transmission rateand retry limit, we study and design the optimal transmission rate control policy underthe condition of retry limit introduced.
     3. Video streams multicast technology over WLANs. Usually, video streams transmission is unicast, that is, one to one service. In some application scenarios, videostreams need to broadcast or multicast to a group of users. WLANs standard specifiesusing the lowest transmission rate for broadcast or multicast and trying to guaranteeeach members’ reliable packets receive including members which stay in the worstchannel state. This simple rate setting seriously degrades the watching experience ofmembers which stay in the better channel state. On the basis of the priority structure ofvideo stream data packets, the heterogeneous characteristics of group members’wireless channel and the effect of the delay constraint, we use the dynamicprogramming (DP) to resolve the multicast transmission rate control problem. Itsubstantially improves the watching experience of multicast group users.
     4. Statistic QoS guarantees for video streams downlink transmission over wirelessaccess networks. In downlink transmission of wireless access networks, the schedulingalgorithm in base station affects the QoS performance for multiple users. Consider theclassic and practical queue length based rate maximum scheduling algorithm (QLBRM)and use the effective capacity theory to analyze the relationship between the multi-usersmaximum amounts of input data traffic and their asymptotic stationary queue lengthdistribution bound. Based on the analysis results, given the delay constraint or queuelength threshold, we can estimate the queue overflow probability upper bound of eachuser, that is, the so-called statistical QoS guarantees. Then we can balance theperformance factors between the input traffic, delay constraint and statistical QoSguarantees in system design. In addition, when the queue overflow packets losshappened, on the basis of the priority structure of video stream data packets, we presentthe packets priority drop to achieve the optimal received video frame decoding qualityand provide a satisfying video delivery service for users.
引文
[1] IEEE. IEEE Std.802.11b. Wireless LAN medium access control (MAC) and physical layer(PHY) specifications[S]. USA: IEEE PRESS,1997.
    [2] IEEE. IEEE Std.802.11a/g. Wireless LAN medium access control (MAC) and physical layer(PHY) specifications[S]. USA: IEEE PRESS,1999/2003.
    [3] IEEE. IEEE Std.802.11n, Wireless LAN medium access control (MAC) and physical layer(PHY) specifications[S]. USA: IEEE PRESS,2009.
    [4] IEEE. IEEE Std.802.11ac/ad part11, Wireless LAN medium access control (MAC) andphysical layer (PHY) specifications (under development)[S], USA: IEEE PRESS,2012.
    [5] IEEE. IEEE Std.802.11e. Wireless LAN medium access control (MAC) and physical layer(PHY) specifications: medium access control (MAC) Quality of Service enhancements[S].USA: IEEE PRESS,2005.
    [6] A. Aryaputra, B.N.5G-The Future of Mobile Network[C]. Proc. of the World Congress onEngineering and Computer Science, San Francisco, USA,2011.
    [7] S. Shakkottai, A. L. Stolyar. A Study of Scheduling Algorithm for a Mixture of Real-Time andNon-Real-Time Data in HDR[J]. Bell Laboratories Technical Report, Oct.,2000:491-511.
    [8]张海霞,袁东风,马艳波.无线通信跨层设计---从原理到应用[M].北京:人民邮电出版社,2010,60-66.
    [9] T. Wiegand, G. Sulivan, G. Bjontegaard, et al. Overview of the H.264/AVC video codingstandard[J]. IEEE Trans. Circuits Syst. Video Technol.,2003,10(7):560–576.
    [10] D. Marpe, T. Wiegand and G. Sulivan. The H.264/MPEG4advance video coding standard&itsapplications[J]. IEEE Communication Magazine,2006,12(8):134-143.
    [11] Z. T. Chou, C. C. Hsu, S. N. Hsu. UPCF a new point coordination function with QoS andpower management for multimedia over wireless LANs [J], IEEE Transactions on networking,2006,14(4):807-820.
    [12] G. Bianchi. Performance analysis of the IEEE802.11distributed coordination function[J]. IEEEJournal Selected Areas in Communications,2000,18(3):535-547.
    [13] J. Choi, J. Yoo, C. K. Kim. A Novel Performance Analysis Model for an IEEE802.11WirelessLAN[J]. IEEE Communication Letters,2006,10(5):335-337.
    [14] O.Tickoo, B. Sikdar, A Queueing Model for Finite Load IEEE802.11Random Access MAC[C].Proc. of IEEE International Conference on Communications (ICC), NY, USA,2004,175-179.
    [15]盛敏,李建东,史琰. IEEE802.11无线局域网性能分析[J].电子学报,2004,32(12A):148-152.
    [16]陈旭龙,彭宇行. IEEE802.11中MAC子层DCF&PCF的研究与仿真[J].计算机工程与设计,2008,29(5):1096-1099.
    [17] P. Latkoski, Z. Hadzi-Velkov, B. Popovski. Extended Model for Performance Analysis ofNon-Saturated IEEE802.11DCF in Erroneous Channel[C]. Proc. of IEEE InternationalConference on Mobile Adhoc and Sensor Systems (MASS),2006,783-788.
    [18] F. Daneshgaran, M. Laddomada, F.Mesiti, et al. A Model of the IEEE802.11DCF in Presenceof Non Ideal Transmission Channel and Capture Effects[C]. Proc. of IEEE GlobalTelecommunications Conference (GLOBECOM),2007,5112-5116.
    [19] F. Daneshgaran, M. Laddomada, F.Mesiti, et al. Unsaturated Throughput Analysis of IEEE802.11in Presence of Non Ideal Transmission Channel and Capture Effects[J]. IEEETransactions on Wireless Communications,2008,7(4):1276-1286.
    [20] J. Hui, M. Devetsikiotis. A Unified Model for the Performance Analysis of IEEE802.11eEDCA[J]. IEEE Transactions on Communications,2005,53(9):1498-1510.
    [21] Y. Xiao. Performance Analysis of IEEE802.11e EDCF under Saturation Condition[C]. Proc. ofInternational Conference on Communications (ICC), TN, USA,2004,170-174.
    [22] J. Hu, G. Min, M. E. Woodward, et al. A Comprehensive Analytical Model for IEEE802.11eQoS Differentiation Schemes under Unsaturated Traffic Loads[C]. Proc. of IEEE InternationalConference on Communications (ICC), USA,2008,241-245.
    [23] X. Wang, S. A. Mujtaba, Performance Enhancement of802.11WLAN for Asymmetric TrafficUsing an Adaptive MAC Protocol[C]. Proc. of IEEE Vehicular Technology Conference (VTC),2002,753-757.
    [24] J. Jeong, S. Choi, C. Kim. Achieving Weighted Fairness between Uplink and Downlink inIEEE802.11DCF WLANs[C]. Proc. of Int. Conf. QoS in Heterogeneous Wired/WirelessNetworks,2005,10-22.
    [25] S. W. Kim, B. S. Kim, Y. Fang. Downlink and Uplink Resource Allocation in IEEE802.11Wireless LANs[J]. IEEE Trans. Vehicular Technology,2005,54(1):320-327.
    [26] E. Lopez-Aquilera, J. Casademont, J. Cotrina, et al. Performance Enhancement of WLANIEEE802.11for Asymmetric Traffic[C]. Proc. IEEE Int. Sympos. Personal, Indoor and MobileRadio Communications,2005,1463-1467.
    [27] E. Lopez-Aquilera, M. Heusse, Y. Grunenberger, et al. An Asymmetric Access Point forSolving the Unfairness Problem in WLANs[J]. IEEE Trans. Mobile Computing,2008,7(10):1213-1227.
    [28] L. Du, Y. Bai, L. Chen. High-Efficient InterActive Pair Scheduling (IAPS) scheme for IEEE802.11infrastructure WLAN[C]. Proc. of IEEE Vehicular Technology Conference (VTC),2006,2484-2488.
    [29] B.A.H.S. Abeysekera, T. Matsuda, T. Takine. Dynamic Contention Window ControlMechanism to Achieve Fairness between Uplink and Downlink Flows in IEEE802.11WirelessLANs[J]. IEEE Trans. Wireless Communications,2008,7(9):3517-3525.
    [30] F. Keceli, I. Inan and E. Ayanoglu. Fairness Provision in the IEEE802.11e Infrastructure BasicService Set[J]. International Journal of Information and Communication Engineering,2010,6(3):184-190.
    [31]程艳红,李志蜀,朱丽.一种IEEE802.11无线局域网的上下行带宽分配策略[J].华南理工大学学报,2009,37(5):17-22.
    [32] J. P. Pavon, C. Sunghyun. Link Adaptation Strategy for IEEE802.11WLAN via ReceivedSignal Strength Measurement[C], IEEE International conference on communications(ICC),2003,1108-1113.
    [33] A. R. Rebai, et al. A New Link Adaptation Scheme for IEEE802.11WLANs [C], IEEEInternational conference on new technologies, mobility and security,2008,1-5.
    [34] Q. Liu, S. Zhou, and G. B. Giannakis. Queuing with adaptive modulation and coding overwireless links cross-layer analysis and design[J]. IEEE Transactions on WirelessCommunications,2005,4(3):1142–1153.
    [35]陈威,曹志刚,樊平毅.基于信道和队列状态信息的跨层最优功率分配[J].通信学报,2007,28(8):16-23.
    [36]赵巍.无线通信系统中的跨层优化技术研究[D].杭州:浙江大学,2011,13-37.
    [37] X. Bai, A. Shami. Two Dimensional Cross-Layer Optimization for Packet Transmission overFading Channel[J]. IEEE Transactions on Wireless communications,2008,7(10):3813-3822.
    [38] Q. Li, M. van der Schaar. Providing Adaptive QoS to Layered Video Over Wireless Local AreaNetworks Through Real-Time Retry Limit Adaptation[J], IEEE Transactions on Multimedia,2004,6(2):278-290.
    [39] H. Bobarshad, M. van der Schaar, M. R. Shikh-Bahaei. A Low-Complexity AnalyticalModeling for Cross-Layer Adaptive Error Protection in Video Over WLAN[J]. IEEETransactions on Multimedia,2010,12(5):427-438.
    [40] S. Pack, X. Shen, J. W. Mark. Optimizing Truncated ARQ Scheme Over Wireless FadingChannels[J]. IEEE Transactions on Vehicular Technology,2008,57(2):1302-1305.
    [41] X. Wang, Q. Wen, G. B. Giannakis. Analyzing and Optimizing Adaptive Modulation CodingJointly With ARQ for QoS-Guaranteed Traffic[J]. IEEE Transactions on Vehicular Technology,2007,56(2):710-720.
    [42] G. Femenias, J. Ramis, L. Carrasco. Using Two-Dimensional Markov Models and theEffective-Capacity Approach for Cross-Layer Design in AMC/ARQ-Based WirelessNetworks[J]. IEEE Transactions on Vehicular Technology,2009,58(8):4193-4203.
    [43] R. Chandra, S. Karanth, V. Navda, et al. DirCast: A Practical and Efficient Wi-Fi MulticastSystem[C]. Proc.of IEEE IEEE International Conference on Network Protocol (ICNP),Princeton, NJ,2009,161-170.
    [44] S. Sen, J. Xiong, R. Ghosh, et al. Link Layer Multicasting with Smart Antennas: No Client LeftBehind[C]. Proc.of IEEE International Conference on Network Protocol (ICNP), Orlando, Fl,2008,53-62.
    [45] Q. Du, X. Zhang. On Rate Adaptation for Video Multicast With Layered Coding OverMultirate Wireless Networks[C]. Proc. of Global Telecommunications Conference(GLOBECOM),2008,1-5.
    [46] S. P. Chuah, Z. Chen, T. Ye, et al. Throughput Adaptation for Scalable Video Multicast inWireless Networks[C]. Proc. of International Symposium on Circuits and Systems (ISCAS),2009,1453-1456.
    [47] Q. Du, X. Zhang. A Cross-Layer Framework for Multi-Layer-Video Multicast with QoSRequirements in Multirate Wireless Networks[J]. IEEE Communication Letters,2009,13(9):658-660.
    [48] J.Villalon, P.Cuenca, L.Orozco-Barbosa, et al. Cross-Layer Architecture for Adaptive VideoMulticast Streaming Over Multirate Wireless LANs[J]. IEEE Journal of Selected Area inCommunications,2007,25(4):699-711.
    [49] S. Yang, J. An, S. Pack. Multi-Stage Multicast in IEEE802.11Wireless Networks[C]. Proc. ofIEEE International Conference on Computer Communications (Infocom), San Diego,2010,1-2.
    [50]尹春雷,文光俊,冯正勇,刘洪盛.无线局域网视频流组播优化机制[J].计算机工程,2011,37(10):213-215.
    [51] R. Knopp, P. A. Humblet. Information capacity and power control in single-cell multiusercommunications[C]. Proc. of IEEE International Conference on Communications (ICC),1995,331–335.
    [52] A. Eryilmaz, R. Srikant, J. R. Perkins. Stable Scheduling Policies for Fading WirelessChannels[J]. IEEE/ACM Trans. Networking,2005,13(2):411-424.
    [53] A. L. Stolyar, K. Ramanan. Largest Weighted Delay First Scheduling: Large Deviations andOptimality[J]. The Annals of Applied Probability,2001,11(1):1-48.
    [54] S. Shakkottai, A. Stolyar. Scheduling for multiple flows sharing a time-varying channel: TheExponential Rule[J]. American Mathematical Society Translations,2002,207(2):35-47.
    [55] F. Ishizaki, G. U. Hwang. Queueing Delay Analysis for Packet Schedulers with/withoutMultiuser Diversity over a Fading Channel[J]. IEEE Transactions on Vehicular Technology,2007,56(5):3220-3227.
    [56] S. Shakkottai. Effective capacity and QoS for wireless scheduling[J]. IEEE Trans. Autom.Control,2008,53(3):749–761.
    [57] L. Ying, R. Srikant, A. Eryilmaz, et al. A Large Deviations Analysis of Scheduling in WirelessNetworks[J]. IEEE Transactions on Information Theory,2006,52(11):5088-5098.
    [58] V. J. Venkataramanan, X. Lin. On Wireless Scheduling Algorithms for Minimizing theQueue-Overflow Probability[J]. IEEE/ACM Trans. Networking,2010,18(4):788-801.
    [59] M. Gast.802.11Wireless Networks: The Definitive Guide[M]. London, O’Reilly,2002,200-252.
    [60] M. Ergen. IEEE802.11Tutorial [EB/OL]. http://esoumoy.free.fr/telecom/tutorial/ieee-tutorial.pdf, April,2003.
    [61] B. Bing. Broadband Wireless Access[M].2006,36-37.
    [62] B. Li, R. Battiti. Performance Analysis of an Enhanced IEEE802.11Distributed CoordinationFunction Supporting Service Differentiation[J]. Lecture Notes in Computer Science,2003,2811:152-161.
    [63] B. Li, R. Battiti. Achieving Maximum Throughput and Service Differentiation by Enhancingthe IEEE802.11MAC Protocol[J]. Lecture Notes in Computer Science,2004,2928:25-31.
    [64] B. Li, R. Battiti. Analysis of the IEEE802.11DCF with Service Differentiation Support inNon-saturation Conditions[J]. Lecture Notes in Computer Science,2004,3266:64-73.
    [65] J. Gross, A. Willig. Measurements of a Wireless Link in different RF-isolated Environments[C].Proc. of European Wireless,2002,9-14.
    [66] J. Kim, S. Kim, S. Choi, et al. CARA: Collision-Aware Rate Adaptation for IEEE802.11WLANs[R]. Humantech Paper Contest,2005.
    [67] Q. Pang, V. C. M. Leung, S. C. Liew. An Enhanced Autorate Algorithm for Wireless LocalArea Networks Employing Loss Differentiation[J]. IEEE Transactions on Vehicular Technology,2008,57(1):521-531.
    [68] J. Choi, J. Na, Y. Lim, et al. Collision-aware Design of Rate Adaptation for Multi-rate802.11WLANs[J]. IEEE Journal on Selected Areas in Communications,2008,26(8):1366-1375.
    [69] Open source Authors. ns-2network simulator[CP/OL]. http://www.isi.edu/nanam/ns/,2009.
    [70]蒋洪伟,陆鑫.一种估计WLAN竞争站点数的方法[J].计算机工程,2010,36(3):103-105.
    [71]张国鹏,邹向毅,赵力强,张海林.基于效用最大化的IEEE802.11DCF性能分析及改进[J].电子与信息学报,2008,30(12):3027-3030.
    [72] Q. Zhang, S. A. Kassam. Finite-State Markov Model for Rayleigh Fading Channels[J]. IEEETransactions on Communications,1999,47(11):1688-1692.
    [73] M. L. Puterman. Markov decision process discrete stochastic dynamic programming[M]. NewJersey: John Wiley&Sons, Inc Press,2005.
    [74]刘克.实用马尔可夫决策过程[M].北京:清华大学出版社,2004,74-78.
    [75] S. T. Chung, A. J. Goldsmith. Degrees of Freedom in Adaptive Modulation: A Unified View[J].IEEE Transactions on Communications,2001,49(9):1561-1571.
    [76] J. Choi, K. Park, C. Kim. Analysis of Cross-Layer Interaction in Multirate802.11WLANs[J].IEEE Transactions on Mobile Computing,2009,8(5):682-693.
    [77] H. Liu, Y. Zhao. Adaptive EDCA Algorithm Using Video Prediction for Multimedia IEEE802.11e WLAN[C]. Proc. of IEEE International Conference on Wireless and MobileCommunications,2006,10.
    [78] C. H. Lin, C. K. Shieh, C. H. Ke, et al. An adaptive cross-layer mapping algorithm forMPEG-4video transmission over IEEE802.11e WLAN[J]. Telecommunication System,2009,43:223-234.
    [79] E. Karimi. Priority Scheduling for Improving Video Delivery over Wireless Multimedia SensorNetworks[C]. Proc. of5th International Conference on Next Generation Mobile Applications,Services and Technologies (NGMAST),2011,111-116.
    [80] A. Ziviani, B. E. Wolfinger, J. F. de Rezende, et al. Joint adoption of QoS schemes for MPEGstreams[J]. Journal of Multimedia Tools and Applications,2005,26(1):59-80.
    [81] L. Cooper, M.W. Cooper,张有为(译).动态规划导论[M].北京:国防工业出版社,1985.
    [82] Cormen,T.H.等著,潘金贵等(译).算法导论[M].北京:机械工业出版社,2006.
    [83] R. Bellman. Dynamic Programming[M]. NJ: Princeton University Press,2003.
    [84] C. H. KE, C. K. SHIEH, W. S. HWANG, et al. An evaluation framework for more realisticsimulations of MPEG video transmission[J]. Journal of Information Science and Engineering,2008,24:425-440.
    [85] Arizona State University. H.264video trace file[EB/OL]. http://trace.eas.asu.edu/,2011.
    [86] D. Wu, R. Negi. Effective capacity: a wireless link model for support of quality of service[J].TEEE Transactions on Wireless Communications,2003,2(4):630-643.
    [87] C. S. Chang. Performance Guarantees in Communication Networks[M]. Longdon:Springer-Verlag,2000.
    [88]刘蓓,邱玲.时变信道下基于有效容量的OFDMA系统资源分配方案[J].电子与信息学报,2011,33(10):2312-2316.
    [89]严伟,朱晓荣,邵世祥.下行多业务OFDMA系统中基于有效容量的资源分配算法研究[J].电子与信息学报,2012,34(9):2236-2240.
    [90] A. Weiss. An Introduction to Large Deviations for Communication Networks[J]. IEEE Journalon Selected Areas in Communications,1995,13(6):938-952.
    [91] J. T. Lewis, R. Russell. An Introduction to Large Deviations for Teletraffic Engineers[R].Dublin, Dublin Institute for Advanced Studies, Oct.24,1996.
    [92] A. Dembo, O. Zeitouni. Large deviations techniques and applications[M]. Boston: Jones andBartlett,1992.
    [93] P. V. Mieghem. The asymptotic behavior of queueing system: Large deviations theory anddominant pole approximation[J]. Queueing Systems,1996,23:27-55.
    [94] A. Shwartz. Large Deviations for Performance Analysis[C]. The Lunteren Conference,1996,1-7.
    [95] C.-S. Chang. Stability, queue length, and delay of deterministic and stochastic queueingnetworks[J]. IEEE Transactions on Automatic Control,1994,39(5):913-931.
    [96] X. Zhang, J. Tang. Cross-Layer-Based modeling for quality of service guarantees in mobilewireless networks[J]. IEEE Communication Magazine,2006:100-106.
    [97] E. Kafetzakis, K. Kontovasilis, I Stavrakakis. A Novel Effective Capacity-Based Frameworkfor Providing Statistical QoS Guarantees in IEEE802.11WLANs[R]. Athens: Institute ofInformatics&Telecommunications, National Centre for Scientific Research,2010.
    [98] E. Kafetzakis. Effective Capacity Theory for Modeling Systems with Time-Varying Servers,with an Application to IEEE802.11WLANs[J]. Elsevier Performance Evaluation,2010.
    [99] Q. Du, X. Zhang. Effective Capacity of Superposition Coding Based Mobile Multicast inWireless Networks[C]. IEEE International Conference on Communications (ICC),2009,1-5.
    [100] C. S. Chang, J. A. Thomas. Effective Bandwidth in High-speed Digital Networks[J]. IEEEJournal on Selected Areas in Communications,1995,13(6):1091-1100.
    [101] J. G. Kim, M. M. Krunz. Bandwidth Allocation in Wireless Networks with GuaranteedPacket-Loss Performance[J]. IEEE/ACM transactions on Networking,2000,8(3):337-349.
    [102] A. W. Berger, W. Whitt. Extending the Effective Bandwidth Concept to Networks th PriorityClasses[J]. IEEE Communications Magazine,1998:78-83.
    [103] J. Pechiar, G. Perera, M. Simon. Effective bandwidth estimation and testing for Markovsources[J]. Elsevier Performance Evaluation,2002,48:157-175.
    [104] F. P. Kelly. Effective Bandwidths at Multi-class Queues[J]. Queueing Systems,1991,9(1-2):5-16.
    [105] P. A. Chou, Z. Miao. Rate-Distortion Optimized Streaming of Packetized Media[J]. IEEETransactions on Multimedia,2006,8(2):390-404.
    [106] F. Fu, M. van der Schaar. A New Systematic Framework for Autonomous Cross-LayerOptimization[J]. IEEE Transactions on Vehicular Technology,2008,12(4):1-17.
    [107] F. Li, G. Liu, L. He. Cross-layer scheduling for multiuser H.264video transmission overwireless networks[J]. IET Communications,2010,4(8):1012-1025.
    [108] S. Shankar N, M. van der Schaar. Performance Analysis of Video Transmission Over IEEE802.11a/e WLANs[J]. IEEE Transactions on Vehicular Technology,2007,56(4):2346-2362.
    [109] M. van der Schaar, D. S. Turaga, R. Wong, Classification-Based System For Cross-LayerOptimized Wireless Video Transmission[J]. IEEE Transactions on Multimedia,2006,8(5):1082-1095.
    [110] S. A. Kotsopoulos, G. S. Paschos, E. D. Vagenas. A Saturation Throughput analysis for802.11e MAC protocol incorporating the AIFS effect[J]. IEEE Latin America Transactions,2007,5(8):626-630.
    [111] D. Wu, Y. Zhao, M. Wang, et al. Medium access control access delay analysis of IEEE802.11e wireless LAN[J]. IET Communications,2009,3(6):1061-1070.
    [112] N. C. Taher, Y. G. Doudane, B. E. Hassan. A Complete and Accurate Analytical Model for802.11e EDCA under Saturation Conditions[C]. IEEE/ACS International Conference onComputer Systems and Applications (AICCSA),2009:800-807.
    [113] D. Xu, T. Sakurai, H. L. Vu. An Access Delay Model for IEEE802.11e EDCA [J]. IEEETransactions on Mobile Computing,2009,8(2):261-275.
    [114] I. Inan, F. Keceli, E. Ayanoglu. Analysis of the802.11e Enhanced Distributed Channel AccessFunction[J]. IEEE Transactions on Communications,2009,57(6):1753-1764.
    [115] S. Choi, N. Choi, Y. Seok, et al. Leader-based Rate Adaptive Multicasting for WirelessLANs[C]. Proc. of Global Telecommunications Conference (GLOBECOM),2007,3656-3660.
    [116] Z. Li, T. Herfet. HLBP: A Hybrid Leader Based Protocol for MAC Layer Multicast ErrorControl in Wireless LANs[C]. Proc. of Global Telecommunications Conference (GLOBECOM),2008,1-6.
    [117] Z. Li, T. Herfet. MAC Layer Multicast Error Control for IPTV in Wireless LANs[J]. IEEETransactions on Broadcasting,2009,55(2):353-362.
    [118] Y. J. Zhang, P. X. Zheng, S. C. Liew. How Does Multiple-Packet Reception Capability Scalethe Performance of Wireless Local Area Networks?[J]. IEEE Transactions on MobileComputing,2009,8(7):923-935.
    [119] T. Li, Q. Ni, D. Malong, et al. Aggregation With Fragment Retransmission for VeryHigh-Speed WLANs[J]. IEEE/ACM Transactions on Networking,2009,17(2):591-604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700