肾综合征出血热患者CD100表达的变化规律及其与疾病的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汉滩病毒(hantaan virus, HTNV)属于布尼亚病毒科(family Bunyaviridae),汉坦病毒属(genus Hantavirus),可引起人类严重致死性的肾综合征出血热(hemorrhagicfever with renal syndrome,HFRS)全球每年约有10万病例,其中90%以上发生在我国,死亡率达2%-10%。HFRS患者主要临床表现为发热、出血、血小板数量下降和急性肾功能损害,病情不一,可从亚症状一直到危及生命。典型HFRS分为发热期、低血压休克期、少尿期、多尿期和恢复期五个病期。尽管已知HTNV感染后免疫应答涉及免疫复合物的产生,补体活化,B细胞应答,T细胞应答以及HTNV诱导的细胞因子分泌,但无论是该病病理损伤机制还是杀伤性细胞(cytoxic T lymphocyte,CTL)介导的免疫保护作用均未完全搞清。
     CD100/Sema4D为Ⅳ型信号素家族成员,分子量150kD,是发现的首个免疫信号素,参与体液免疫应答和细胞免疫应答。CD100存在膜型(mCD100)和可溶型(sCD100)两种形式。mCD100在T细胞表面高表达,B细胞和APC上表达水平较低。细胞活化时可引起mCD100的脱落,产生sCD100。 sCD100具有生物学活性,可协同CD40诱导B细胞的增殖和Ig产生,调节APC细胞产生促炎因子。CD100的主要受体:高亲和力受体Plexin-B1主要表达于非淋巴样组织;低亲和力受体CD72主要表达于免疫系统。大量研究表明,CD100在生理性和病理性免疫应答中发挥重要作用。CD100-/-小鼠能存活,但T细胞致敏和B细胞应答存在缺陷;而CD100转基因小鼠适应性免疫应答水平明显升高。重要的是,CD100与某些临床疾病的发生发展有关。人热带痉挛性截瘫/HTLV-1相关脊髓病患者的脑脊液中可以检测到sCD100,提示CD100可能参与了中枢神经系统疾病的病理损伤。在系统性硬化症患者血清中能检测到sCD100,并且患者淋巴细胞mCD100表达异常,表明CD100在系统性硬化症的发生和/或维持中发挥作用。新近,有报道在HIV感染患者中,存在CD8~+CD100-亚群,该亚群功能降低,提示CD100的丢失可能在HIV感染后免疫功能异常中起重要作用。但是,在其它疾病中是否也存在CD100参与疾病病理损伤,或者淋巴细胞mCD100表达的异常还不清楚,有关CD100与急性传染病的关系也鲜有报道。
     鉴于CD100在免疫应答中的重要作用,本研究集中在以下两个方面展开研究:一是HTNV感染后是否存在着sCD100的释放,血浆sCD100水平和HFRS疾病病情有何关系;二是CTLmCD100的表达变化是否与CTL的亚群及其免疫功能有关。
     首先,我们收集了HFRS住院患者和正常人的PBMC和血浆。采用本文建立的sCD100酶联免疫吸附试验(ELISA)定量检测了不同病程和病情患者血浆sCD100水平,对血浆sCD100水平的动态变化以及与指示病情的实验室参数的相关性进行了分析。然后,我们检测了HFRS患者PBMC中CD4+T细胞、CD8~+T细胞和其它亚群mCD100表达水平的变化。首次发现并研究了一个新的CD8lowCD100-亚群的表型和功能,以及在病程中该亚群所占PBMC的比例与HTNV病毒载量及病情的相关性。
     根据病历资料和HFRS诊断标准,将99名HFRS患者划分为轻型(17例),中型(25例),重型(29例),危重型(28例)四组。HFRS患者发热/低血压休克期、少尿期、多尿期和恢复期血浆sCD100的中位数(四分位间距)分别为42.8(26.5-55)ng/ml,34.8(21.3-52.6) ng/ml、12.1(8.5-18.2) ng/ml和15.9(8.6-21.4) ng/ml。与正常人相比,患者急性期(包括发热期、低血压/休克期及少尿期)血浆sCD100水平明显升高(P<0.0001),恢复期(多尿期和恢复期)迅速下降,但仍然高于正常对照组。不同病情组患者血浆sCD100水平呈现出急性期高、恢复期低的相同趋势,但以重型/危重型变化更为明显。38例轻/中型患者急性期血浆sCD100水平>50ng/ml的有7例(18.4%),而61例重型/危重型患者sCD100水平值>50ng/ml的有26例(42.6%),是轻型/中型组的2.32倍。此外,我们用Western Blot方法检测了HFRS患者血浆中sCD100水平,发现无论是患者还是正常人,在还原条件下,血浆中sCD100的分子量为120kD。我们对HFRS早期(发热期或低血压期)血浆sCD100水平与指示HFRS严重程度的实验室参数相关性进行了分析,发现升高的血浆sCD100与血小板计数呈显著负相关(r=-0.50, P=0.0001),与白细胞计数(r=0.54, P <0.0001),血清肌酐(r=0.49, P=0.0001),尿素氮(r=0.56, P=0.0002)呈显著正相关。HFRS患者急性期PBMC中CD4+T细胞、CD8~+T细胞、B细胞、NK细胞和单核细胞膜型CD100表达水平有不同程度的下降。
     我们在HFRS患者急性期PBMC中发现了一个新的CD8lowCD100-T细胞亚群,平均占PBMC10.0%,至恢复期下降至2.6%,正常人中不存在这个亚群。该亚群高表达CD38、HLA-DR、Ki67、颗粒酶B及穿孔素,表面标志为CD45RA-CCR7+/-CD127int/highCD27intCD62L-,符合效应T细胞的特征。急性期HFRS患者PBMC中CD8lowCD100-亚群比例越高,血浆中病毒载量越低,呈显著负相关(p<0.0001),轻型组CD8lowCD100-亚群所占PBMC百分率高于中型、重型、危重型组(P<0.05)。在HTNV-NP特异性9肽混合肽的刺激下,CD8lowCD100-亚群产生大量TNF-及IFN-γ,而其他两群细胞(CD8highCD100+, CD8lowCD100+)仅产生少量TNF-及IFN-γ。提示CD8lowCD100-亚群主要可能是与清除病毒及免疫保护有关的效应T细胞亚群。随着HTNV的清除以及CD8~+T细胞数量降低到正常水平,CD8lowCD100-亚群细胞数量明显下降,至痊愈出院后消失。该群细胞在病程后期陡然下降可能是通过PD-1途径克隆收缩而引起,此动态变化可能反映了HFRS病毒(抗原)清除后免疫系统自身稳定的一个途径。
     总之,HFRS患者急性期血浆中升高的sCD100可能与病情相关,外周血中CD8lowCD100-亚群比例与血浆病毒载量和病情呈负相关。这些结果有助于我们加深认识病毒感染后病理损伤的机制、CD8~+T细胞介导的免疫保护作用,以及病毒清除后免疫自身稳定的途径。
Hantaan virus (HTNV), which belongs to the genus Hantavirus of the familyBunyaviridae, could cause a severe lethal hemorrhagic fever with renal syndrome (HFRS)in human. More than100,000cases of HFRS, over90%of which were documented inmainland of China, occurred annually worldwide with a mortality rate of2-10%. Peoplewith HFRS are clinically characterized by sudden fever, hemorrhage, thrombocytopenia,and acute renal failure, leading from an asymptomatic to a severe, life-threatening illness.Typically, the course of HFRS undergoes five sequential stages: febrile, hypotensive,oliguric, diuretic, and convalescent. Although the importance of immune responses afterHTNV infection has been widely recognized including immune complexes, complementactivation, B cell response, T cell response, and HTNV-induced cytokine production, notonly the pathogenesis of HFRS but also the protective immunity dediated by cytotoxic Tlymphocyte (CTL) during the cause of the diease are considerably far from beingcompletely understood.
     The150kDa transmembrane protein CD100/Sema4D belongs to group IV of thesemaphorin family, which is the first known semaphorin identified in the immune system,and is involved in several aspects of both humoral and cellular immunity. It exists in bothmembrane-bound and soluble forms. The membrane CD100is preferentially expressed onT cells and weakly on B cells and APC. Cellular activation can cause the release ofsCD100. sCD100is demonstrated to retain biological activities such as acting as acostimulator for CD40-induced B-cell proliferation and Ig production, affectingpro-inflammatory cytokines production by APCs. There are two types of receptors thatCD100used to bind: Plexin-B1mainly expressed in nonlymphoid tissues, and CD72inthe immune system. Accumulating evidence indicates that CD100plays a relevant role inphysiological and pathological immune responses. CD100-/-mice are viable, but showdefective T cell priming and B cell responses, whereas adaptive immune responses aresignificantly enhanced in CD100transgenic mice. Furthermore, CD100is believed to beinvolved in some clinical diseases. In the spinal cords of patients with human T-celllymphotropic virus type1-associated myelopathy, the presence of sCD100in the spinalcord suggested the potential pathological effect of sCD100in the central nervous system.In the systemic sclerosis patients, the frequently detectable levels of sCD100in sera andthe dysregulations of CD100expression on lymphocytes were observed, suggesting therole of sCD100in the systemic sclerosis development and/or maintenance. Recently,Eriksson et al investigated the consequence of HIV-1infection on CD100expression by Tcells, and observed a subset of CD8~+T cell lacking of membrane CD100with decreasedfunctional capacity, which suggested that loss of CD100expression would probably playan important role in dysfunctional immunity in HIV-1infection. However, there is stilllimited information on the functional role of CD100in infectious disease. Whether thispathogenetic role of CD100or involvement of CD100expression in CTL subset andfunction could extend to other acute infectious diseases mediated by immune responses isalso unclear.
     Since the important role of CD100in immune response, we focused on two aspects:whether sCD100release after HTNV infection exist and changed level of plasma sCD100 correlate with the outcome of HFRS, and whether the changes of mCD100expression onCTL are related to CTL subsets and function.
     Plasma and peripheral blood mononuclear cell (PBMC) samples from a large cohortof HFRS patients and health controls were collected. First, the plasma sCD100levels indifferent disease stages or severities of HFRS patients were quantified by enzyme-linkedimmunosorbent assay (ELISA) which has been established successfully in this study. Thecorrelations between sCD100and disease course, disease severity-indicating parameterswere also analyzed. Second, the changes of mCD100on CD4+T cells, CD8~+T cells andother population in PBMC were investigated by multi-color staining and flow cytometry(FCM) analysis. Particularly, we payed more attention on a novel CD8lowCD100-subsetand detected its phenotype, function as well as the relationship between the distribution ofCD8lowCD100-subset in PBMC and plasma HTNV RNA load or disease severity duringthe course of HFRS.
     According to the clinical records and diagnostic criteria,17,25,29, and28patientswere diagnosed as mild, moderate, severe, and critical HFRS, respectively. The median(IQR) of sCD100for febrile/hypotensive, oliguric, diuretic and convalescent stage was42.8(26.5-55),34.8(21.3-52.6),12.1(8.5-18.2), and15.9(8.6-21.4) ng/ml, respectively.The elevated plasma sCD100level of HFRS patients was observed in acute phase(including febrile, hypotensive, or oliguric stage) when compared with healthy controlsand decreased, but still higher than that of healthy controls in convalescent phase(including diuretic or convalescent stage). Patients with different disease severity showedthe same tendency of the plasma sCD100change, but more dramatic decline in patients ofsevere/critical group. When plasma sCD100concentrations in mild/moderate group werecompared with those in severe/critical group, only7cases whose plasma sCD100levelswere over50ng/ml measured among38cases of mild/moderate group (18.4%), while26cases whose plasma sCD100levels were over50ng/ml in61cases of severe/critical groupcould be detected (42.6%,2.32fold high vs. mild/moderate group). In addition, wedetected the plasma sCD100by Western Blot, which showed that the sCD100level washigher in acute phase than in convalescent phase apparently. The molecular weight of the sCD100in plasma from both patients and normal controls is120kDa in the reducedcondition which is consistent with the size of extracellular region of CD100. Furthermore,the relationships between plasma sCD100levels at febrile or hypotensive stages (the timeof admission generally about3-7days after the onset of disease) and four clinicalparameters that could represent the severity of the disease were analyzed. The resultrevealed a significant negative correlation between plasma sCD100levels and the plateletcount (r=-0.50, P=0.0001) and significant positive correlations between plasma sCD100levels and the white blood cell count (r=0.54, P <0.0001), or the level of serumcreatinine (r=0.49, P=0.0001), or the level of blood urea nitrogen (r=0.56, P=0.0002).The membrane CD100on PBMCs was also investigated. We found the expressionof membrane CD100on PBMCs including CD4+T cells, CD8~+T cells, B cells, naturalkiller cells and monocytes all decreased to different extents in the acute phase of HFRScompared with that of the normal controls and recovered in the convalescent phase.
     For the first time, we revealed a novel functional subpopulation in CD8~+T cells inHFRS patients characterized by the phenotype of CD8lowCD100-. The average distributionof CD8lowCD100-subpopulation in PBMC was10%in acute phase and2.6%inconvalescent phase, whereas this subset did not exist in health controls. Furthermulti-color staining and flow cytomety analysis demonstrated that CD8lowCD100-subsetexpressed higher level of CD38+HLA-DR+Ki-67+than the other two subsets did, highlyexpressed cytolytic effector molecules including perforin and granzyme B, displayed thephenotype CD45RA-CD127int/highCD27lowCD62L-, which were consistent with the majorfeature of effector CD8~+T cells. This observation was supported by the investigations ofthe relationship between the distribution of CD8lowCD100-subset in PBMC and plasmahantaan virus load of HFRS patients, and by cytokine production of different CD8~+T cellsubsets when stimulated by specific HTNV-NP derived9mer peptide pool. Thepercentage of CD8lowCD100-subset in PBMC was negatively correlated with plasmaHTNV virus load (P<0.0001) in acute phase of HFRS. In addition, the percentage ofCD8lowCD100-subset in PBMC of mild group was higher than that of moderate, severe orcritical gruops (P<0.05). TNF-and IFN-γ are key effector cytokines for effector CD8~+ cells. In vitro CD8lowCD100-subset produce little TNF-and IFN-γ without thestimulation. However, when stimulated by the HTNV-NP9mer peptide pool, theCD8lowCD100-cells produced a large amount of TNF-and IFN-γ identified byintracellular cytokine staining and FCM, whereas other two subsets of CD8~+T cells(CD8highCD100+and CD8lowCD100+) produced small amount of TNF-and IFN-γ. Withthe clearance of HTNV virus and the number of CTL returned to normal level, and thenumber of CD8lowCD100-T cells decreased dramatically. This kinetic change ofCD8lowCD100-T cells may be due to clonal contraction of effecter T cells via PD-1pathway and reflects the homeostasis pathway of immune system after virus infection.
     In summary, the elevated sCD100in plasma seemed to be a characteristic in HFRSpatients especially in the acute phase of the disease indicating a possible associationbetween increased release of sCD100and different disease severity in HFRS. Forthermore,a novel functional CD8lowCD100-subset in PBMC from HFRS patients was negativelycorrelated with plasma HTNV virus load and severity of the disease severity. These resultsare useful for understanding the pathogenesis and CD8~+T cell mediated immunity as wellas immune homeostasis after HTNV infetion in human.
引文
1. Lee, H.W., P.W. Lee, and K.M. Johnson, Isolation of the etiologic agent of KoreanHemorrhagic fever. J Infect Dis,1978.137(3): p.298-308.
    2. Bjorkstrom, N.K., et al., Rapid expansion and long-term persistence of elevated NK cellnumbers in humans infected with hantavirus. J Exp Med,2011.208(1): p.13-21.
    3. Raftery, M.J., et al., Hantavirus infection of dendritic cells. J Virol,2002.76(21): p.10724-33.
    4. Tamura, M., et al., Effects of human and murine interferons against hemorrhagic fever withrenal syndrome (HFRS) virus (Hantaan virus). Antiviral Res,1987.8(4): p.171-8.
    5. Stoltz, M., et al., Lambda interferon (IFN-lambda) in serum is decreased inhantavirus-infected patients, and in vitro-established infection is insensitive to treatment withall IFNs and inhibits IFN-gamma-induced nitric oxide production. J Virol,2007.81(16): p.8685-91.
    6. Kraus, A.A., et al., Differential antiviral response of endothelial cells after infection withpathogenic and nonpathogenic hantaviruses. J Virol,2004.78(12): p.6143-50.
    7. Frese, M., et al., Inhibition of bunyaviruses, phleboviruses, and hantaviruses by human MxAprotein. J Virol,1996.70(2): p.915-23.
    8. Kanerva, M., et al., Inhibition of puumala and tula hantaviruses in Vero cells by MxA protein.Virology,1996.224(1): p.55-62.
    9. Randall, R.E. and S. Goodbourn, Interferons and viruses: an interplay between induction,signalling, antiviral responses and virus countermeasures. J Gen Virol,2008.89(Pt1): p.1-47.
    10. Linderholm, M., et al., Elevated plasma levels of tumor necrosis factor (TNF)-alpha, solubleTNF receptors, interleukin (IL)-6, and IL-10in patients with hemorrhagic fever with renalsyndrome. J Infect Dis,1996.173(1): p.38-43.
    11. Outinen, T.K., et al., The severity of Puumala hantavirus induced nephropathia epidemica canbe better evaluated using plasma interleukin-6than C-reactive protein determinations. BMCInfect Dis,2010.10: p.132.
    12. Khaiboullina, S.F., et al., Effects of tumor necrosis factor alpha on sin nombre virus infectionin vitro. J Virol,2000.74(24): p.11966-71.
    13. Temonen, M., et al., Cytokines, adhesion molecules, and cellular infiltration in nephropathiaepidemica kidneys: an immunohistochemical study. Clin Immunol Immunopathol,1996.78(1):p.47-55.
    14. Sundstrom, J.B., et al., Hantavirus infection induces the expression of RANTES and IP-10without causing increased permeability in human lung microvascular endothelial cells. J Virol,2001.75(13): p.6070-85.
    15. Liang, M., et al., Generation of an HFRS patient-derived neutralizing recombinant antibody toHantaan virus G1protein and definition of the neutralizing domain. J Med Virol,2003.69(1):p.99-107.
    16. Xu, Z., et al., The in vitro and in vivo protective activity of monoclonal antibodies directedagainst Hantaan virus: potential application for immunotherapy and passive immunization.Biochem Biophys Res Commun,2002.298(4): p.552-8.
    17. Koch, J., et al., Human recombinant neutralizing antibodies against hantaan virus G2protein.Virology,2003.308(1): p.64-73.
    18. Nakamura, T., et al., Immune spleen cell-mediated protection against fatal Hantaan virusinfection in infant mice. J Infect Dis,1985.151(4): p.691-7.
    19. Araki, K., et al., Hantavirus-specific CD8(+)-T-cell responses in newborn mice persistentlyinfected with Hantaan virus. J Virol,2003.77(15): p.8408-17.
    20. Manigold, T., et al., Case report: T-cell responses during clearance of Andes virus from bloodcells2months after severe hantavirus cardiopulmonary syndrome. J Med Virol,2008.80(11):p.1947-51.
    21. Manigold, T., et al., Highly differentiated, resting gn-specific memory CD8+T cells persistyears after infection by andes hantavirus. PLoS Pathog,2010.6(2): p. e1000779.
    22. Huang, C., et al., Hemorrhagic fever with renal syndrome: relationship between pathogenesisand cellular immunity. J Infect Dis,1994.169(4): p.868-70.
    23. Liu, J.M., et al., Dynamic changes of apoptosis-inducing ligands and Th1/Th2likesubpopulations in Hantaan virus-induced hemorrhagic fever with renal syndrome. ClinImmunol,2006.119(3): p.245-51.
    24. Wang, M., et al., Cellular immune response to Hantaan virus nucleocapsid protein in the acutephase of hemorrhagic fever with renal syndrome: correlation with disease severity. J Infect Dis,2009.199(2): p.188-95.
    25. Ma, Y., et al., HLA-A2and B35Restricted Hantaan Virus Nucleoprotein CD8(+) T-CellEpitope-Specific Immune Response Correlates with Milder Disease in Hemorrhagic Feverwith Renal Syndrome. PLoS Negl Trop Dis,2013.7(2): p. e2076.
    26. Wang, M., et al., Identification of three novel CTL epitopes within nucleocapsid protein ofHantaan virus. Viral Immunol,2011.24(6): p.449-54.
    27. Celli, S., F. Lemaitre, and P. Bousso, Real-time manipulation of T cell-dendritic cellinteractions in vivo reveals the importance of prolonged contacts for CD4+T cell activation.Immunity,2007.27(4): p.625-34.
    28. Pozzi, L.A., J.W. Maciaszek, and K.L. Rock, Both dendritic cells and macrophages canstimulate naive CD8T cells in vivo to proliferate, develop effector function, and differentiateinto memory cells. J Immunol,2005.175(4): p.2071-81.
    29. Thompson, L.J., et al., Innate inflammatory signals induced by various pathogens differentiallydictate the IFN-I dependence of CD8T cells for clonal expansion and memory formation. JImmunol,2006.177(3): p.1746-54.
    30. Mescher, M.F., et al., Signals required for programming effector and memory development byCD8+T cells. Immunol Rev,2006.211: p.81-92.
    31. Xiao, Z., et al., Programming for CD8T cell memory development requires IL-12or type I IFN.J Immunol,2009.182(5): p.2786-94.
    32. Knickelbein, J.E., et al., Noncytotoxic lytic granule-mediated CD8+T cell inhibition of HSV-1reactivation from neuronal latency. Science,2008.322(5899): p.268-71.
    33. Reinhardt, R.L., et al., Visualizing the generation of memory CD4T cells in the whole body.Nature,2001.410(6824): p.101-5.
    34. Masopust, D., et al., Preferential localization of effector memory cells in nonlymphoid tissue.Science,2001.291(5512): p.2413-7.
    35. Green, D.R., Fas Bim boom! Immunity,2008.28(2): p.141-3.
    36. Hutcheson, J., et al., Combined deficiency of proapoptotic regulators Bim and Fas results inthe early onset of systemic autoimmunity. Immunity,2008.28(2): p.206-17.
    37. Hughes, P.D., et al., Apoptosis regulators Fas and Bim cooperate in shutdown of chronicimmune responses and prevention of autoimmunity. Immunity,2008.28(2): p.197-205.
    38. Weant, A.E., et al., Apoptosis regulators Bim and Fas function concurrently to controlautoimmunity and CD8+T cell contraction. Immunity,2008.28(2): p.218-30.
    39. Wojciechowski, S., et al., Bim/Bcl-2balance is critical for maintaining naive and memory Tcell homeostasis. J Exp Med,2007.204(7): p.1665-75.
    40. Wojciechowski, S., et al., Bim mediates apoptosis of CD127(lo) effector T cells and limits Tcell memory. Eur J Immunol,2006.36(7): p.1694-706.
    41. Hildeman, D.A., et al., Activated T cell death in vivo mediated by proapoptotic bcl-2familymember bim. Immunity,2002.16(6): p.759-67.
    42. Murali-Krishna, K., et al., Persistence of memory CD8T cells in MHC class I-deficient mice.Science,1999.286(5443): p.1377-81.
    43. Leignadier, J., et al., Memory T-lymphocyte survival does not require T-cell receptor expression.Proc Natl Acad Sci U S A,2008.105(51): p.20440-5.
    44. Schluns, K.S., et al., Cutting edge: requirement for IL-15in the generation of primary andmemory antigen-specific CD8T cells. J Immunol,2002.168(10): p.4827-31.
    45. Becker, T.C., et al., Interleukin15is required for proliferative renewal of virus-specificmemory CD8T cells. J Exp Med,2002.195(12): p.1541-8.
    46. Schluns, K.S., et al., Interleukin-7mediates the homeostasis of naive and memory CD8T cellsin vivo. Nat Immunol,2000.1(5): p.426-32.
    47. Klonowski, K.D., et al., Cutting edge: IL-7-independent regulation of IL-7receptor alphaexpression and memory CD8T cell development. J Immunol,2006.177(7): p.4247-51.
    48. Schluns, K.S. and L. Lefrancois, Cytokine control of memory T-cell development and survival.Nat Rev Immunol,2003.3(4): p.269-79.
    49. Whitmire, J.K., B. Eam, and J.L. Whitton, Tentative T cells: memory cells are quick to respond,but slow to divide. PLoS Pathog,2008.4(4): p. e1000041.
    50. Tanchot, C., et al., Modifications of CD8+T cell function during in vivo memory or toleranceinduction. Immunity,1998.8(5): p.581-90.
    51. Veiga-Fernandes, H., et al., Response of naive and memory CD8+T cells to antigenstimulation in vivo. Nat Immunol,2000.1(1): p.47-53.
    52. Veiga-Fernandes, H. and B. Rocha, High expression of active CDK6in the cytoplasm of CD8memory cells favors rapid division. Nat Immunol,2004.5(1): p.31-7.
    53. Chandok, M.R. and D.L. Farber, Signaling control of memory T cell generation and function.Semin Immunol,2004.16(5): p.285-93.
    54. Guarda, G., et al., L-selectin-negative CCR7-effector and memory CD8+T cells enter reactivelymph nodes and kill dendritic cells. Nat Immunol,2007.8(7): p.743-52.
    55. Hikono, H., et al., Activation phenotype, rather than central-or effector-memory phenotype,predicts the recall efficacy of memory CD8+T cells. J Exp Med,2007.204(7): p.1625-36.
    56. Unsoeld, H. and H. Pircher, Complex memory T-cell phenotypes revealed by coexpression ofCD62L and CCR7. J Virol,2005.79(7): p.4510-3.
    57. Chang, J.T., et al., Asymmetric T lymphocyte division in the initiation of adaptive immuneresponses. Science,2007.315(5819): p.1687-91.
    58. Harrington, L.E., et al., Memory CD4T cells emerge from effector T-cell progenitors. Nature,2008.452(7185): p.356-60.
    59. Bannard, O., M. Kraman, and D.T. Fearon, Secondary replicative function of CD8+T cellsthat had developed an effector phenotype. Science,2009.323(5913): p.505-9.
    60. Obar, J.J. and L. Lefrancois, Memory CD8+T cell differentiation. Ann N Y Acad Sci,2010.1183: p.251-66.
    61. Russ, B.E., et al., Defining the molecular blueprint that drives CD8(+) T cell differentiation inresponse to infection. Front Immunol,2012.3: p.371.
    62. Intlekofer, A.M., et al., Requirement for T-bet in the aberrant differentiation of unhelpedmemory CD8+T cells. J Exp Med,2007.204(9): p.2015-21.
    63. Cruz-Guilloty, F., et al., Runx3and T-box proteins cooperate to establish the transcriptionalprogram of effector CTLs. J Exp Med,2009.206(1): p.51-9.
    64. Pearce, E.L., et al., Control of effector CD8+T cell function by the transcription factorEomesodermin. Science,2003.302(5647): p.1041-3.
    65. Rao, R.R., et al., Transcription factor Foxo1represses T-bet-mediated effector functions andpromotes memory CD8(+) T cell differentiation. Immunity,2012.36(3): p.374-87.
    66. Cannarile, M.A., et al., Transcriptional regulator Id2mediates CD8+T cell immunity. NatImmunol,2006.7(12): p.1317-25.
    67. Yang, C.Y., et al., The transcriptional regulators Id2and Id3control the formation of distinctmemory CD8+T cell subsets. Nat Immunol,2011.12(12): p.1221-9.
    68. Riou, C., et al., Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylationand drives the survival of CD4+central memory T cells. J Exp Med,2007.204(1): p.79-91.
    69. Miyazaki, T., et al., Three distinct IL-2signaling pathways mediated by bcl-2, c-myc, and lckcooperate in hematopoietic cell proliferation. Cell,1995.81(2): p.223-31.
    70. Bougeret, C., et al., Increased surface expression of a newly identified150-kDa dimer earlyafter human T lymphocyte activation. J Immunol,1992.148(2): p.318-23.
    71. Hall, K.T., et al., Human CD100, a novel leukocyte semaphorin that promotes B-cellaggregation and differentiation. Proc Natl Acad Sci U S A,1996.93(21): p.11780-5.
    72. Kumanogoh, A. and H. Kikutani, Semaphorins and their receptors: novel features of neuralguidance molecules. Proc Jpn Acad Ser B Phys Biol Sci,2010.86(6): p.611-20.
    73. Elhabazi, A., et al., The human semaphorin-like leukocyte cell surface molecule CD100associates with a serine kinase activity. J Biol Chem,1997.272(38): p.23515-20.
    74. Delaire, S., et al., CD100is a leukocyte semaphorin. Cell Mol Life Sci,1998.54(11): p.1265-76.
    75. Brass, L.F., L. Zhu, and T.J. Stalker, Novel therapeutic targets at the platelet vascular interface.Arterioscler Thromb Vasc Biol,2008.28(3): p. s43-50.
    76. Wannemacher, K.M., et al., The role of semaphorins and their receptors in platelets: Lessonslearned from neuronal and immune synapses. Platelets,2011.22(6): p.461-5.
    77. Basile, J.R., et al., MT1-MMP controls tumor-induced angiogenesis through the release ofsemaphorin4D. J Biol Chem,2007.282(9): p.6899-905.
    78. Neufeld, G. and O. Kessler, The semaphorins: versatile regulators of tumour progression andtumour angiogenesis. Nat Rev Cancer,2008.8(8): p.632-45.
    79. Lai, A.Z., J.V. Abella, and M. Park, Crosstalk in Met receptor oncogenesis. Trends Cell Biol,2009.19(10): p.542-51.
    80. Maestrini, E., et al., A family of transmembrane proteins with homology to the MET-hepatocytegrowth factor receptor. Proc Natl Acad Sci U S A,1996.93(2): p.674-8.
    81. Tamagnone, L., et al., Plexins are a large family of receptors for transmembrane, secreted, andGPI-anchored semaphorins in vertebrates. Cell,1999.99(1): p.71-80.
    82. Janssen, B.J., et al., Structural basis of semaphorin-plexin signalling. Nature,2010.467(7319):p.1118-22.
    83. Kruger, R.P., J. Aurandt, and K.L. Guan, Semaphorins command cells to move. Nat Rev MolCell Biol,2005.6(10): p.789-800.
    84. Witherden, D.A., et al., The CD100Receptor Interacts with Its Plexin B2Ligand to RegulateEpidermal gammadelta T Cell Function. Immunity,2012.37(2): p.314-25.
    85. Kumanogoh, A., et al., Identification of CD72as a lymphocyte receptor for the class IVsemaphorin CD100: a novel mechanism for regulating B cell signaling. Immunity,2000.13(5):p.621-31.
    86. Suzuki, K., A. Kumanogoh, and H. Kikutani, Semaphorins and their receptors in immune cellinteractions. Nat Immunol,2008.9(1): p.17-23.
    87. Kumanogoh, A., et al., Requirement for the lymphocyte semaphorin, CD100, in the inductionof antigen-specific T cells and the maturation of dendritic cells. J Immunol,2002.169(3): p.1175-81.
    88. Ishida, I., et al., Involvement of CD100, a lymphocyte semaphorin, in the activation of thehuman immune system via CD72: implications for the regulation of immune and inflammatoryresponses. Int Immunol,2003.15(8): p.1027-34.
    89. Mizrahi, S., et al., CD100on NK cells enhance IFNgamma secretion and killing of target cellsexpressing CD72. PLoS One,2007.2(9): p. e818.
    90. Hirschberg, A., et al., Gene deletion mutants reveal a role for semaphorin receptors of theplexin-B family in mechanisms underlying corticogenesis. Mol Cell Biol,2010.30(3): p.764-80.
    91. Okuno, T., et al., Roles of Sema4D-plexin-B1interactions in the central nervous system forpathogenesis of experimental autoimmune encephalomyelitis. J Immunol,2010.184(3): p.1499-506.
    92. Zhu, L., et al., Regulated surface expression and shedding support a dual role for semaphorin4D in platelet responses to vascular injury. Proc Natl Acad Sci U S A,2007.104(5): p.1621-6.
    93. Basile, J.R., et al., Class IV semaphorins promote angiogenesis by stimulating Rho-initiatedpathways through plexin-B. Cancer Res,2004.64(15): p.5212-24.
    94. Yang, Y.H., et al., Plexin-B1activates NF-kappaB and IL-8to promote a pro-angiogenicresponse in endothelial cells. PLoS One,2011.6(10): p. e25826.
    95. Conrotto, P., et al., Sema4D induces angiogenesis through Met recruitment by Plexin B1.Blood,2005.105(11): p.4321-9.
    96. Beck, A., T. Wurch, and J.M. Reichert,6th Annual European Antibody Congress2010:November29-December1,2010, Geneva, Switzerland. MAbs,2011.3(2): p.111-32.
    97. Besliu, A., et al., Peripheral blood lymphocytes analysis detects CD100/SEMA4D alteration insystemic sclerosis patients. Autoimmunity,2011.44(5): p.427-36.
    98. Okuno, T., Y. Nakatsuji, and A. Kumanogoh, The role of immune semaphorins in multiplesclerosis. FEBS Lett,2011.585(23): p.3829-35.
    99. Giraudon, P., et al., Semaphorin CD100from activated T lymphocytes induces processextension collapse in oligodendrocytes and death of immature neural cells. J Immunol,2004.172(2): p.1246-55.
    100. Wang, X., et al., Functional soluble CD100/Sema4D released from activated lymphocytes:possible role in normal and pathologic immune responses. Blood,2001.97(11): p.3498-504.
    101. Ch'ng, E.S. and A. Kumanogoh, Roles of Sema4D and Plexin-B1in tumor progression. MolCancer,2010.9: p.251.
    102. Ch'ng, E., et al., Prognostic significance of CD100expression in soft tissue sarcoma. Cancer,2007.110(1): p.164-72.
    103. Deaglio, S., et al., CD38and CD100lead a network of surface receptors relaying positivesignals for B-CLL growth and survival. Blood,2005.105(8): p.3042-50.
    104. Sierra, J.R., et al., Tumor angiogenesis and progression are enhanced by Sema4D produced bytumor-associated macrophages. J Exp Med,2008.205(7): p.1673-85.
    105. Li, M., et al., CD100enhances dendritic cell and CD4+cell activation leading to pathogenetichumoral responses and immune complex glomerulonephritis. J Immunol,2006.177(5): p.3406-12.
    106. Smith, E.P., et al., Expression of neuroimmune semaphorins4A and4D and their receptors inthe lung is enhanced by allergen and vascular endothelial growth factor. BMC Immunol,2011.12: p.30.
    107. Duran-Struuck, R., et al., A novel role for the semaphorin Sema4D in the induction ofallo-responses. Biol Blood Marrow Transplant,2007.13(11): p.1294-1303.
    108. Zhu, L., et al., Disruption of SEMA4D ameliorates platelet hypersensitivity in dyslipidemiaand confers protection against the development of atherosclerosis. Arterioscler Thromb VascBiol,2009.29(7): p.1039-45.
    109. Negishi-Koga, T., et al., Suppression of bone formation by osteoclastic expression ofsemaphorin4D. Nat Med,2011.17(11): p.1473-80.
    110. Dacquin, R., et al., Control of bone resorption by semaphorin4D is dependent on ovarianfunction. PLoS One,2011.6(10): p. e26627.
    111. Bonneville, M., Semaphorins: New Cues for Skin Healing by gammadelta T Cells. Immunity,2012.37(2): p.194-6.
    112. Eriksson, E.M., et al., Expansion of CD8+T cells lacking Sema4D/CD100during HIV-1infection identifies a subset of T cells with decreased functional capacity. Blood,2012.119(3):p.745-55.
    113. Butler, G.S., et al., Membrane protease degradomics: proteomic identification andquantification of cell surface protease substrates. Methods Mol Biol,2009.528: p.159-76.
    114. Delaire, S., et al., Biological activity of soluble CD100. II. Soluble CD100, similarly toH-SemaIII, inhibits immune cell migration. J Immunol,2001.166(7): p.4348-54.
    115. Watanabe, C., et al., Enhanced immune responses in transgenic mice expressing a truncatedform of the lymphocyte semaphorin CD100. J Immunol,2001.167(8): p.4321-8.
    116. Shi, W., et al., The class IV semaphorin CD100plays nonredundant roles in the immune system:defective B and T cell activation in CD100-deficient mice. Immunity,2000.13(5): p.633-42.
    117. Zhu, L., et al.,[Expression of Sema4D in patients with cerebral infarction and its clinicalsignificance]. Zhonghua Xue Ye Xue Za Zhi,2012.33(9): p.729-32.
    118. Elhabazi, A., et al., Biological activity of soluble CD100. I. The extracellular region of CD100is released from the surface of T lymphocytes by regulated proteolysis. J Immunol,2001.166(7): p.4341-7.
    119. Li, M., et al., Endogenous CD100promotes glomerular injury and macrophage recruitment inexperimental crescentic glomerulonephritis. Immunology,2009.128(1): p.114-22.
    120. Mackow, E.R. and I.N. Gavrilovskaya, Hantavirus regulation of endothelial cell functions.Thromb Haemost,2009.102(6): p.1030-41.
    121. Yi, J., et al., Hantaan Virus RNA Load in Patients Having Hemorrhagic Fever With RenalSyndrome: Correlation With Disease Severity. J Infect Dis,2012.
    122. Evander, M., et al., Puumala hantavirus viremia diagnosed by real-time reverse transcriptasePCR using samples from patients with hemorrhagic fever and renal syndrome. J ClinMicrobiol,2007.45(8): p.2491-7.
    123. Schonrich, G., et al., Hantavirus-induced immunity in rodent reservoirs and humans. ImmunolRev,2008.225: p.163-89.
    124. Nakamura, T., et al., Differential susceptibility and resistance of immunocompetent andimmunodeficient mice to fatal Hantaan virus infection. Arch Virol,1985.86(1-2): p.109-20.
    125. Asada, H., et al., Cell-mediated immunity to virus causing haemorrhagic fever with renalsyndrome: generation of cytotoxic T lymphocytes. J Gen Virol,1988.69(Pt9): p.2179-88.
    126. Van Epps, H.L., et al., Long-lived memory T lymphocyte responses after hantavirus infection. JExp Med,2002.196(5): p.579-88.
    127. Trautmann, A., et al., Human CD8T cells of the peripheral blood contain a low CD8expressing cytotoxic/effector subpopulation. Immunology,2003.108(3): p.305-12.
    128. Kienzle, N., A. Baz, and A. Kelso, Profiling the CD8low phenotype, an alternative careerchoice for CD8T cells during primary differentiation. Immunol Cell Biol,2004.82(1): p.75-83.
    129. Xiao, Z., M.F. Mescher, and S.C. Jameson, Detuning CD8T cells: down-regulation of CD8expression, tetramer binding, and response during CTL activation. J Exp Med,2007.204(11):p.2667-77.
    130.白雪帆,徐志凯.肾综合征出血热.北京:人民卫生出版社,2013,87.
    131.刘昀,吴长有.记忆性T细胞的形成、维持和功能.生命科学,2010,22(6):506-514.
    132.朱琳,潘学谊,关则兵,郭煜,李铭杰,曾文彬,黄方.脑梗死患者外周血淋巴细胞、血小板表面Sema4D表达和血浆可溶性Sema4D水平及其临床意义.中华血液学杂志,2012,33(9):729-732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700