基于N-k故障的电力系统运行风险及脆弱性评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联电网的发展和智能电网的兴起,现代电网在结构上变得愈发复杂错综。在这一背景下,近年来世界范围内大停电事件频繁发生,给社会造成了巨大的经济损失。而N-k故障作为大停电事故最关键的一个环节,对其给电网带来的影响进行全面评估具有十分重要的意义。鉴于此,本文针对电网N-k故障的风险及脆弱性评估等安全问题展开一系列的研究,主要工作归纳如下。
     为了解决传统可靠性方法评估N-k故障时没有充分考虑电网运行工况不确定性的问题,建立了适用于N-k故障分析的元件可靠性模型。模型包括两大部分:一个是作为一次设备的输电线路停运模型,在计及多种停运因素影响的条件下,采用运行可靠性理论求解线路的停运概率;另一个是作为二次设备的隐性故障模型,充分考虑保护动作的逻辑关系,采用马尔科夫方法求解不同保护配置方案下的保护可靠性指标,在此基础上根据继电保护系统的构成和隐性故障的分类,提出隐性故障概率模型。所建模型实现了一次和二次设备模型的有机结合,从而为后续N-k故障的系统级分析奠定了理论基础。
     针对传统的静态安全评估方法的不足之处,提出了一种基于N-k故障的输电系统运行风险评估算法。该算法根据电网的实时运行状况确定N-k故障的搜索流程,以保证搜索出来的故障路径合理有效;在分析保护隐性故障后果的基础上,根据运行风险理论,提出市场条件下输电系统的N-k故障运行风险评估方法及相关指标,从而将安全性和经济性较好地结合起来。算例分析表明,应用运行可靠性和运行风险的理论去评估N-k故障风险,能够如实表征电网的实际状况,具有一定的实用性。
     为了研究大规模风电接入对电网大停电的影响,建立了风电场接入条件下的N-k故障风险评估模型。首先建立了基于风速预测的风电机组可靠性模型,将风电场的出力变化作为N-k故障的一个影响因素,模拟N-k故障的物理过程;从过负荷、低电压和失负荷的角度出发,基于效用理论建立N-k故障风险评估模型。以RTS79测试系统为例,详细分析了风电渗透率、风电并网方案以及风电随机性对N-k故障风险指标的影响,研究结果可为风电接入条件下的电网规划运行及防御大停电提供科学的理论参考。
     针对运行风险指标只是一种相对性指标的问题,提出电力系统N-k故障的预警分级算法。该算法首先应用模糊C均值聚类及其修正方法对N-k故障概率进行分级,然后构建反映电网静态安全水平的故障严重度指标及其隶属函数集,通过模糊推理对综合严重度进行分级,并应用变异系数客观赋权的方法对严重度的模糊评判进行修正,最后将概率和严重度综合,根据模糊综合评判向量确定N-k故障风险预警的等级。算例结果表明,所建预警模型能通过模拟N-k故障对故障后电网运行状态的好坏作出有效的判断,从而为有关大停电安全预警方面的研究提供了有益的参考。
     为研究大停电与电网脆弱性之间的关系,提出了基于N-k故障的电网脆弱性评估算法。该算法从静态安全角度出发建立N-k故障风险指标体系,应用层次分析法和熵权法得出N-k故障的总风险指标;将风险脆弱度与结构脆弱度结合,提出一种新的脆弱性指标用以量化分析针对N-k故障的电网脆弱性。将该方法应用在国内某一地区电网,指出其中的脆弱线路和节点。仿真分析表明:与单一考虑风险的脆弱度评估方法相比,考虑了结构重要度的风险脆弱性评估的准确度更高,评估结果对电网监控亦更有意义。
With the development of interconnected grid and the rise of smart grid, the structure of the modern grid has become increasingly complicated. In this background, worldwide blackouts occured frequently in recent years, causing huge economic losses to society. As N-k contingency is one of the most critical parts of blackout, it is extremely significant to conduct a comprehensive assessment of its impact on the grid. In view of this, a series of researchs are carried out in this dissertation, focusing on several security issues of N-k contingency risk and vulnerability assessment. The main works are summarized as follows.
     The uncertainty of the grid operating conditions is not fully considered in N-k contingency assessment via traditional reliability. In order to solve this problem, component reliability models applicable to N-k contingency are established, which include two parts:one is outage model of transmission line as primary equipment. Operational reliability theory is introduced to obtain outage probability of line, taking various outage factors into account. The other one is hidden failure model of protection as secondary equipments. Markov method is introduced to obtain reliability indexes under different proctection configurations, taking logic relationship of proctection action into account. On that basis, the probability model of hidden failure is proposed according to the composition of relay protection system and hidden failure classification. The proposed models lay a theoretical foundation for subsequent system-level analysis of N-k contingency, combining primary and secondary equipment model together.
     In view of the deficiency in traditional static security assessment method, an operational risk assessment algorithm for transmission system based on N-k contingency is put forward. The search process of N-k contingency is determined in accrodance with the real-time operational status of grid, to ensure that contingency paths seached out are reasonable and effective. Based on the analysis of hidden failure consequences, the risk assessment method and related indexes of N-k contingency for transmission system are further proposed under market conditions by means of operational risk theory, achieving a good combination of security and economy. The example analysis indicates that N-k contingency risk assessment applying operational reliability and risk theory can reflect the state of power system accurately and verifies the practicality of the proposed algorithm.
     In order to study the impact of large-scale wind power on grid blackout, the risk assessment model for N-k contingency considering wind farms integration is formulated. The reliability model of wind turbines is established firstly based on wind speed prediction. The output variation of wind farm is considered as an influence in simulatiorr of N-k contingency process. From the perspective of overload, low-voltage and load-loss, N-k contingency risk assessment model is established on the basis of Utility Theory and importance factors. Taking IEEE-RTS79system as an example, the impacts of wind power penetration, integration schemes and wind randomness on N-k contingency risk indexes are analyzed in detail. The results will provide scientific reference of planning, operation and blackouts defence for grid integrated with wind farms.
     With regard to the relativity of operational risk indexes, the forewarning classification algorithm for N-k contingency is proposed. N-k contingency probability levels are classified at first, based on Fuzzy C-Means (FCM) Cluster and correcting method. Then the indexes and membership function sets of failure severity reflecting static security level of grid are defined, and comprehensive severity is classified via fuzzy reasoning and objective weighting of variation coefficient. At last, forewarning levels of N-k contingency risk are evaluated according to fuzzy comprehensive evaluation vector, with combination of probability and severity. The example results indicate that the forewarning model can make effective judgement on the operational state of grid following failure through N-k contingency simulation, and provide beneficial references for blackout forewarning research.
     For the purpose of illustrating the relationship between blackouts and grid vulnerability, the algorithm of grid vulnerability assessment based on N-k contingency is presented. A risk indexes system for N-k contingency is set up from the perspective of static security. And a composite risk index for N-k contingency is obtained by application of the entropy and Analytic Hierarchy Process (AHP). According to vulnerability functions of risk and structure, a new vulnerability index is proposed for the quantitative analysis of grid vulnerability concering N-k contingency. Taking a district grid in China for example, the vulnerable buses and lines in it are identified. The example analysis demonstrates that, compared with the vulnerability evaluation method considering risk only, the method considering risk as well as structure vulnerability achieves higher precision and its result is more instructive for power grid monitoring.
引文
[1]宋毅.电力系统连锁故障机理及风险评估方法研究[D].天津:天津大学,2008
    [2]Chen Q M, McCalley J D. The probability, identification, and prevention of rare events in power systems[D]. Ames, Iowa:Iowa State University,2004
    [3]“煤从空中走、电送全中国”可实现[EB/OL]. [2012-11-11]. http://news.163. com/12/1111/03/8G0GFDQ400014AED.html
    [4]刘振亚.特高压直流输电理论[M].北京:中国电力出版社,2009
    [5]刘振亚.中国电力与能源[M].北京:中国电力出版社,2012
    [6]U.S-Canada power system outage task force. Final report on the August 14 2003 blackout in the United States and Canada:causes and recommendations [EB/OL]. [2004]. http://www.nerc.com/
    [7]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-5
    [8]徐伟华,艾芊,周玉光,等.莫斯科5·25大停电对中国电力市场发展的启示[J].华东电力,2005,33(7):45-48
    [9]张文亮,周孝信,白晓民,等.城市电网应对突发事件保障供电安全的对策研究[J].中国电机工程学报,2008,28(22):1-7
    [10]葛睿,董昱,吕跃春.欧洲“11·4”大停电事故分析及对我国电网运行工作的启示[J].电网技术,2007,31(3):1-6
    [11]刘宇,舒治淮,程逍,等.从巴西电网“2·4”大停电事故看继电保护技术应用原则[J].电力系统自动化,2011,35(14):2-10
    [12]汤涌,卜广全,易俊.印度“7.30”、“7.31”大停电事故分析及启示[J].中国电机工程学报,2012,32(25):167-174
    [13]薛禹胜,肖世杰.从印度大停电透视电力系统的广义阻塞[J].电力系统自动化,2012,36(16):1-8.
    [14]Report of The Enquiry Committee On Grid Disturbance in Northern Region On 30th July 2012 and in Northern, Eastern & North-Eastern Region on 31st July 2012[R]. New Delhi, India:The Enquiry Committee,2012
    [15]Anderson P M. Power System Protection [M]. New York:McGraw-Hill,1999: 1-20
    [16]Chen J, Thorp J S, Dobson I. Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model [J]. International Journal of Electrical Power and Energy Systems,2005,27(4):318-326
    [17]刘振亚.智能电网技术[M].北京:中国电力出版社,2010
    [18]李俊峰,施鹏飞,高虎.中国风电发展报告[M].海南:海南出版社,2010
    [19]蒋锦峰,赵凯,胡小正,等.输变电设施可靠性评价规程[S].北京:中国电力企业联合会电力可靠性管理中心,1998.
    [20]王成亮.电力系统运行风险概率评估模型和算法研究[D].重庆:重庆大学,2008
    [21]Wan H, McCalley J D, Vittal V. Increasing thermal rating by risk analysis[J]. IEEE Trans on Power Systems,1999,14(3):815-828
    [22]Zhang Jun, Pu Jian, McCalley J D, et al. A Bayesian approach for short-term transmission line thermal overloads risk assessment[J].IEEE Trans on Power Delivery,2002,17(3):770-778
    [23]宁辽逸,吴文传,张伯明.电力系统运行风险评估中元件时变停运模型分析[J].电力系统自动化,2009,33(16):7-12
    [24]宁辽逸,吴文传,张伯明.运行风险评估中的变压器时变停运模型(一)基于运行工况的变压器内部潜伏性故障的故障率估计方法[J].电力系统自动化,2010,34(15):9-13
    [25]宁辽逸,吴文传,张伯明.运行风险评估中的变压器时变停运模型(二)基于延迟半马尔可夫过程的变压器时变停运模型[J].电力系统自动化,2010,34(16):24-28
    [26]宁辽逸,吴文传,张伯明.一种适用于运行风险评估的元件修复时间概率分布[J].中国电机工程学报,2009,29(16):15-20
    [27]宁辽逸,吴文传,张伯明.运行风险评估中缺乏历史统计数据时的元件停运模型[J].中国电机工程学报,2009,29(25),26-31
    [28]程林,何剑,孙元章.线路实时可靠性模型参数对电网运行可靠性评估的影响[J].电网技术,2006,30(13):8-13
    [29]刘海涛,程林,孙元章等.基于实时运行条件的元件停运因素分析与停运率建模[J].电力系统自动化,2007,31(7):6-11
    [30]何剑,程林,孙元章等.条件相依的输变电设备短期可靠性模型[J].中国电机工程学报,2009,29(7):39-46
    [31]孙荣富,程林,孙元章.基于恶劣气候条件的停运率建模及电网充裕度评估[J].电力系统自动化,2009,33(13):7-12
    [32]Billinton R, Allan R N.电力系统可靠性评估[M].周家启,任震,译.重庆:科学技术文献出版社重庆分社,1986
    [33]任震,谌军,黄雯莹,等.大型电力系统可靠性评估的模型及算法[J].电 力系统自动化,1999,23(5):25-27
    [34]Billinton R,Tatla J. COMposite generation and transmission system adequacy evaluation including protection system failure modes[J]. IEEE Power Engineering Review,1983,3(6):1823-1831
    [35]别朝红,王锡凡.复杂电力系统一类连锁反应事故可靠性评估初探[J].电力系统自动化,2001,25(18):25-28
    [36]别朝红,王锡凡.复杂电力系统一类连锁反应事故可靠性评估和算法[J].电力系统自动化,2001,25(10):30-34
    [37]Allan R N, Adraktas A N. Terminal Effects and Protection System Failure in Composite System Reliability Evaluation[J]. IEEE Power Engineering Review, 1982,2(12):1825-1834
    [38]王伟.可靠性理论在继电保护中的应用[J].四川电力技术,1992,1:23-25
    [39]Billinton R, Fotuhi-Firuzabad M, and Sidhu T S. Determination of the optimum routine test and self-checking intervals in protective relaying using a reliability model[J]. IEEE Transactions on Power Systems,2002,17(3):663-669
    [40]Damchi Y, Sadeh J. Considering failure probability for back-up relay in determination of the optimum routine test interval in protective system using Markov model[C]. Proc.2009 IEEE Power & Energy Society General Meeting, Canada,2009:1-5
    [41]Kumm J J, Weber M S, Hou D, Schweitzer E. Predicting the optimum routine test interval for protective relays[J]. IEEE Transactions on Power Delivery, 1995,10(2):659-665
    [42]Tan J C, Crossley P A, Hall I, et al. Intelligent wide area back-up protection and its role in enhancing transmission network reliability[C]. Proc. Seventh international conference on developments in power system protection, Amsterdam,2001:446-449
    [43]陈为化,江全元,曹一家.考虑继电保护隐性故障的电力系统连锁故障风险评估[J].电网技术,2006,30(13):14-19
    [44]Wang H, Thorp J S. Optimal locations for protection system enhancement:A simulation of cascading outages[J]. IEEE Transactions on Power Delivery, 2001,16(4):528-533
    [45]Bloemhof G A, Leitloff V. Simulating protection systems:effects on voltage dips and reliability, a case study[C]. Developments in Power System Protection, Seventh International Conference on(IEE), Amsterdam,2001:258-261
    [46]王野雷.继电保护系统的可靠性概率指标估计及分析方法[J].继电器,1993,20(11):50-57
    [47]薛安,王睿琛,刘蔚,等.继电保护装置恒定失效率估算方法[J].电力系 统自动化,2012,36(4):6-10
    [48]王睿琛,薛安成,毕天姝,等.继电保护装置时变失效率估算及其区域性差异分析[J].电力系统自动化,2012,36(5):11-15
    [49]晏国华.继电保护装置可靠性指标体系的分析[J].继电器,1991,18(、4):69-78
    [50]林晓东.复式电流比例差动保护判据的可靠性评估[J].中国电机工程学报,2001,24(7):62-66
    [51]Kai Jiang, Chanan Singh. Reliability modeling of all-digital protection systemincluding impact of repair[J]. IEEE Transactions on Power Delivery, 2010,25(2):579-587
    [52]Zhihui Dai, Zengping Wang. Protection dynamic reliability analysis system based on 3RF technique[J]. IEEE Transactions on Power Systems,2011, 3(26):1137-1144
    [53]王超,高鹏,徐政,等.GO法在继电保护可靠性评估中的初步应用[J].电力系统自动化,2007,31(24):52-56
    [54]戴志辉,王增平.继电保护可靠性研究综述[J].电力系统保护与控制,2010,38(15):161-167
    [55]陈少华,马碧燕,雷宇,等.综合定量计算继电保护系统可靠性[J].电力系统自动化,2007,31(15):111-115
    [56]Singh C, Patton A D. Protection system reliability modeling:Unreadiness probability and mean duration of undetected faults [J]. IEEE Trans on Reliability,1980,29(4):339-340
    [57]Augusto F, Brando Jr, Eduardo C S. Reliability of digital relays with self-checking methods [J]. Electric Power and Automation Engineering,1993, 15(2):59-63
    [58]Anderson P M, Aggarwal S K. An improved model for protective system reliability [J]. IEEE Trans on Power Delivery,1992,41(3):422-426
    [59]李永丽,李致忠.继电保护装置可靠性及其最佳检修周期的研究[J].中国电机工程学报,2001,21(6):63-64
    [60]Amir H E, Mahmud F F. New Considerations in modern protection system quantitative reliability assessment[J]. IEEE Trans, on Power Delivery,2010,25 (4):2213-2222
    [61]冯豆,李生虎,崔芳.继电保护系统最优检修周期的优化算法[J].电力系统保护与控制,2011,39(21):60-64
    [62]Anderson P M, Chintalur G M, Maghbuhat S M, et al. An improved reliability model for redundant protections-Markov models[J]. IEEE Trans on Power Systems,1997,12(2):573-578
    [63]熊小伏,陈飞,等.计及不同保护配置方案的继电保护系统可靠性[J].电力系统自动化,2008,32(14):21-24
    [64]王方.继电保护系统可靠性评估的研究[D].保定:华北电力大学,2010
    [65]郑涛,王方,金乃正.双重化继电保护系统确定最佳检修周期新方法[J].电力系统自动化,2010,34(10):67-70
    [66]张晶晶,丁明,李生虎.人为失误对保护系统可靠性的影响[J].电力系统自动化,2012,36(8):1-5
    [67]沈智健,熊小伏,周家启,等.继电保护系统失效概率算法[J].电力系统自动化,2009,33(23):5-8
    [68]沈智健,周家启,卢继平,等,距离保护运行风险评估模型[J].电力系统自动化,2008,32(12):7-11
    [69]沈智健,继电保护失效概率及对输电系统运行可靠性的影响[D].重庆:重庆大学,2008
    [70]North American Electric Reliability Council (NERC). Preliminary disturbance report:August 14 2003 sequence of events[EB/OL]. [2003]. http://www.nerc.com
    [71]Carreras B A, Newman D E, Dobson I, et al. Evidence for self-oganized criticality in electric power system blackouts[C]. Hawaii International Conference on System Sciences, Hawaii,2001:705-709
    [72]Carreras B A, Lynch V E, Newman D E, et al. Blackout Mitigation in Power Transmission Systems[C]. Hawaii International Conference on System Sciences, Hawaii,2003:573-578
    [73]Dobson I, Chen J, Thorp J S, et al. Examing criticality of blackouts in power system models with cascading events[C]. Hawaii International Conference on System Sciences, Hawaii,2001
    [74]于群,郭剑波.我国电力系统停电事故自组织临界性的研究[J].电网技术,2006,30(6):1-5
    [75]梅生伟,薛安成,张雪敏.电力系统自组织临界特性与大电网安全[M].北京:清华大学出版社,2009
    [76]Dobson I, Carreras B A, Newman D E. A probabilistic loading-dependent model of cascading failures and possible implication for blackouts[C]. Hawaii International Conference on System Science, Hawaii,2003
    [77]Dobson I, Carreras B A, Newman D E, et al. Probabilistic load-dependent cascading failure with limited component interactions. IEEE International Conference on Circuits and Systems, Vancouver, Canada,2004
    [78]Dobson I, Chen J S, Carreras B A, et al. Newman. Examining criticality of blackouts in power system models with cascading events[C]. Proceedings of the 35th Hawaii International Conference on System Sciences, Hawaii,2002
    [79]Dobson I, Carreras B A, Newman D E. A branching process approximation to cascading load-dependent system failure[C]. Hawaii International Conference on System Sciences, Hawaii,2004
    [80]Dobson I, Carreras B A, Newman D E.Branching process models for the exponentially increasing portions of cascading failure blackouts[C]. Proceedings of the 38th Hawaii International Conference on System Sciences, Hawaii,2005
    [81]Dobson I, Carreras B A, Newman D E, et al. Estimating failure propagation in models of cascading blackouts[C].8th International Conference on Probabilistic Methods Applied to Power Systems, Iowa State University, Iowa, 2004
    [82]Dobson I, Carreras B A, Lynch V E, et al. An initial model for dynamics in electrical power system blackouts[C]. Hawaii International Conference on System Science, Hawaii,2001
    [83]Carreras B A, Lynch V E, Sachen M L, et al. Modeling blackout dynamics in power transmission networks with simple structure[C]. Hawaii International Conference on System Science, Hawaii, Hawaii,2001
    [84]Carreras B A, Lynch V E. Dynamic criticality and self-organization in a model for blackouts in power transmission systems[C]. Hawaii International Conference on system Science, Hawaii,2002
    [85]丁雪阳,刘新东.基于最优风险指标的连锁故障模型和薄弱线路辨识[J].电力系统自动化,2011,35(18):7-10
    [86]何飞,梅生伟,薛安成,等.基于直流潮流的电力系统停电分布及自组织临界分析[J].电网技术,2006,30(14):7-12
    [87]王刚,梅生伟,胡伟.计及无功/电压特性的停电模型及自组织临界性分析[J].电力系统自动化,2007,31(1):9-13
    [88]梅生伟,翁晓峰,薛安成,等.基于最优潮流的停电模型及自组织临界性分析[J].电力系统自动化,2006,30(13):1-5
    [89]杨明玉,田浩,姚万业.基于继电保护隐性故障的电力系统连锁故障分析[J].电力系统保护与控制,2010,38(9):1-5.
    [90]许婧,白晓民.考虑保护隐藏故障的系统N-k故障分析[J].中国电机工程学报,2012,32(1):108-114
    [91]Watts D J, Strogatz S H. Collective dynamics of small.world networks[J]. Nature 1998,393(6):440-442
    [92]Watts D J. Small worlds:the dynamics of networks between order and randomness[M].Princeton University Press,1998
    [93]Albert R, Albert I, Gary L N.Structural vulnerability of the north American power grid [J]. Physical Review E,2004,69(1):025103/1-025103/4.
    [94]孟仲伟,鲁宗相,宋靖燕.中美电网的小世界模型比较分析[J].电力系统自动化,2004,28(15):21-24
    [95]王韶,董光德,晏健.基于最优负荷削减的小世界电网连锁故障模拟[J].电网技术,2012,36(6):152-156.
    [96]Motter A E, Lai Y C. Cascade-based attacks on complex networks[J]. Physical Review E,2002.66(2):1-4
    [97]Crucitti P, Latora V, Marchiori M. Model for cascading failures in complex networks [J]. Physical Review E,2001,69(4):1-4
    [98]Holme P. Edge overload breakdown in evolving networks [J]. Physical Review E,2002,66(2):1-7
    [99]Holme P, Kim B J. Vertex overload breakdown in evolving networks[J]. Physical Review E,2002,65(1):1-8
    [100]Holme P, Kim B J, Yoon C N, et al. Attack vulnerability of complex networks[J]. Physical Review E,2002,65(5):056109/1-056109/14
    [101]Bie Z H, Wang X F. Evaluation of power system cascading outages[C]. International Conference on power System Technology, Kunming, China,2002, 1:415-419
    [102]邹欣,程林,孙元章.基于线路运行可靠性模型的电力系统连锁故障概率评估[J].电力系统自动化,2011,35(13):7-11
    [103]熊小伏,蔡伟贤,周家启,等.继电保护隐藏故障造成输电线路连锁跳闸的概率模型[J].电力系统自动化,2008,32(14):6-10
    [104]Chen Qiming, McCalley J D. Identifying high risk N-k contingencies for online security assessment [J]. IEEE Transactions on Power Systems,2005,20(2): 823-834
    [105]曹一家,王光增,曹丽华,等.基于线路集群的连锁故障概率分析模型[J].电力系统自动化,2010,34(10):29-33
    [106]韩祯祥,曹一家.电力系统的安全性及防治措施[J].电网技术,2004,28(9):1-6
    [107]宋毅,王成山.一种电力系统连锁故障的概率风险评估方法[J].中国电机工程学报,2009,29(4):27-33
    [108]Yun Wang, Bo Wang, Ming Liang. A smart power system cascading failure accident prediction model based on probability analysis[C]. IEEE International Conference on Power System Technology. Hangzhou, China:IEEE,2010:1-6
    [109]陈为化,江全元,曹一家.基于模糊神经网络的电力系统连锁故障风险评估[J].浙江大学学报(工学版),2007,41(6):973-979
    [110]Koenig M K, Duggan P, Wong J, et al. Prevention of cascading outages in Con Edison's network[C]. IEEE Transmission and Distribution Conference and Exposition. New Orleans, USA:IEEE,2010:1-7
    [111]Papic M, Vaiman M Y, Vaiman M M. Determining asecure region of operation for Idaho power company[C]. IEEE Power Engineering Society General Meeting. San Francisco,CA:IEEE,2005:3042-3047
    [112]Task Forceon Understanding, Prediction, Mitigation and Restoration of Cascading Failures of the IEEE Computing & Analytical Methods(CAMS) Subcommittee. Survey of tools for risk assessment of cascading outages[C]. IEEE Power & Energy Society General Meeting, Detroit, USA:IEEE,2011:1-9
    [113]吴文传,宁辽逸,张伯明,等.一种考虑二次设备模型的在线静态运行风险评估方法[J].电力系统自动化,2008,32(7):1-5
    [114]Huan Hu, Xiaoshi Du, Chen Xu, et al. Risk assessment of cascading failure in power systems based on uncertainty theory[C]. IEEE Power and Energy Society General Meeting, Detroit, USA,2011:1-5
    [115]王安斯.基于事故链的电网脆弱性评估与稳定控制[D].武汉:华中科技大学,2010
    [116]Baldick R, Chowdhury B, Dobson I, et al. Vulnerability assessment for cascading failures in electic power systems[C]. IEEE Power and Energy Society Power Systems Conference and Exposition, Seattle,2009
    [117]顾雪平,张硕,梁海平,等.考虑系统运行状况的电网连锁故障风险性评估[J].电力系统保护与控制,2010,38(24):124-130
    [118]舒征宇,邓长虹,黄文涛,等.小世界电力网络故障传播过程与抑制策略[J].电网技术,2013,37(3):861-867
    [119]Taylor C W. The future in on-line security assessment and wide-area stability control [C]. IEEE Power Engineering Society Winter Meeting, Singapore,2000: 78-83
    [120]张伯明,吴素农,蔡斌,等.电网控制中心安全预警和决策支持系统设计[J].电力系统自动化,2006,30(6):1-5
    [121]王红印,张明亮,孙素琴,等.大电网安全可靠运行4级梯度预警预控方法[J].电力系统自动化,2008,32(19):20-24
    [122]李建,庞晓艳,李旻,等.省级电网在线安全稳定预警及决策支持系统研究与应用[J].电力系统自动化,2008,32(22):97-102
    [123]刘磊,吴文宣,黄道姗,等.城市电网安全预警与保障决策支持系统[J].华 东电力,2008,36(6):65-67
    [124]王佳明,刘文颖,张建立.恶劣天气下的复杂电网连锁故障在线预警[J].电网技术,2012,36(5):239-244
    [125]崔振,肖先勇,冯岗,等.基于综合风险的电网灾难性事件预警评估[J]-华东电力,2012,40(9):1507-1511
    [126]李继红,戴彦,王超,等.大电网连锁故障的风险分析及对策[J].电网技术,2011,35(12):43-49
    [127]田超,沈沉,孙英云.电力应急管理中的综合预测预警技术[J].清华大学学报(自然科学版),2009,49(4):481-484
    [128]Fouad A A, Zhou Q, Vittal V. System vulnerability as a concept to assess power system dynamic security[J]. IEEE Trans on Power Systems,1994,9(2): 1009-1015
    [129]Watts D J. A simple model of global cascades on random networks[J]. Proc. Natl. Acad Sci.,2002,99:5766-5711.
    [130]Alvert R, Albert I, and Nakarado G L. Structural vulnerability of the North American power grid[J]. Phys. Rev. E,2004,69(22):025103/1-025103/4
    [131]刘影,王涛,顾雪平.基于边韧性度的电力系统关键线路筛选[J].电力系统保护与控制,2012,40(6):92-103
    [132]徐林,王秀丽,王锡凡.基于电气介数的电网连锁故障传播机制与积极防御[J].中国电机工程学报,2010,30(13):61-68
    [133]Donde V, Lopez V, Lesieutre B, et al. Severe multiple contingency screening in electric power systems. IEEE Transactions on Power Systems,2008,23(2): 406-417
    [134]Motto A L, Arroyo J M, Galiana F D. A mixed-integer LP procedure for analysis of electric grid security under disruptive threat. IEEE Transactions on Power Systems,2005,20(3):1357-1365
    [135]丁理杰,刘美君,曹一家,等.基于隐性故障模型和风险理论的关键线路辨识[J].电力系统自动化,2007,31(6):1-5
    [136]李勇,刘俊勇,刘晓宇,等.基于潮流熵的电网连锁故障传播元件的脆弱性评估[J].电力系统自动化,2012,36(19):11-16
    [137]Yang W H, Bi T S, Huang S F. A methodology for vulnerability backup protection under cascading failures[C].5th International Conference on Critical Infrastructure (CRIS), Beijing, China:IEEE,2010:1-5
    [138]Baiardi F, Telmon C, Sgandurra D. Hierarchical, model-based risk management of critical infrastructures [J]. Reliability Engineering & System Safety,2009, 94(9):1403-1415
    [139]Yang Fang, Sakis M A P. Effects of protection system hidden failures on bulk power system reliability [C].38th North American Power Symposium. USA: NAPS,2006:517-523
    [140]孙元章,周家启.大型互联电网在线运行可靠性的基础理论[M].北京:清华大学出版社,2010
    [141]孙元章,程林,刘海涛.基于实时运行状态的电力系统运行可靠性评估[J].电网技术,2005,29(15):6-12
    [142]Walker J. Condition based risk management[J]. Power Engineer,2003,17(1): 34-35
    [143]Bendat J S, Piersol A G. Random data:analysis and measurement procedures[M]. New York:John Wiley & Sons, Inc,2000
    [144]Han Guangyue. Limit theorems in Hidden Markov Models[J]. IEEE Transactions on Information Theory,2013,59(3):1311-1328
    [145]Mari J F, Haton J P, Kriouile A. Automatic word recognition based on second order Hidden Markov Models[J].IEEE Trans on Speech and Audio Proc,1997. 5(1):22-25
    [146]Verdult V, Ljung L and Verhaegen M. Identification of composite local linear state-space models using a projected gradient search[J]. International Journal of Control,2002,75(16):1385-1398
    [147]Allan R, Anderson P. Terminal Effects of protection systems operation and failures in composite system reliability evaluation[J]. IEEE Transactions on Power Systems,1994,9(1):198-205
    [148]Billinton R, Allan R N. Reliability evaluation of engineering system:concept and techniques[M]. New York:Plenum Press,1992:1-20
    [149]Salim N A, Othman M M, Serwan M S. Risk assessment of cascading collapse considering the effect of hidden failure[C]. IEEE International Conference on Power and Energy, Sabah, Malaysia:IEEE,2012:778-783
    [150]Phadke A G, Thorp J S. Expose hidden failures to prevent cascading outages in power systems[J]. Computer Applications in Power, IEEE,1996,9(3):20-23
    [151]Bae K, Thorp J S. An importance sampling application:179 bus WSCC system under voltage based hidden failures and relay misoperations[C]. Proceedings of the 31th Hawaii International Conference on System Sciences, Hawaii, USA: IEEE,1998:39-46
    [152]梁国艳,杨捷.电力系统继电保护及自动化[M].北京:中国电力出版社,2013:112-116
    [153]沈晓凡,吕鹏飞,刘宇,等.2011年国家电网公司继电保护运行情况统计分析[R].北京:中国电力科学研究院,2012
    [154]Denyer S, Lakshmi R. India blackout on second day-leaves 600 million without power[EB/OL].[2012-08-01].http://www.washingtonpost.com/world/asia_pacifi c/huge-blackout-fuels-doubts-about-indias-economic-ambitions/2012/08/01/Gjq a7JlLMX_story.html
    [155]Li Wenyuan. Risk assessment of power systems:models, methods and applications[M]. New York:John Wiley & Sons,2005:227-228
    [156]NI Ming, Mccaley J D, Vittal V, et al. On-line risk-based security assessment [J]. IEEE Trans on Power Systems,2003,18(1):258-265
    [157]Johnson G F. Reliability considerations of multifunction protection [J]. IEEE Trans on Industry Applications,2002,38(6):1688-1700
    [158]王伟,毛安家,张粒子,等.市场条件下电力系统暂态安全风险评估[J].中国电机工程学报,2009,29(1):68-73
    [159]Cecati C, Citro C, and SianoP. Combined operations of renewable energy systems and responsive demand in a smart grid[J]. IEEE Trans Sustainable Energy,2011,2(4):468-476
    [160]Zhai M Y. Transmission characteristics of low-voltage distribution networks in China under the smart grids environment [J]. IEEE Trans on Power Delivery, 2011,26(1):173-180
    [161]Billinton R, Chen H, Ghajar R. Time-series models for reliability evaluation of power systems including wind energy [J]. Microelectronics Reliability,1996, 36(9):1253-1261
    [162]Wangdee W, Billinton R. Considering load-carrying capability and wind speed correlation of WECS in generation adequacy assessment[J]. IEEE Transactions on Energy Conversion,2006,21(3):734-741
    [163]Balouktsis A, Chassapis D, Karapantsios D. A nomogram method for estimating the energy produced by wind turbine generators[J]. Solar energy,2002,72(3): 251-259
    [164]张国华,段满银,张建华,等.基于证据理论和效用理论的电力系统风险评估[J].电力系统自动化,2009,33(23):1-4
    [165]Buck J R. Partial means in the economic risk analysis of Projects[J]. The Engineering Economist,1986,31(3):56-71
    [166]Parker P M. Aggregate diffusion forecasting models in marketing:a critical review[J]. International Journal of Forecasting,1994,10(3):53-80
    [167]吴昊,张焰,刘波.考虑风电场影响的发输电系统可靠性评估[J].电力系统保护与控制,2011,39(4):36-42
    [168]张菁,杨明皓.基于模糊聚类的电力系统载荷能力安全预警方法[J].电力系统自动化,2007,31(22):31-35
    [169]栗秋华,周林,张凤,等.基于模糊理论和层次分析法的电力系统电压态势预警等级综合评估[J].电网技术,2008,32(4):40-45
    [170]刘宝柱,朱涛,于继来.电力系统电压态势预警等级的多级模糊综合评判[J].电网技术,2005,29(24):31-36
    [171]刘文博,张伯明,吴文传,等.在线静态电压稳定预警与预防控制系统[J].电网技术,2008,32(17):6-11
    [172]周韩,刘东,吴子美,等.电力系统安全预警评估指标及其应用[J].电力系统自动化,2007,31(20):45-48
    [173]刘新东,江全元,曹一家,等.基于风险理论和模糊推理的电力系统暂态安全风险评估[J].电力自动化设备,2009,29(2):15-20
    [174]孙强,张义斌,韩冬,等.多因素、多维度的智能电网风险评估[J].电网技术,2012,36(9):51-55
    [175]Zadeh L A. Toward a theory of fuzzy system:fuzzy setsand fuzzyinformation granulation theory[M]. Beijing:Beijing Normal University Press,2000:29-61
    [176]Luminia N. Fuzzy Bagging:a novel ensemble of classifiers[J]. Pattern Recognition,2006,39(3):488-490
    [177]Murata R, Endo Y,Haruyama H, et al. On fuzzy c-means for data with tolerance[J]. Advanced Computational Intelligence and Intelligent Informatics, 2006,10(5):673-681
    [178]Zadeh L A. Fuzzy sets [J]. Information and Control,1965,8(1):338-353
    [179]Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Transactions on System Man and Cybernet, 1985,15:116-132
    [180]Wang L X, Mendel J M. Fuzzy basis functions, universal approximation, and orthogonal least squares learning[J]. IEEE Trans On Neural Networks,1992,3 (5):807-814
    [181]李洪兴,彭家寅,王加银.常见模糊蕴涵算子的模糊系统及其响应函数[J].控制理论与应用,2005,22(3):341-347
    [182]Ying Mingsheng. Implication operators in fuzzy logic[J]. IEEE Transactions on Fuzzy Systems,2002,10(1):88-91
    [183]Chen S J, Chen S M. Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers[J]. IEEE Transactions on Fuzzy Systems,2003, 11(1):45-55
    [184]Mimada, Zeng X J, Singh M G. Approximation theory of fuzzy systems-MIMO case[J]. IEEE Trans on Fuzzy Systems,1995,3 (2):219-235
    [185]中华人民共和国国务院.电力安全事故应急处置和调查处理条例[EB/OL]. [2011-07-15]. http://www.gov.cn/zwgk/2011-07/15/content_1906887.htm
    [186]娄丙民,曾怀宇,李宁.基于改进模糊评判法的重载夹钳承载能力评价研究[J].机械工程与自动化,2011,167(4):1-3
    [187]张国华,张建华,杨京燕,等.基于有向权重图和复杂网络理论的大型电力系统脆弱性评估[J].电力自动化设备,2009,29(4):21-25
    [188]EI-Sharkawi M A. Vulnerability assessment and control of power system[C]. Asia Pacific Transmission and Distribution Conference and Exhibition. Yokohama, Japan:IEEE,2002:656-660
    [189]Baldick R, Chowdhury B, Dobson I, et al. Vulnerability assessment for cascading failures in electric power systems[C]. IEEE Power and Energy Society Power Systems Conference and Exposition, Seattle, USA,2009
    [190]Delaree J, Liu Y, Mili L, et al. Catastrophic failures in power systems:causes, analyses, and countermeasures[J]. Proceedings of the IEEE,2005,93(5): 956-964
    [191]Chiao K P. Trapezoidal interval type-2 fuzzy set extension of Analytic Hierarchy Process[C]. EEE International Conference on Fuzzy Systems, Brisbane, Australia,2012
    [192]Ma Xiyuan, Sun Yuanzhang, Fang Hualiang, et al. Scenario-based multiobjective decision-making of optimal access point for wind power transmission corridor in the load centers[J]. IEEE Transactions on Sustainable Energy,2013,4(1):229-239
    [193]Christiansen M M, Duffy K R. Guesswork, large deviations, and Shannon Entropy[J]. IEEE Transactions on Sustainable Energy,2013,59(2):796-802
    [194]Jones N J, Ucar H, Ipus J J, et al. The effect of distributed exchange parameters on magnetocaloric refrigeration capacity in amorphous and nanocomposite materials[J]. ournal of Applied Physics,2012,111(7):07A334-07A334/3
    [195]Yi Tang, Qian Sha, Ning Chen, et al. A novel combination model for wind power forecasting with error evaluation parameter based on cross entropy theory[C]. IEEE International Conference on CYBER, Bangkok,2012:233-237
    [196]Weng C A, Chen K C. Bounds and exact mean node degree and node isolation probability in interference-limited wireless ad hoc networks with general fading[J]. IEEE Transactions on Vehicular Technology,2012,61(5):2342-2348
    [197]Farago A. Scalability of node degrees in random wireless network topologies[J]. IEEE Journal on Selected Areas in Communications,2009,27(7):1238-1244
    [198]Cao MingKai, Wu XinZhen, Song Hao, et al. Optimization of restoration paths considering topological characteristics of power system network[C]. IEEE International Conference on APAP, Beijing,2011:836-839
    [199]魏震波,刘俊勇,朱国俊.基于可靠性加权拓扑模型下的电网脆弱性评估模型[J].电工技术学报,2010,25(8):131-137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700