新型功能性超支化温敏聚合物的温敏性质及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以超支化聚乙烯亚胺(HPEI)为原料,制备了一系列具有不同低临界溶解温度的新型功能性超支化温敏聚合物,从聚合物本身以及pH值和盐效应几个方面对其水溶液的温敏性质进行了深入研究,发现其性质与传统线形温敏聚合物相比具有较大差异。在此基础上进一步研究了所得超支化温敏聚合物与金纳米粒子复合后的溶液性质及在颜色传感器和催化回收方面的应用,具体内容如下:
     1.对HPEI端氨基进行异丁酰胺(IBAm)化改性,优选出异丁酸酐为最佳的酰化试剂,通过改变HPEI核的分子量以及异丁酰化程度,成功制备了一系HPEI- IBAm超支化温敏聚合物。
     2.HPEI-IBAm水溶液的浊点温度(CP)对聚合物的分子量、HPEI氨基的取代度及体系pH值都是敏感的。降低聚合物分子量、减少氨基的取代度、降低体系的pH值都可以有效地使溶液CP值升高。溶液的CP温度在0~100oC范围内可调。
     3.相对于传统线形温敏聚合物,HPEI-IBAm水溶液的CP对盐的存在更敏感。高浓度阴离子对HPEI-IBAm的盐析效应顺序为:PO43- >CO3~(2-) >SO4~(2-) >S_2O_3~(2-) >F- >Cl- >Br- ~NO_3~- >I- >SCN~-,符合经典的Hofmeister规律;而低盐浓度下的盐析顺序为:PO43- ~CO3~(2-) ~SCN~- >I- >NO_3~- >S_2O_3~(2-) >SO4~(2-) >Br- >F- >Cl-,与经典的Hofmeister规律相差很大。无机阳离子对HPEI-IBAm溶液CP的影响不如阴离子显著,但也存在明显的不同于线形温敏聚合物的规律,其盐析顺序为:Sr~(2+) ~Ba~(2+) >Na~+ ~K~+ ~Rb+ >Cs~+ >NH_4~+ ~Ca~(2+) >Li~+ ~Mg~(2+)。有机铵盐对HPEI-IBAm溶液表现出盐溶效应,这种效应随着碳链长度增加而变得非常明显。
     4.HPEI-IBAm与金纳米粒子复合物的水溶液具有温敏性,其CP温度可以在很宽的范围内调节。该类复合物水溶液在其CP温度附近会发生明显的颜色变化,并且温度响应范围很窄,因此,可以作为敏感的颜色传感器来监测不同环境温度的变化。此外,该复合物溶液的颜色对pH和盐也是敏感的,因此,也可以作为颜色传感器来监测体系pH和盐浓度的变化。
     5.HPEI-IBAm与金纳米粒子温敏复合物在催化还原4-硝基苯酚反应中具有多重优越性:(1)催化剂可以多次回收再利用;(2)合适的HPEI-IBAm聚合物可以提高金纳米粒子的催化活性;(3)避免催化反应中出现温度过高现象。
In this dissertation, a series of new functional hyperbranched thermoresponsive polymers with different lower critical solution temperature were synthesized from hyperbranched polyethyleneimine (HPEI). The factors influencing the thermoresponsive property of the aqueous solution of these polymers were studied in detail, such as the structures of the polymers, the pH of the solutions and the existence of various salts. It was found that there was obvious difference between the hyperbranched thermoresponsive polymers and the traditional linear thermoresponsive ones in the thermoresponsive property. Based on these results these polymers were used to form themoresponsive composites with gold nanoparticles. The solution properties of these thermoresponsive composites and their applications as colorimetric sensors and recoverable catalysts were further researched. The details were as follows:
     1. In the process of the modification of the terminal amino groups of HPEI with isobutyric amide (IBAm) groups, the amidation agents were optimized and it was found that isobutyric anhydride was the best one. A series of HPEI-IBAm hyperbranched thermoresponsive polymers were successfully prepared by changing the molecular weight of HPEI core and the degree of substitution (DS) of IBAm groups.
     2. The cloud point (CP) of the aqueous solution of HPEI-IBAm polymers was sensitive to the alteration of molecular weight and the DS of the polymers and the pH of the aqueous media. Lowering the molecular weight and the DS value of the polymer and increasing the pH of the system can effectively increase the CPof the solution. The CP value can be controlled in a broad temperature range of 0~100℃.
     3. The CP of HPEI-IBAm was more sensitive to the salts compared with that of linear thermoresponsive polymer. At high salt concentration, the specific ranking of inorganic anions in salting-out HPEI-IBAm polymer was as follows: PO43- >CO3~(2-) >SO4~(2-) >S_2O_3~(2-) >F- >Cl- >Br- ~NO_3~->I- >SCN~-. This sequence is in accordance with the well-known Hofmeister series. However, at low salt concentration, the specific ranking of inorganic anions in salting-out HPEI-IBAm polymer was as follows: PO43- ~CO3~(2-) ~SCN~- >I- >NO_3~- >S_2O_3~(2-) >SO4~(2-) >Br- >F- >Cl-. Anti-Hofmeister phenomenon can be found in both monovalent and divalent inorganic anions. The cations’effect on the CP of HPEI-IBAm aqueous solutions was not so significantly as anions, however, the cations ranking ordering for HPEI-IBAm also showed obvious difference from that of the linear thermoresponsive polymers. The specific ranking order of inorganic cations in salting-out HPEI-IBAm polymer was as follows: Sr~(2+) ~Ba~(2+) >Na~+ ~K~+ ~Rb+ >Cs~+ >NH_4~+ ~Ca~(2+) >Li~+ ~Mg~(2+). The organic ammonium salt showed obvious salting-in effect in the certain salt concentration region. The salting-in effect of ammonium chloride salts can be enhanced significantly by increasing the length of their aliphatic chains.
     4. The composites of gold nanoparticles with HPEI-IBAms were thermoresponsive, and their CPs could be adjusted in a broad temperature range. Upon raising the temperature near the CP, the color of the obtained thermoresponsive composites changed sharply in a narrow temperature range. Thus, the obtained thermoresponsive composites were suitable to be used as colorimetric sensors for detecting the environmental temperature variation. Furthermore, the solution colors of the thermoresponsive composites were also sensitive to the pH and salts of the system, resulting that they could also be used as colorimetric sensors for detecting the variation of pH and salt concentration.
     5. The obtained thermoresponsive gold nanoparticles could be used as responsive catalysts for the catalytic reduction reaction of 4-nitrophenol. The advantages are as follows: (1) catalysts could be recycled several times. (2) Appropriate HPEI-IBAm polymer could improve the catalytic activity of the gold nanoparticles. (3) The sudden significant increase of the reaction temperature above the pre-set one could be avoided.
引文
[1] Taylor L. D., Cerankowski L. D., Preparation offilms exhibiting a balanced temperature dependence to permeation by aqueous solutions: a study of lower consolute behavior, J. Polym. Sci., PartA: Polym. Chem., 1975, 13, 2551-2570.
    [2] Ito K., Chuang J., Alvarez-Lorenzo C., et al., MultiPle Point adsorption in a hetero Polymer gel and the Tanaka approach to imPrinting: experiment and theory, Prog. Polym. Sci., 2003, 28, 1489-1515.
    [3] Gil E. S., Hudson S. M., Stimuli-reponsive polymers and their bioconjugates, Prog. Polym. Sci, 2004, 29, 1173-1222.
    [4] Xue W., Champ S., Huglin M. B., Observations on some copolymerisations involving N-isopropylacrylamide, Polymer, 2000, 41, 7575-7581.
    [5] Takataa S., Shibayamaa M., Sasabeb R., et a1., Preparation and structure characterization of hairy nanoparticles consis-ting of hydrophobie core and thermosensitive hairs, Polymer, 2003, 44, 495-501.
    [6] Schild H. G.., Tirrell D. A., Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions, J. Phys. Chem, 1990, 94, 4352-4356.
    [7] Hirotsu. S., Coexistence of phases and the nature of first-order phase transition in poly(N-isopropylacrylamide) gels, Adv. poly. sci., 1993, 110, 1-26.
    [8] Schild H. G., poly(N-isopropylacrylamide): experiment, theory and application, Prog. polym. Sci., 1992, 17, 163-249.
    [9] Fréchet J. M. J., Tomalia D. A., Dendrimers and other Dendritic polymers, New York: John Wiley & Sons Ltd, 2001, 800-836.
    [10] Luo S. Z., Hu X. L., Ling C. X., Liu X., et a1.,Multiarm star-like unimolecular micelles with a dendritic core and a dual thermosensitive shell, Polymer International, 2011, 60, 717-724.
    [11] Kailasan A., Yuan Q., Yang H., Synthesis and characterization of thermoresponsive polyamidoamine-polyethylene glycol-poly(D,L-lactide) core- shell nanoparticles, Acta Biomaterialia, 2010, 6, 1131-1139.
    [12] Lee H. I., Lee J. A., Poon Z. Y., Hammond P. T., Temperature-triggered reversible micellar self-assembly of linear-dendritic block copolymers, Chemical Communications, 2008, 32, 3726-3728.
    [13] Stover T. C., Kim Y. S., Lowe T. L., Kester M., Thermoresponsive and biodegra- dable linear-dendritic nanoparticles for targeted and sustained release of a pro-apop totic drug, Biomaterials, 2008, 29, 359-369.
    [14] Kim Y. S., Gil E. S., Lowe T. L., Synthesis and characterization of thermorespon- sive-co-biodegradable linear-dendritic copolymers, Macromolecules, 2006, 39, 7805-7811.
    [15] Pan B. F., Gao F., Gu H. C., Dendrimer modified magnetite nanoparticles for protein immobilization, J. Colloid Interface Sci. 2005, 284, 1-6.
    [16] Xu J., Luo S.Z., Shi W.F., Liu S.Y., Two-stage collapse of unimolecular micelles with double thermoresponsive coronas, Langmuir, 2006, 22, 989-997.
    [17] Liu X., Cheng F., Chen Y., Unusual salt effect on the lower critical solution temperature of hyperbranched thermoresponsive polymers, Soft Matter, 2008, 4, 1991-1994.
    [18] Guo Z., Zhang Y., Yan D., Terminal Modification with 1-Adamantylamine to Endow Hyperbranched Polyamidoamine with Thermo-/pH-Responsive Properties, Macromol. Rapid Commun., 2008, 29, 1746-1751.
    [19] Haba Y., Harada A., Takagishi T., Kono K. Rendering poly(amidoamine) or poly(propylenimine) dendrimers temperature sensitive. J. Am. Chem. Soc, 2004, 126, 12760-12761.
    [20] Haba Y., Kojima C., Harada A., Kono K. Control of temperature-sensitive properties of poly(amidoamine) dendrimers using peripheral modification with various alkylamide groups, Macromolecules, 2006, 39, 7451-7453.
    [21] Tono, Y., Kojima, C., Haba, Y., Takahashi, T., Harada, A., Yagi, S., Kono, K. Thermosensitive properties of poly(amidoamine) dendrimers with peripheral phenylalanine residues, Langmuir, 2006, 22, 4920-4922.
    [22] Haba Y., Kojima C., Harada A., Kono K. Comparison of thermosensitive properties of poly(amidoamine) dendrimers with peripheral N-isopropylamide groups and linear polymers with the same groups, Angew. Chem. Int. Ed., 2007, 46, 234-237.
    [23] Aathimanikandan S. V., Savariar E. N., Thayumanavan S., Temperature-sensitive dendritic micelles, J. Am. Chem. Soc., 2005, 127, 14922-14929.
    [24] Jia Z., Chen H., Zhu X., Yan D., Backbone-thermoresponsive hyperbranched polyethers., J. Am. Chem. Soc., 2006, 128, 8144-8145.
    [25] Liu H., Chen Y., Shen Z., Thermoresponsive hyperbranched polyethylenimines with isobutyramide functional groups, J. Polym. Sci. Part A,2007, 45, 1177-1184.
    [26] Shen Y., Kuang M., Shen Z., Nieberle J., Duan H., Frey H., Gold nanoparticles coated with a thermosensitive hyperbranched polyelectrolyte: Towards smart temperature and ph nanosensors, Angew. Chem. Int. Ed., 2008, 47, 2227-2230.
    [27] Falamarzian M., Varshosaz J., The effect of structural changes on swelling kinetics of polymeric/hydrophobic pH-sensitive hydrogels, Drug Dev. Ind. Pharm., 1998, 24, 667-669.
    [28] Kou J H, Amidon G L, Lee P I., pH-dependent swelling and solute diffusion characteristics of poly(hydroxyethyl methacrylate-co-methacrylic acid) hydr ogels, Pharm. Res., 1998, 5, 592-597.
    [29] Pepas N. A., Klier J., Controlled release by using poly(methacrylic acid-g-ethyl ene glycol ) hydrogels., J. Controlled Release, 1991, 16, 203-214.
    [30] Yao K. D., Peng T., Goosen M. F. A., et al., pH sensitivity of hydrogel based on complex forming chitosan:polyehter interpenetrating polymer network, J. Appl. Polym. Sci., 1993, 48, 343-354.
    [31] Aggell A., Bell M., Boden N., et al, Responsive gels formed by the spontaneous self-assembly of peptides into polymericβ-sheet tapes, Nature, 1997, 386, 251-262.
    [32] Tanaka T. et al., Collapse of Gels in an Electric Field, Science, 1982, 218, 467-469.
    [33] Osada Y, Okuzaki H, Hori H., A polymer gel with electrically driven motility, Nature, 1992, 355, 242-244.
    [34] Shiga T., Kurauchi T., Deformation of polyelectrolyte gels under the influence of electric field, J Appl Polym Sci., 1990, 39, 2305-2320.
    [35] Irie M., Photoresponsive polymers, Adv. Polym. Sci., 1990, 94, 27-67.
    [36] Karmalkar R N, Kulkarni M G, Mashelkar R A, et al., Molecularly imprinted hydrogels exhibit chymotrypsin-like activity, Macromolecules, 1996, 29, 1366-1368.
    [37] Ishihara K, et al., Glucose induced permeation control of insulin through a complex membrance consisting of immobilized glucose oxidase and a poly (amine), Polym. J., 1984, 16, 625-631.
    [38] Hassan C. M., Doyle lll F. J., Peppas N. A., Dynamic behavior of glucose- responsive poly(methacrylate acid-co-ethylene glycol) hydrogels, Macromo lecuels, 1997, 30, 6166-6173.
    [39] Brownlee M., Cerami A., A glucose-controlled insulin delivery system: semisynthetic insulin bound to lectin, Science, 1979, 206, 1190-1191.
    [40] Kim S W., Self-regulated glycosylated insulin delivery, J. Controlled Release, 1990, 11, 193-201.
    [41] Kitano S., A novel drug delivery system utilizing a glucose responsive polymer complex between poly(viny alcohol) and poly(N-vinyl-2-pyrrolidone) with a phenylboronic acid moiety, J. Controlled Release, 1992, 19, 161-170.
    [42] Kataoka K, et al., Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release, J. Am. Chem. Soc., 1998, 120, 12694-12695.
    [43] Miyata T., Asami N., Uragami T., Preparation of an antigen-sensitive hydrogel using antigen-antibody bindings, Macromolecules, 1999, 32, 2082-2084.
    [44] Miyata T., Asami N., Uragami T., A reversibly antigen-responsive hydrogel, Nature, 1999, 399, 766-769.
    [45] Yoshida R., Takahashi T., Yamaguchi T., et al., Self-oscillating gel, J. Am. Chem. Soc., 1996, 118, 5134-5135.
    [46] Yoshida R., Tanaka M., Onodera S.,et al., In-phase synchronization of chemical and mechanical oscillations in self-oscillating gels, J. Phys. Chem. A, 2000, 104, 7549-7555.
    [47] Holtz J. H., Asher S. A., Polymerized colloid crystal hydrogel films as intelligent chemical sensing materials, Nature, 1997, 389, 829-832.
    [48] Kimura M., Kato M., Shirai H., et al., Temperature-Sensitive Dendritic Hosts: Synthesis, Characterization, and Control of Catalytic Activity, Macromolecul, 2000, 33, 1117-1119.
    [49] Balogh L., Leuze-Jallouli A., Dvornic P., et al., Architectural Copolymers of PAMAM Dendrimers and Ionic Polyacetylenes, Macromolecules, 1999, 32, 1036-1042.
    [50] Bergbreiter D. E., Zhang L., Mariagnanam V. M., Smart ligands that regulate homogeneously catalyzed reactions, J. Am. Chem. Soc., 1993, 115, 9295-9296.
    [51] Bergbreiter D. E., Caraway J. W., Thermoresponsive Polymer-Bound Substrates, J. Am. Chem. Soc., 1996, 118, 6092-6093.
    [52] Bergbreiter D. E., Case B. L., Caraway J. W., Poly(N-isopropylacrylamide) Soluble Polymer Supports in Catalysis and Synthesis, Macromolecules, 1998, 31, 6053-6062.
    [53] Yok S., Cho S. H., Lee S., pH/Temperature-Responsive Polymer Composed of Poly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide), Macromole cules, 1997, 30, 6856-6859.
    [54] Lowman A. M., Peppas N A., Complexation Graft Copolymers as Oral Drug Delivery Systems, Polym Prep, 1997, 38, 566-567.
    [55] Topp M. D. C., Dijkstra P. J., Talsma H., Thermosensitive Micelle-Forming Block Copolymers of Poly(ethylene glycol) and Poly(N-isopropylacrylamide), Macromolecules, 1997, 30, 8518-8521.
    [56] Hoffmann A. S., Stayton P. S., Dong Z., Graft Copolymers of Stimuli-responsive Polymers on Biomolecule Backbones: Synthesis and Biomedical Applications, Polym Prep, 1997, 38, 532-533.
    [57] Liang H. F., Hong M. H., Ho R. M., et a1., Novel Method Using a Temperature- Sensitive Polymer (Methylcellulose) to Thermally Gel Aqueous Alginate as a pH-Sensitive Hydrogel, Biomacromoleculos, 2004, 5, l9l7-l925.
    [58] Zheng C H, Gao J. Q., Zhang Y. P., A protein delivery system: biodegradable alginate–chitosan–poly(lactic-co-glycolic acid) composite microspheres, Bio chemical and Biophysical Research Communications, 2004, 323, 1321-1327.
    [59] Karavas E., Georgios K., Emmanouel G., Effect of hydrogen bonding inter actions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone, European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 103-114.
    [60] Bayramoglu G., Aric M. Y., A novel pH sensitive porous membrane carrier for various biomedical applications based on pHEMA/chitosan: preparation and its drug release characteristics, Macromol Symp, 2003, 203, 213-218.
    [61] Zhou Y. H., Huang M. Z., On gelatin/sodium alginate used as pH-sensitive drug delivery system, Journal of Beijing University of Chemical Technology, 2003, 28, 75-78.
    [62] Brown H. C., A Convenient Preparation of Volatile Acid Chlorides, J. Am. Chem. Soc., 1938, 60, 1325-1328.
    [63] Peter H., Von H., Thomas S., Ion Effects on the Solution Structure of Biological Macromolecules, Accounts of Chexical Research, 1969, 2, 257-265.
    [64] Peter H., Von H., Kwok Y. W., The Effect of Ions on the Kinetics of Formation and the Stability of the Collagen-Fold, Biochemistry, 1962, 1, 664-674.
    [65] Liu X. M., Wang L. S., Wang L., et al., The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide, Biomaterials, 2004, 25, 5659- 5666.
    [66] Kim D., Collins Ion hydration: Implications for cellular function, poly electrolytes, and protein crystallization, Biophysical Chemistry, 2006, 119, 271-281.
    [67] Jain S., Ahluwalia J. C., Differential scanning calorimetric studies on the effect of ammonium and tetraalkylammonium lysozyme halides on the stability of lysozyme, Biophysical Chemistry, 1996, 59, 171-177.
    [68] Ciferri A., Orofino T. A., Phase Separation of Poly-L-proline in Salt Solutions, The journal of Physical Chemistry, 1966, 70, 3277-3285.
    [69] Park T. G., Hoffman A. S., Sodium Chloride-Induced Phase Transition in Nonionic Poly(N-isopropylacrylamide) Gel, Macromolecules, 1993, 26, 5045-5048.
    [70] Suwa K., Yamamoto M. K., Akashi K., et al., Effects of salt on the temperature and pressure responsive properties of poly(N-vinyliso butyramide) aqueous solutions, Colloid Polym Sci, 1998, 276, 529-533.
    [71] Gao C., Chen B., M?hwald H., Thermosensitive poly(allyl amine)-g-poly(N-iso -propylacrylamide) copolymers: Salt-tuned phase separation, particle formation and their applicability on curved surface Colloids and Surfaces, A: Physicochem Eng. Aspects, 2006, 272, 203-210.
    [72] Okamura H., Masuda S., Minagawa K., et al., Thermosensitive properties of a novel poly(methyl 2-acetamidoacrylate -co-methyl acrylate), European Polymer Journal, 2002, 38, 639-644.
    [73] Robert L., Baldwin, How Hofmeister Ion Interactions Affect Protein Stability, Biophysical Journal, 1996, 71, 2056-2063.
    [74] Ronald J., Clarke Christian Lüpfert, Influence of Anions and Cations on the Dipole Potential of Phosphatidylcholine Vesicles: A Basis for the Hofmeister Effect, Biophysical Journal, 1999, 76, 2614-2624.
    [75] Kunz W., Nostro P. L., Ninham B. W., The present state of affairs with Hof meister effects, Current Opinion in Colloid and Interface Science, 2004, 9, 1-18.
    [76] Kunz W., Henle J., Ninham B. W., Zur Lehre von der Wirkung der Salze’(about the science of the effect of salts): Franz Hofmeister’s historical papers, Current Opinion in Colloid and Interface Science, 2004, 9, 19-37.
    [77] Bauduin P., Renoncourt A., Touraud D., et al., Hofmeister effect on enzymatic catalysis and colloidal structures, Current Opinion in Colloid and Interface Science, 2004, 9, 43-47.
    [78] Zhang Y., Furyk S., Bergbreiter D. E., Cremer P. S., Specific Ion Effects on the Water Solubility of Macromolecules: PNIPAM and the Hofmeister Series, J. Am. Chem. Soc., 2005, 127, 14505-14510.
    [79] Lagi M., Nostro P. L., Fratini E., et al., Insights into Hofmeister Mechanisms: Anion and Degassing Effects on the Cloud Point of Dioctanoylphosphatid -ylcholine/Water Systems, J. Phys. Chem. B, 2007, 111, 589-597.
    [80] Collins K. D., Washabaugh M. W., The Hofmeister effect and the be haviour of water at interfaces, Quarterly Review of Biophysics, 1985, 18, 323-422.
    [81] Cacace M. G., Landau E. M., Ramsden J. J., The Hofmeister series: salt and solvent effects on interfacial phenomena, Quarterly Reviews of Biophysics, 1997, 30, 241-277.
    [82] Collins K. D., Charge Density-Dependent Strength of Hydration and Biological Structure, Biophysical Journal, 1997, 72, 65-76.
    [83] Wang J., Satoh M., Novel PVA-based polymers showing an anti-Hofmeister Series property, Polymer, 2009, 50, 3680-3685.
    [84] Guo F., Friedman J. M., Charge Density-Dependent Modifications of Hydration Shell Waters by Hofmeister Ions, J. Am. Chem. Soc., 2009, 131, 11010-11018.
    [85] Kay R. L., Vituccio T., Zawoyski C., Evans D. F., Viscosity B Coefficients for the Tetraalkylammonium Halides, The Journal of Physical Chemistry, 1966, 70, 2336-2341.
    [86] Breslow R., Guo T., Surface tension measurements show that chaotropic salting-in denaturants are not just water-structure breakers, Proc. Natl. Acad. Sci. USA, 1990, 87, 167-169.
    [87] Inomata H., Goto S., Otake K., Saito S., Effect of Additives on Phase Transition of N-Isopropylacrylamide Gels, Langmuir, 1992, 8, 687-690.
    [88] Daniel M. C., Astruc D., Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chem. Rev., 2004, 104, 293-346.
    [89] You C. C., Verma A., Rotello V. M., Engineering the nanoparticle–biomacro molecule interface, Soft Matter, 2006, 2, 190-204.
    [90] Wilson R., The use of gold nanoparticles in diagnostics and detection, Chem. Soc. Rev., 2008, 37, 2028-2045.
    [91] Slocik J. M., Zabinski J. J. S., Naik R. R., Colorimetric Response of Peptide -Functionalized Gold Nanoparticles to Metal Ions, Small, 2008, 4, 548-551.
    [92] Elghanian R., Letsinger R. L., Mirkin C. A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 1997, 277, 1078-1081.
    [93] Wang Z., Lvy R., Brust M., Kinase-catalyzed modification of gold nanoparticles: a new approach to colorimetric kinase activity screening, J. Am. Chem. Soc., 2006, 128, 2214-2215.
    [94] Choi Y., Ho N. H., Tung C. H., Sensing Phosphatase Activity by Using Gold Nanoparticles, Angew. Chem. Int. Ed., 2007, 46, 707-709.
    [95] Han M. S., Lytton-Jean A. K. R., Mirkin C. A., Colorimetric Screening of DNA-Binding Molecules with Gold Nanoparticle Probes, Angew. Chem. Int. Ed., 2006, 45, 1807-1810.
    [96] Lee J. S., Han M. S., Mirkin C. A., A DNA-Gold Nanoparticle-Based Colo rimetric Competition Assay for the Detection of Cysteine, Nano Lett., 2008, 8, 529-533.
    [97] Zhao W., Chiuman W., Li Y., Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation, Chem. Commun., 2007, 3729-3731.
    [98] Schofield C. L., Haines A. H., Russell D. A., Silver and Gold Glyconanoparticles for Colorimetric Bioassays, Langmuir, 2006, 22, 6707-6711.
    [99] Schofield C. L., Field R. A., Russell D. A., Glyconanoparticles for the colo rimetric detection of cholera toxin, Anal. Chem., 2007, 79, 1356-1361.
    [100] Liu J., Lu Y., Optimization of a Pb2+-Directed Gold Nanoparticle/DNAzyme Assembly and Its Application as a Colorimetric Biosensor for Pb2+, Chem. Mater., 2004, 16, 3231-3238.
    [101] Kim Y., Johnson R. C., Hupp J. T., Gold nanoparticle-based sensing of“spectroscopically silent”heavy metal ions, Nano Lett., 2001, 1, 165-167.
    [102] Lee J. S., Han M. S., Mirkin C. A., Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media using DNA-Functionalized Gold Nanoparticles, Angew. Chem. Int. Ed., 2007, 46, 4093-4096.
    [103] Reynolds A. J., Haines A. H., Russell D. A., Gold Glyconanoparticles for Mimics and Measurement of Metal Ion-Mediated Carbohydrate-Carbohydrate Interactions, Langmuir, 2006, 22, 1156-1163.
    [104] Huang C. C., Chang H. T., Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles, Chem. Commun., 2007, 1215-1217.
    [105] Salmaso S., Caliceti P., Alexander C., Cell up-take control of gold nanoparticles functionalized with a thermoresponsive polymer, J. Mater. Chem., 2009, 19, 1608-1615.
    [106] Shan J., Zhao Y., Tenhu H., Thermoresponsive Properties of N-Isopropyl acrylamide Oligomer Brushes Grafted to Gold Nanoparticles: Effects of Molar Mass and Gold Core Size, Macromolecules, 2009, 42, 2696-2701.
    [107] Raula J., Shan J., Tenhu H., Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-addition-fragmentation chain-transfer polymerization, Langmuir, 2003, 19, 3499-3504.
    [108] Gorelikov I., Field L. M., Kumacheva E., Hybrid microgels photoresponsive in the near-infrared spectral range, J. Am. Chem. Soc., 2004, 126, 15938- 15939.
    [109] Kuang M., Wang D. Y., M?hwald H., Fabrication of Thermoresponsive Plasmonic Microspheres with Long-Term Stability from Hydrogel Spheres, Adv. Funct. Mater., 2005, 15, 1611-1616.
    [110] Zhu M. Q., Wang L. Q., Li A. D. Q., Thermosensitive gold nanoparticles, J. Am. Chem. Soc., 2004, 126, 2656-2657.
    [111] Li D., Cui Y., Li J., Thermosensitive Copolymer Networks Modify Gold Nano particles for Nanocomposite Entrapment, Chem. Eur. J., 2007, 13, 2224-2229.
    [112] Shen Y., Shen Z., Frey H., Gold Nanoparticles Coated with a Thermosensitive Hyperbranched Polyelectrolyte: Towards Smart Temperature and pH Nanosensors, Angew. Chem. Int. Ed., 2008, 47, 2227-2230.
    [113] Li D., He Q., Li J., Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly (4-vinylpyridine), Chem. Mater., 2007, 19, 412-417.
    [114] Yusa S., Akiyoshi K., Morishima Y., Salt Effect on the Heat-Induced Association Behavior of Gold Nanoparticles Coated with Poly (N-isopropyl acrylamide) Prepared via Reversible Addition?Fragmentation Chain Transfer(RAFT) Radical Polymerization, Langmuir, 2007, 23, 12842-12848.
    [115] Kimling J., Maier M., Plech A., Turkevich method for gold nanoparticle synthe sis revisited, J. Phys. Chem. B, 2006, 110, 15700-15707.
    [116] Daniel M. C., Astruc D., Gold nanoparticles: assembly, supramolecular chemis try, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 2004, 104, 293-346.
    [117] Hutchings G. J., Brust M., Schmidbaur H., Gold-an introductory perspective, Chem. Soc. Rev., 2008, 37, 1759-1756.
    [118] Hashmi A. S. K., Gold-catalyzed organic reactions, Chem. Rev., 2007, 107, 3180-3211.
    [119] Shan J., Tenhu H., Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications, Chem. Commun., 2007, 4580-4598.
    [120] Li D., He Q., Li J., Smart core/shell nanocomposites: Intelligent polymers modified gold nanoparticles, Adv. Colloid Interface Sci., 2009, 149, 28-38.
    [121] Alarcón C. H., Pennadam S., Alexander C., Stimuli responsive polymers for biomedical applications, Chem. Soc. Rev., 2005, 34, 276-285.
    [122] Galaev I. Y., Mattiason B., Smart Polymers for Bioseparation and Biopro cessing, Taylor & Francis, London, 2002.
    [123] Murray B. S., Jackson A. W., Mahon C. S., Reactive thermoresponsive copolymer scaffolds, Chemical Communications, 2010, 46, 8651-8653.
    [124] Yoshida T., Kokufuta E., Okano T., Newly designed hydrogel with both sen sitive thermoresponse and biodegradability, J. Polym. Sci. Part A: Polym. Chem., 2003, 41, 779-787.
    [125] Wang Y., Zhang W., Zhang M., Pd-Catalyzed C-C Cross-Coupling Reactions within a Thermoresponsive and pH-Responsive and Chelating Polymeric Hydrogel, J. Org. Chem., 2009, 74, 1923-1931.
    [126] Hamamoto H., Kudoh M., Ikegami S., Novel Use of Cross-Linked Poly(N-iso propylacrylamide) Gel for Organic Reactions in Aqueous Media, Org. Lett., 2006, 8, 4015-4018.
    [127] Kanaoka S., Yagi N., Sakurai H., Thermosensitive Gold Nanoclusters Stabilized by Well-Defined Vinyl Ether Star Polymers: Reusable and Durable Catalysts for Aerobic Alcohol Oxidation, J. Am. Chem. Soc., 2007, 129, 12060-12061.
    [128] Kimura M., Kato M., Shirai H., Temperature-Sensitive Dendritic Hosts: Synthe sis, Characterization, and Control of Catalytic Activity, Macromolecules, 2000, 33, 1117-1119.
    [129] Nakayama M., Okano T., Polymer Terminal Group Effects on Properties of Thermoresponsive Polymeric Micelles with Controlled Outer-Shell Chain Lengths, Biomacromolecules, 2005, 6, 2320-2327.
    [130] Berndt I., Pedersen J. S., Richtering W., Structure of Multiresponsive“Intelli gent”Core-Shell Microgels, J. Am. Chem. Soc., 2005, 127, 9372-9373.
    [131] Wang Y., Wei G., Dong A., Responsive catalysis of thermoresponsive micelle- supported gold nanoparticles, J. Mol. Catal. A: Chem., 2007, 266, 233-238.
    [132] Bergbreiter D. E., Using Polymers to Control Substrate, Ligand, or Catalyst Solubility, J Polym Sci Part A: Polym Chem, 2001, 39, 2351-2363.
    [133] Chen C. W., Akashi M., Synthesis, Characterization and Catalytic Properties of Colloidal Platinum Nanoparticles Protected by Poly(N-isopropylacrylamide), Langmuir, 1997, 13, 6465-6472.
    [134] Chen C. W., Arai K., Akashi M., Temperature and pH dependence of the cata lytic activity of colloidal platinum nanoparticles stabilized by poly[(vinylamine)- co-(N-vinylisobutyramide)]Macromol, Chem. Phys., 2000, 201, 2811-2819.
    [135] Lu Y., Mei Y., Ballauff M., Thermosensitive Core–Shell Particles as Carriers for Ag Nanoparticles: Modulating the Catalytic Activity by a Phase Transition in Networks, Angew. Chem. Int. Ed., 2006, 45, 813-816.
    [136] Li D., Cui Y., Li J., Thermosensitive Nanostructures Comprising Gold Nano particles Grafted with Block Copolymers, Adv. Funct. Mater., 2007, 17, 3134- 3140.
    [137] Wang Y., Wei G., Shi L., Synthesis of gold nanoparticles stabilized with poly(N-isopropylacrylamide)-co-poly(4-vinyl pyridine) colloid and their appli cation in responsive catalysis, J. Mol. Catal. A: Chem., 2008, 280, 1-6.
    [138] Bergbreiter D. E., Case B. L., Caraway J. W., Poly(N-isopropylacrylamide) Soluble Polymer Supports in Catalysis and Synthesis, Macromolecules, 1998, 31, 6053-6062.
    [139] Hamamoto H., Suzuki Y., Ikegami S., A Recyclable Catalytic System Based on a Temperature-Responsive Catalyst, Angew. Chem. Int. Ed., 2005, 44, 4536-4538.
    [140] Mayya K. S., Caruso F., Phase Transfer of Surface-Modified Gold Nanoparti cles by Hydrophobization with Alkylamines, Langmuir, 2003, 19, 6987-6993.
    [141] Panigrahi S., Basu S., Pal T., Synthesis and Size-Selective Catalysis by Supported Gold Nanoparticles: Study on Heterogeneous and Homogeneous Catalytic Process, J. Phys. Chem. C., 2007, 111, 4596-4605.
    [142] Pradhan N., Pal A., Pal T., Silver nanoparticle catalyzed reduction of aromatic nitro Compounds, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 196, 247-257.
    [143] Esumi K., Miyamoto K., Yoshimura T., Comparison of PAMAM-Au and PPI-Au Nanocomposites and Their Catalytic Activity for Reduction of 4-Nitrophenol, J. Colloid Interface Sci., 2002, 254, 402-405.
    [144] Hayakawa K., Yoshimura T., Esumi K., Preparation of Gold-Dendrimer Nano composites by Laser Irradiation and Their Catalytic Reduction of 4-Nitrophenol, Langmuir, 2003, 19, 5517-5521.
    [145] Borkovec M., Koper G. J. M., Proton Binding Characteristics of Branched Polyelectrolytes, Macromolecules, 1997, 30, 2151-2158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700