保护层开采过程中卸载煤体损伤及渗透性演化特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保护层开采及卸压瓦斯抽采是目前首选的区域性瓦斯治理措施。虽然近年来对保护层开采理论的研究取得了很大突破,然而理论研究还存在不足,目前的研究成果多偏重于宏观的现象与规律。本文运用岩石力学、卸荷岩体力学、损伤力学、渗流力学等理论,采用理论研究、实验室实验、数值模拟与工程实践相结合的方法,深入研究了保护层开采过程中被保护层卸载煤体的细观损伤与渗透性演化特征及被保护层渗透率的分布特征,最后,将研究成果应用于淮南矿区潘一矿被保护层瓦斯抽采钻孔的优化。本论文的主要研究结论如下:
     (1)依据被保护层煤体先经历加载而后三向应力同时被卸载的受力过程,选择固定轴向位移卸围压、固定差应力卸围压作为实验室研究的力学路径,采用离散性小且力学性质与原煤样相近的型煤试样,应用有效应力原理和等效力学路径的方法通过耦合CT实时检测实验与渗透性实验的结果分析了卸载过程中煤体损伤对渗透性的影响,同一卸载力学路径下两不同实验获得的应力-应变曲线特征的一致性验证了把CT实时检测实验与渗透性实验的结果耦合起来分析试样损伤对渗透性的影响的合理性。
     (2)CT检测实验结果表明,卸载初期损伤发育缓慢,随着损伤的累积,在本论文的实验条件下,从围压卸载至5MPa开始,损伤增长速度加快;试样最终破坏时内部裂纹呈锥形,且试样首先从低密度端发生破坏,进而向高密度端发展;同一试样,密度越小的层位,损伤发展越快,同时,固定差应力卸围压应力路径对试样造成的损伤更大。
     (3)卸载过程中渗透性实验结果表明,随着初始围压的增大,固定轴向位移卸围压与固定差应力两种卸载力学路径下,差应力减小速率增大处的围压值升高;卸载力学路径下,卸载点前加载阶段,渗透率与轴向应变的关系为k A B11e(A1、B1为拟合系数);卸载点后卸载阶段,渗透率与轴向应变的关系为k AB2e2(A2、B2为拟合系数)。
     (4)推导出了用根据CT值表示的损伤变量,获得了卸载过程中损伤变量的变化,结合等效力学路径下渗透性实验的结果,获得了卸载煤体损伤对渗透性的影响,即卸载初期损伤与渗透率增加均较小,随着继续卸载,在本论文的实验条件下,两种卸载路径下有效围压均卸载至5MPa左右后,损伤和渗透率的增加速度均加快。
     (5)依据被保护层的膨胀变形情况与实验室获得的渗透率与轴向应变的关系,利用Matlab软件的Surf函数得出了被保护层渗透率的分布特征,即被保护层可分为原始渗透性区、渗透性减小区、渗透性增大区1、渗透性增大区2,基于此,从被保护层切眼和收作线附近区域至工作面内部,瓦斯抽采钻孔的布孔间距依次设计为5m×5m,10m×10m,40m×40m,被保护层工作面掘进、回采期间的瓦斯参数验证了瓦斯抽采钻孔布孔方式优化的合理性。
In present, extraction of protective coal seam and pressure relief gas drainage is thepreferred regional gas control measures. In recent years, although the theoretical study ofmining the protective coal seam has made great breakthrough, however, there are stillinsufficient, at the same time, the current study results play more emphasis on macrophenomena and laws. By using the theory of rock mechanics, unloading rock mass mechanics,damage mechanics and fluid mechanics, together with combining theoretical research,laboratory experiments, numerical simulation and engineering research, the damage&permeability development during unloading in coal and permeability distributioncharacteristics of the protected coal seam were studied. At last, the results were applied togas drainage drilling optimization of Panyi coal mine in Huainan coalfield. The mainconclusions of this paper are as follows.
     (1) According to the forcing process that the coal body of protected coal seam will beloaded firstly, then unloaded with the three dimensional stress being reduced simultaneously,the fixing axial displacement with unloading confining pressure and fixing deviatoric stresswith unloading confining pressure stress paths were choosed for laboratory experiments, byusing the reconstituted coal with small discrete and similarly mechanical properties comparedto the raw coal samples, on the other hand, taking the principle of effective stress andequivalent mechanical path, the influence of damage on permeality during unloading wasstudied by coupling the results of the CT experiments and permeability experiments, also, theconsistency of stress-strain curve from two different experiments verified the method ofcoupling was feasible.
     (2) The CT tests denoted that the damage development was low at the initial unloadingstage; the damage growth has accelerated after the confining pressure was unloaded to5MPaunder the experimental conditions in this paper; The internal destroy cracks was invertedconeand, also, the failure occurs firstly at the low-density side, developing toword thehigh-density side; To the same sample, the smaller the density, the faster the damagedeveloped, at the same time, fixing deviatoric stress with unloading confining pressure stresspaths had greater damage to sample.
     (3) The permeability tests denoted that with the increases of the initial confining pressure,to the stress paths of the fixing axial displacement with unloading confining pressure andfixing deviatoric stress with unloading confining pressure, at the increasing point of thedecreasing rate about the deviatoric stress, the value of the confining pressure became bigger;The relarion between permeality and axial strain before the unloading point isk A B11e, and also, after the unloading point, the relarion isk A2eB2.
     (4) The damage was gotten CT values. According to the CT values during unloading, thedamage variable changes were gotten, together with the results of permeability tests under thequivalent stress path, this paper gave the influence of damage on permeability that at theinitial stage, the damage and permeability were all small, however, the increases of damageand permeability speeded with the effective confining pressure being unloaded to5MPa underthe fixing axial displacement with unloading confining pressure and fixing deviatoric stresswith unloading confining pressure stress paths.
     (5) According to the expansion&deformation of the protected coal seam and therelation between permeability and axial strain derived from permeability tests, thepermeability distribution characteristics was gotten by the help of Surf fution in Matlabsoftware. The permeability of protected coal seam could be divided into the originalpermeability district, permeability diminishing district, permeability increasing district1,permeability increasing district2. Based on this, from cut eye and closing to the inside of theprotected coal seam,5m×5m,10m×10m,40m×40m drilling arrangement was used. At last,the gas parameters of mining the wokface vefied the rationality about the drillingarrangement.
引文
[1]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [2]程远平等著.煤矿瓦斯防治理论与工程应用[M].徐州:中国矿业大学出版社,2010.
    [3]程远平,俞启香,袁亮,等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报,2004,33(2):132-136.
    [4]于不凡.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2005.
    [5]国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2011.
    [6]国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [7]程远平,俞启香.煤层群煤与瓦斯安全高效共采体系及应用[J].中国矿业大学学报,2003,32(5):471-475.
    [8]王海峰.采场下伏煤岩体卸压作用原理及在被保护层卸压瓦斯抽采中的应用[D].中国矿业大学博士论文,2008.
    [9]刘海波,程远平,宋建成,等.极薄保护层钻采上覆煤层透气性变化及分布规律[J].煤体学报,2010,35(3):411-416.
    [10]王亮.巨厚火成岩下远程卸压煤岩体裂隙演化与渗流特征及在瓦斯抽采中的应用[D].中国矿业大学博士论文,2010.
    [11]刘洪永.远程采动煤岩体变形与卸压瓦斯流动气固耦合动力学模型及其应用研究[D].中国矿业大学博士论文,2010.
    [12]李伟,程远平,王君得,等.特厚突出煤层上保护层开采及卸压瓦斯抽采[J].煤矿安全,2011,(3):37-39.
    [13]练友红.祁南矿上保护层开采卸压瓦斯抽采技术[J].煤矿安全,2010,(7):33-35.
    [14]高峰,许爱斌,周福宝.保护层开采过程中煤岩损伤与瓦斯渗透性的变化研究[J].煤炭学报,2011,36(12):1979-1984.
    [15]胡国忠,王宏图,李晓红,等.急倾斜俯伪斜上保护层开采的卸压瓦斯抽采优化设计[J].煤炭学报,2009,29(1):9-14.
    [16]张拥军,于广明,路世豹,等.近距离上保护层开采瓦斯运移规律数值分析[J].岩土力学,2010,31(增1):398-404.
    [17]国家煤矿安全监察局.保护层开采技术规范(AQ1050-2008)[M].北京:煤炭工业出版社,2008.
    [18] Palchik, V. Analytical and empirical prognosis of rock foliation in rock masses[J]. Journal of CoalUkraine,1989,7:45-46.
    [19] Karacan, C.. Esterhuizen, G.S. Schatzel, S. et al. Reservoir simulation based modeling forcharacterizing longwall methane emissions and gob gas venthole production[J]. International Journalof Coal Geology,2007,71(2-3):225–245.
    [20]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998,23(5):466-469.
    [21] Palchik, V. Formation of fractured zones in overburden due to longwall mining[J]. EnvironmentalGeology,2003,44:28-38.
    [22]刘泽功,袁亮,戴广龙,等.采场覆岩裂隙特征研究及在瓦斯抽放中应用[J].安徽理工大学学报,2004,32(4):10-15.
    [23]赵保太,林伯全,林传兵.三软不稳定煤层覆岩裂隙演化规律实验[J].采矿与安全工程学报,2007,24(2):199-202.
    [24]杨科,谢广祥.采动裂隙分布及其演化特征的采厚效应[J].煤炭学报,2008,33(10):1092-1096.
    [25]孙凯民,许德岭,杨昌能,等.利用采场覆岩裂隙研究优化采空区瓦斯抽放参数[J].采矿与安全工程学报,2008,25(03):366-370.
    [26]林海飞,李树刚,成连华,等.覆岩采动裂隙带动态演化模型的实验分析[J].采矿与安全工程学报,2011,28(2):298-303.
    [27] Guo, H. Yuan, L. Shen, B.T. et al. Mining-induced strata stress changes,fractures and gas flowdynamics in multi-seam longwall mining[J]. International Journal of Rock Mechanics&MiningSciences,2012,54:129–139.
    [28] Liu, Y.K. Zhou, F.B. Liu, L. et al. An experimental and numerical investigation on the deformation ofoverlying coal seams above double-seam extraction for controlling coal mine methane emissions[J].International Journal of Coal Geology,2011,87(2):139-149.
    [29]涂敏.潘谢矿区采动岩体裂隙发育高度的研究[J].煤炭学报,2004,29(6):641-645.
    [30]王国艳,于广明,于永红,等.采动岩体裂隙分维演化规律分析[J].采矿与安全工程学报,2012,26(12):859-863.
    [31]张玉军,李凤明.高强度综放开采采动覆岩破坏高度及裂隙发育演化监测分析[J].岩石力学与工程学报,2011,30(增1):2994-3001.
    [32]张玉军,张华兴,陈佩佩.覆岩及采动岩体裂隙场分布特征的可视化探测[J].煤炭学报,2008,33(11):1216-1219.
    [33] Majdi, A. Hassani, F.P. Nasiri, M.Y. Prediction of the height of destressed zone above the mined panelroof in longwall coal mining[J]. International Journal of Coal Geology,2012,98(1):62-72.
    [34] Yang, T.H. Xu, T. Tang, C.A. et al. Stress-damage-flow coupling model and its application to pressurerelief coal bed methane in deep coal seam[J]. International Journal of Coal Geology,2011,86(4):357-366.
    [35]弓培林,靳钟铭,魏锦平.放顶煤开采煤体裂隙演化规律实验研究[J].太原理工大学学报,1999,30(2):119-123.
    [36]于广明,谢和平,周宏伟,等.结构化岩体采动裂隙分布规律与分形性实验研究[J].实验力学,1998,13(02):145-154.
    [37]李振华,丁鑫品,程志恒,等.薄基岩煤层覆岩裂隙演化的分形特征研究[J].采矿与安全工程学报,2010,27(04):576-580.
    [38]哈秋舲.岩石边坡工程与卸荷非线性岩石(体)力学[J].岩石力学与工程学报,1997,16(4):386-391.
    [39]哈秋舲,刘国霖.长江三峡工程岩石边坡卸荷岩体工程地质研究[M].北京:中国建筑工业出版社,1997.
    [40]哈秋舲,张永兴.三峡船闸岩石陡高边坡稳定与控制研究[M].重庆:重庆大学出版社,1997.
    [41]吴刚.复杂应力状态下完整岩体卸荷破坏的损伤力学分析[J].河海大学学报,1997,25(3):44~49.
    [42]黄润秋,黄达.卸荷条件下岩石变形特征及本构模型研究[J].地球科学进展,2008,23(5):441-446.
    [43]邱士利,冯夏庭,张传庆,等.不同卸围压速率下深埋大理岩卸荷力学特性试验研究[J].岩石力学与工程学报,2010,29(9):1807-1817.
    [44]吴玉山,李纪鼎.大理岩卸荷力学特性的研究[J].岩土力学,1984,5(1):29-36.
    [45]李宏哲,夏才初,闫子舰等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10):2104-2109.
    [46]尹光志,李贺,鲜学福,等.工程应力变化对岩石强度特性影响的试验研究[J].岩土工程学报,1987,9(2):20-27.
    [47]安泰龙,茅献彪,孙风娟.卸荷速率对岩石强度影响的试验研究[J].力学与实践,2009,31(6):21-24.
    [48]吴刚.岩体在加、卸荷条件下破坏效应的对比分析[J].岩土力学,1997,18(2):13-16.
    [49] Miao, J.L. Jia X.N. Cheng, C. The Failure Characteristics of Granite under True Triaxial unloadingCondition[J]. Procedia Engineering,2011,26:1620-1625.
    [50]陶履彬,夏才初,陆益鸣.三峡工程花岗岩卸荷全过程特性的试验研究[J].同济大学学报,1998,26(3):330-334.
    [51]黄润秋,黄达.卸荷条件下岩石变形特征及本构模型研究[J].地球科学进展,2008,23(5):441-446.
    [52]吕颖慧,刘泉声,胡云华.基于花岗岩卸荷试验的损伤变形特征及其强度准则[J].岩石力学与工程学报,2009,28(10):2096-2103.
    [53]何江达,谢红强,范景伟,等.卸载岩体脆弹塑性模型在高边坡开挖分析中的应用[J].岩石力学与工程学报,2004,17(7):1082-1086.
    [54]沈俊辉,王兰生,王青海,等.卸荷岩体的变形破裂特征[J].岩石力学与工程学报,2003,22(12):2028-2031.
    [55]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327.
    [56]王在泉,张黎明,孙辉,等.不同卸荷速度条件下灰岩力学特性的试验研究[J].岩石力学与工程学报,2011,32(4):1045-1050.
    [57]吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报,1998,17(6):615-621.
    [58]张宏博,宋修广,黄茂松,等.不同卸荷应力路径下岩体破坏特征试验研究[J].山东大学学报,2004,23(7):1082-1086.
    [59] Xie, H.Q. He, C.H. Study of the unloading characteristics of a rock mass using the triaxial test anddamage mechanics[J]. International Journal of Rock Mechanics&Mining Sciences,2010,47(2):286-298.
    [60]祝捷,姜耀东,赵毅鑫,等.加卸荷同时作用下煤样渗透性的试验研究[J].煤炭学报,2010,35(增刊):76-80.
    [61]尹光志,蒋长宝,王维忠,等.不同卸围压速度对含瓦斯煤岩力学和瓦斯渗流特性影响试验研究[J].岩石力学与工程学报,2011,30(1):68-77.
    [62]吕有厂,秦虎.含瓦斯煤岩卸围压力学特性及能量耗散分析[J].煤炭学报,2012,37(9):1505-1510.
    [63]蒋长宝,尹光志,黄启翔,等.含瓦斯煤岩卸围压变形特征及瓦斯渗流试验[J].煤炭学报,2011,36(5):802-807.
    [64]蒋长宝,黄滚,黄启翔.含瓦斯煤多级式卸围压变形破坏及渗透率演化规律实验[J].煤炭学报,2011,36(12):2039-2042.
    [65]赵洪宝,王家臣.卸围压时含瓦斯煤力学性质演化规律试验研究[J].岩土力学,2011,32(增刊1):270-274.
    [66]黄启翔,尹光志,姜永东.地应力场中煤岩卸围压过程力学特性试验研究及瓦斯渗透特性分析[J].岩石力学与工程学报,2010,29(8):1639-1648.
    [67]刘保县,李东凯,赵宝云.煤岩卸荷变形损伤及声发射特性[J].土木建筑与环境工程,2009,31(2):57-61.
    [68]苏承东,高保彬,南华,等.不同应力路径下煤样变形破坏过程声发射特征的试验研究[J].岩石力学与工程学报,2009,28(4):757-766.
    [69]尹光志,王浩,张东明.含瓦斯煤卸围压蠕变试验及其理论模型研究[J].煤炭学报,2011,36(12):1963-1967.
    [70]邓婕,唐建新.含瓦斯煤岩卸围压实验及上解放层解放范围的研究[D].重庆:重庆大学,2012.
    [71]何峰,王来贵,王振伟,等.煤岩蠕变-渗流耦合规律实验研究[J].煤炭学报,2011,36(6):930-933.
    [72]刘京红,姜耀东,赵毅鑫.声发射及CT在煤岩体裂纹扩展实验中的应用进展[J].金属矿山,2000,(10):13-15.
    [73]葛修润,任建喜,蒲毅彬,等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报,1999,18(5):497-502.
    [74]仵彦卿,曹广祝,王殿武.基于X射线CT方法的岩石小裂纹扩展过程分析[J].应用力学学报,2005,22(3):484-490.
    [75]杨更社,谢定义,张长庆,等.煤岩体损伤特性的CT检测[J].力学与实践,1996,18(2):19-23.
    [76]杨更社,孙钧,谢定义,等.岩石材料损伤变量与CT数间的关系分析[J].力学与实践,1998,20(4):47-49.
    [77]杨更社,谢定义,张长庆.岩石损伤CT数分布规律的定量分析[J].岩石力学与工程学报,1998,17(3):279-285.
    [78]杨更社,谢定义,张长庆,等.岩石损伤扩展力学特性的CT分析[J].岩石力学与工程学报,1999,18(3):250-254.
    [79]杨更社,谢定义,张长庆,等.岩石损伤特性的CT识别[J].岩石力学与工程学报,1996,15(1):48-54.
    [80]葛修润,任建喜,蒲毅彬,等.岩石细观损伤扩展规律的CT实时试验[J].中国科学(E辑),2000,30(2):104-111.
    [81]任建喜,罗英,刘文刚,等. CT检测技术在岩石加卸载破坏机理研究中的应用[J].冰川冻土,2002,24(5):672-675.
    [82]任建喜,葛修润,蒲毅彬,等.岩石卸荷损伤演化机理CT实时分析初探[J].岩石力学与工程学报,2000,19(6):697-701.
    [83]尹小涛,王水林,党发宁,等. CT实验条件下砂岩破裂分形特性研究[J].岩石力学与工程学报,2008,27(增1):2721-2726.
    [84]程展林,左永振,丁红顺. CT技术在岩土试验中的应用研究[J].长江科学院学报,2011,28(3):33-38.
    [85] Zhou, X.P. Zhang, Y.X. Ha, Q.L. Real-time computerized tomography (CT) experiments on limestonedamage evolution during unloading[J]. International Journal of Coal Geology,2008,50(1):49-56.
    [86] Feng, X.T. Chen, S.L. Zhou, H. Real-time computerized tomography (CT) experiments on sandstonedamage evolution during triaxial compression with chemical corrosion[J]. International Journal ofRock Mechanics&Mining Sciences,2004,41(2):181-192.
    [87]李廷春,吕海波,王辉.单轴压缩载荷作用下双裂隙扩展的CT扫描试验[J].岩土力学,2010,31(1):9-14.
    [88]丁卫华,仵彦卿,蒲毅彬,等.低应变率下岩石内部裂纹演化的X射线CT方法[J].岩石力学与工程学报,2003,22(11):1793-1797.
    [89]毛灵涛,安里千,王志刚,等.煤样力学特性与内部裂隙演化关系CT实验研究[J].辽宁工程技术大学学报,2010,29(3):408-411.
    [90]刘小红,晏鄂川,朱杰兵,等.三轴加卸载条件下岩石损伤破坏机理CT试验分析[J].长江科学院学报,2010,29(3):408-411.
    [91]仵彦卿,丁卫华,曹广庆.岩石单轴与三轴CT尺度裂纹演化过程观测[J].西安理工大学学报,2003,19(2):115-119.
    [92] J. Denis N. Pone, Michael Hile, Phillip M. Three-dimensional carbon dioxide-induced straindistribution within a confined bituminous coal[J]. International Journal of Coal Geology,2009,77(1-2):103-108.
    [93] Mazumder, S. Wolf, K.H. Elewaut, K. et al. Application of X-ray computed tomography for analyzingcleat spacing and cleat aperture in coal samples[J]. International Journal of Coal Geology,2006,68(3-4):205-222.
    [94] Karacan, C.O. Okandan, E. Adsorption and gas transport in coal microstructure: investigation andevaluation by quantitative X-ray CT imaging[J]. Fuel,2001,80(4):509-520.
    [95] Yao, Y.B. Liu, D.M. et al. A Non-destructive characterization of coal samples from China usingmicrofocus X-ray computed tomography[J]. International Journal of Coal Geology,2009,80(2):113-123.
    [96] ROBINA, H.C. WONG, K.T. CHAU. Crack coalescence in a rock-like material containing twocracks[J]. International Journal of Rock Mechanics&Mining Sciences,1998,35(2):147-164.
    [97] BOBET, A. EINSTEIN, H.H. Fracture coalescence in rock-type materials under uniaxial and biaxialcompression[J]. International Journal of Rock Mechanics&Mining Sciences,1998,35(7):863-888.
    [98] Sagong, M. Bobet, A. Coalescence of multiple flaws in a rock-model material in uniaxialcompression[J]. International Journal of Rock Mechanics&Mining Sciences,2002,39(2):229-241.
    [99] Mishnaevsky Jr, L.L. Lippmanna, N. Schmauder, S. et al. In-situ observation of damage evolution andfracture in AlSi7Mg0.3cast alloys[J]. Engineering Fracture Mechanics,1999,63(4):395-441.
    [100] ASHBY, M. F. HALLAM, S. D. et al. The failure of brittle solids containing small cracks undercompressive stress states[J]. Acta metal,1986,34(3):497-510.
    [101] HORII, H. NEMAT-NASSER, S. Compression-induced microcrack growth in brittle solids axialsplitting and shear failure[J]. Journal of Geophysical Research,23(2):3105-3125.
    [102] Park, C.H. Bobet, A. Crack initiation, propagation and coalescence from frictional flaws in uniaxialcompression[J]. Journal of Geophysical Research,2010,77(14):2727-2748.
    [103] Wong, L.N.Y. Einstein, H.H. Systematic evaluation of cracking behavior in specimens containingsingle flaws under uniaxial compression[J]. International Journal of Rock Mechanics&MiningSciences,2009,46(2):239-249.
    [104] Lockner, D. The role of acoustic emiss ion in th e study of rock fracture[J]. International Journal ofRock Mechanics&Mining Sciences,1993,30(7):883-899.
    [105] Blake, W. Microseismic applications for mining-a practical guide[R]. Washington: Bureau of Mines,1982.
    [106]李庶林,尹贤刚,王泳嘉,等.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2499-2503.
    [107]纪洪广,蔡美峰.混凝土材料破裂过程中声发射空间自组织演化特征及其在结构失稳预报中的应用[J].土木工程学报,2001,34(5):15-20.
    [108]王恩元,何学秋,刘贞堂,等.煤体破裂声发射的频谱特征研究[J].煤炭学报,2004,29(3):289-292.
    [109]赵洪宝,尹光志.含瓦斯煤声发射特性试验及损伤方程研究[J].岩土力学,2011,32(3):667-671.
    [110]刘向峰,汪有刚.声发射能量累积与煤岩损伤演化关系初探[J].辽宁工程技术大学学报,2011,30(1):1-4.
    [111]吴刚,赵震洋.不同应力状态下岩石类材料破坏的声发射特性[J].岩土工程学报,1998,20(2):82-85.
    [112]徐涛,杨天鸿.孔隙压力作用下煤岩破裂及声发射特性的数值模拟[J].岩土力学,2004,2(510):1560-1574.
    [113]文光才,杨慧明,邹银辉.含瓦斯煤体声发射应力波传播规律理论研究[J].煤炭学报,2008,33(3):295-298.
    [114]杨永杰.煤岩强度、变形及微震特征的基础试验研究[D].青岛:山东科技大学,1999.
    [115]刘保县,黄敬林,王泽云,等.单轴压缩煤岩损伤演化及声发射特性研究[J].岩石力学与工程学报,2009,28(增1):3234-3240.
    [116]李东印,王文,李化敏,等.重复加-卸载条件下大尺寸煤样的渗透性研究[J].采矿与安全工程学报,2010,27(1):121-125.
    [117]高保彬.采动煤岩裂隙演化及其透气性能试验研究[D].北京:北京交通大学,2010.
    [118]来兴平,吕兆海,张勇,等.不同加载模式下煤样损伤与变形声发射特征对比分析[J].岩石力学与工程学报,2008,27(增2):3521-3527.
    [119] Feng, X.T. Ding, W.X. Experimental study of limestone micro-fracturing under a coupled stress, fluidflow and changing chemical environment[J]. International Journal of Rock Mechanics&MiningSciences,2007,44(3):437-448.
    [120]唐春安,黄明利,张国民,等.岩石介质中多裂纹扩展相互作用及其贯通机制的数值模拟[J].地震,2001,21(2):53-58.
    [121]谢和平,钱平皋.大理岩微孔隙演化的分形特征[J].岩石力学与工程学报,1995,17(1):50-52.
    [122]石强,潘一山.煤体内部裂隙和流体通道分析的核磁共振成像方法研究[J].煤矿开采,2005,10(6):6-10.
    [123]孙培德.变形过程中煤样渗透率变化规律的实验研究[J].岩石力学与工程学报,2001,20(增):1801-1804.
    [124] Harpalani, S. Chen, G.L. Influence of gas production induced volumetric strain on permeability ofcoal[J]. Geotechnical and Geological Engineering,1997,15(4):303-325.
    [125]谭学术,鲜学福,张广样,等.煤的渗透性研究[J].西安矿业学院学报,1994,(1):22-25.
    [126]刘静波,赵阳升,胡耀青,等.剪应力对煤体渗透性影响的研究[J].岩土工程学报,2009,31(10):1631-1635.
    [127]张金才,王建学.岩体应力与渗流的耦合及其工程应用[J].岩石力学与工程学报,2006,25(10):1981-1989.
    [128] Peng, S.J. Xu, J. Yang, H.W. et al. Experimental study on the influence mechanism of gas seepage oncoal and gas outburst disaster. Safety Science,2012,50(4):816-821.
    [129]石必明,刘健,俞启香.型煤渗透特性试验研究[J].安徽理工大学学报,2007,27(1):5-8.
    [130]杨天鸿,徐涛,冯启言,等.脆性岩石破裂过程渗透性演化试验[J].东北大学学报,2003,24(10):974-977.
    [131] Somerton, W. H. Soylemezocjlut, I. M. Dudley, R.C. Effect of stress on permeability of coal [J].International Journal of Rock Mechanics&Mining Sciences,1975,12(5-6):129-145.
    [132]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩土工程学报,2001,23(1):68-70.
    [133]尹光志,李晓泉,赵洪宝,等.地应力对突出煤瓦斯渗流影响试验研究[J].岩石力学与工程学报,2008,27(12):2557-2561.
    [134]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对煤岩体气体渗流规律影响的试验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [135]李顺才,缪协兴,陈占清,等.承压破碎岩石非Darcy渗流的渗透特性试验研究[J].工程力学,1999,18(6):651-653.
    [136]杨永杰,宋扬,陈绍杰.煤岩全应力应变过程渗透性特征试验研究[J].岩土力学,2007,28(2):381-385.
    [137]曹树刚,李勇,郭平,等.型煤与原煤全应力-应变过程渗流特性对比研究[J].岩石力学与工程学报,2010,29(5):899-906.
    [138] Durucan, S. Edwards, J.S. The effects of stress and fracturing on permeability of coal. MiningScience and Technology,1986,3(3):205-216.
    [139]陈祖安,伍向阳,孙德明,等.砂岩渗透率随静压力变化的关系研究[J].岩石力学与工程学报,1995,14(2):155-159.
    [140] Wang, S.G. Elsworth, D. Liu, J.S. Permeability evolution during progressive deformation of intactcoal and implications for instability in underground coalseams[J]. International Journal of RockMechanics&Mining Sciences,2013,58:34-45.
    [141] Khodot, V.V. Role of methane in the stress state of a coal seam[J]. Soviet Mining Scince,1981,17(5):460-466.
    [142] Harpalan, I.S. Mopherson, M.J. The effect of gas evacation on coal permeability test specimens[J].Int. J. Rock. Mech. Min. Sci.&Geomech. Abstr,1984,21(3):361-364.
    [143] Mercera, R.A, Bawden, W.F. A statistical approach for the integrated analysis of mine-inducedseismicity and numerical stress estimates, a case study—Part Ⅰ:developing the relations[J].International Jounal of Rock Mechanics&Mining Sciences,2005,42(1):47-72.
    [144] Maria, B. Gonzalez, C. Control and prevention of gas mines, Riosa-Olloniego coal-field, Spain[J].International Journal of Coal Geology,2007,69(4):253-266.
    [145] Jasinge, D. Ranjith, P.G. Choi, S.K. Effects of effective stress changes on permeability of latrobevalley brown coal[J]. Fuel,2011,90(3):1292-1300.
    [146] Jasinge, D. Ranjith, P.G. Choi, S.K. Mechanical properties of reconstituted Australian black coal[J].Journal of Geotechnical and Geoenvironmental Engineering,2009,135(7):980-985.
    [147]张东明,胡千庭,袁地镜.成型煤样渗流的实验研究[J].煤炭学报,2011,36(02):288-292.
    [148]袁梅,李波波,许江.不同瓦斯压力条件下含瓦斯煤的渗透特性实验研究[J].煤矿安全,2011,42(03):1-4.
    [149]胡国忠,王宏图,范晓刚,等.低渗透突出煤的瓦斯渗流规律研究[J].岩石力学与工程学报,2009,28(12):2527-2534.
    [150]蒋长宝,尹光志,李晓泉,等.突出煤型煤全应力-应变全程瓦斯渗流实验研究[J].岩石力学与工程学报,2010,29(增2):3482-3487.
    [151] Perera, M.S.A. Ranjith, P.G. et al. Investigation of temperature effect on permeability of naturallyfractured black coal for carbon dioxide movement: An experimental and numerical study[J]. Fuel,2012,94:596-605.
    [152] Huy, P.Q. Sasaki, K. Sugai, Y.C. et al. Carbon dioxide gas permeability of coal core samples andestimation of fracture aperture width[J]. International Journal of Coal Geology,2010,83(1):1-10.
    [153]胡耀青,赵阳升,杨栋,等.煤体的渗透性与裂隙分维的关系[J].岩石力学与工程学报,2002,21(10):1452-1456.
    [154]李祥春,郭勇义,吴世跃.煤吸附膨胀变形与孔隙率、渗透率关系的分析[J].太原理工大学学报,2005,36(3):264-266.
    [155]涂敏,付宝杰,缪协兴.卸压开采损伤煤岩气体渗透率试验研究[J].实验力学,2012,27(2):930-933.
    [156] Gray, I. Reservoir engineering in coal seams,part1—the physical process of gas storage andmovement in coal seams[J]. SPE Reservoir Engineering,1987,2(1):28-34.
    [157] Sawyer, W.K. Zuber, M.D. Kuuskraa, V.A. et al. Using reservoir simulation and field data to definemechanisms controlling coalbed methane production[C]. Proceedings of the1987Coalbed MethaneSymposium, Alabama,1987:295-307.
    [158] Sawyer, W.K. Paul, G.W. Schraufnagel, R.A. Development and application of a3D coalbedsimulator[C]. International Technical Meeting Hosted Jointly by the Petroleum Society of CIM andthe Society of Petroleum Engineers,1990, Calgary, Alberta, Canada.
    [159]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报,1987,1:21-28.
    [160]靳钟铭,赵阳升,贺军,等.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报,1991,10(3):271-280.
    [161] Palmer, I. Mansoori, J. How permeability depends on stress and pore pressure in coalbeds,a newmodel[J]. SPE Annual Technical Conference and Exhibition,1996, Denver, Colorado.
    [162] Palmer, I. Mansoori, J. Permeability depends on stress and pore pressure in coalbeds, a new model[J].SPE Reservoir Evaluation and Engineering,1998,1(6):539–544.
    [163]胡耀青,赵阳升,魏锦平,等.三维应力作用下煤体瓦斯渗透规律实验研究中[J].西安矿业学院学报,1996,16(4):308-311.
    [164] Shi, J.Q. Durucan, S. Drawdown induced changes in permeability of coalbeds: a new interpretationof the reservoir response to primary recovery[J]. Transport in Porous Media,2004,56(1):1-16.
    [165] Shi, J.Q. Durucan, S. A model for changes in coalbed permeability during primary and enhancedmethane recovery[J]. SPE Reservoir Evaluation and Engineering,2005,8(4):291-299.
    [166] Cui, X. Bustin, R.M. Volumetric strain associated with methane desorption and its impact on coalbedgas production from deep coal seams[J]. AAPG Bulletin,2005,89(9):1181-1202.
    [167] Cui, X. Bustin, R.M. Chikatamarla, L. Adsorption-induced coal swelling and stress,implications formethane production and acid gas sequestration into coal seams[J]. Journal of GeophysicalResearch-Solid Earth,2007,112(B10):1978-2012.
    [168] Griffith, A.A. The phenomena of rupture and flow in solids[J]. Phil. Trans. Roy. Soc. London,1921,A221:163~198.
    [169]李银平,杨春和.裂纹几何特征对压剪复合断裂的影响分析[J].岩石力学与工程学报,2006,25(3):462-466.
    [170]黄达,金华辉,黄润秋.拉剪应力状态下岩体裂隙扩展的断裂力学机制及物理模型试验[J].岩土力学,2011,32(4):997-1001.
    [171]吴刚.工程岩体卸荷破坏机制研究的现状及展望[J].工程地质学报,2001,9(2):174-181.
    [172]李银平,杨春和.裂纹几何特征对压剪复合断裂的影响分析[J].岩石力学与工程学报,2006,25(3):462-466.
    [173]黄达,金华辉,黄润秋.拉剪应力状态下岩体裂隙扩展的断裂力学机制及物理模型试验[J].岩土力学,2011,32(4):997-1001.
    [174]尤明庆.岩样三轴压缩的破坏形式和Coulomb强度准则[J].地质力学学报,2002,8(2):179-185.
    [175] Brace, W.F. Walsh, J.B. Frangos, W.T. Permeability of granite under high pressure[J]. Journal ofGeophysical Research,1968,73:2225-2236.
    [176] Evans, B. Wong, T.F. Fault Mechanics and Transport Properties of Rocks[M]. Academic Press, NewYork,1992.
    [177] Wang, S.G. Elsworth, D. Liu, J.S. Permeability evolution in fractured coal: The roles of fracturegeometry and water-content[J]. International Journal of Coal Geology,2011,87(1):13-25.
    [178]尹光志,王登科,张东明,等.两种含瓦斯煤样变形特性与抗压强度的实验分析[J].岩石力学与工程学报,2009,28(2):410-417.
    [179] Kachanov, L.M. Time of the rupture process under creep condition[J]. Izv. AKad Nauk. U. S. S. R,1958,8:26-31.
    [180]刘豆豆,陈卫忠.高地应力下岩石卸载破坏机理及应用研究[D].山东:山东大学博士论文,2008.
    [181] Van Golf-Racht, T.D. Fundamentals of fractured reservoir engineering[J]. Developments inPetroleum Science,1982,12.
    [182] Bai, M. Elsworth, D. Coupled Processes in Subsurface Deformation, Flow and Transport[M].American Society of Civil Engineers Press, Reston,2000.
    [183] Wold, M.B. Connell, L.D. Choi, S.K. The role of spatial variability in coal seam parameters on gasoutburst behaviour during coal mining. International Journal of Coal Geology,2008,75(1):1-14.
    [184] Pan, Z.J. Connell, L.D. Modelling permeability for coal reservoirs: A review of analytical models andtesting data. International Journal of Coal Geology,2012,92:1-44.
    [185]徐献芝,李培超,李传亮.多孔介质有效应力原理研究[J].力学与实践,2001,23(4):42-44.
    [186] Klinkenberg, L.J. The permeability of porous media to liquids and gases[J]. Drilling and productionpractice. American Petroleum Institute,1941,200-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700