基于CPU+GPU的影像匹配高效能异构并行计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多核CPU和图形处理器(Graphic Processing Unit, GPU)的高速发展,不但促进了图像处理、虚拟现实、计算机仿真等领域的快速发展,同时也为利用GPU进行图形处理以外的高性价比绿色通用计算提供了良好的运行平台。因此,GPU的通用计算己成为高性能计算领域中的热点研究课题之一。
     伴随着传感器技术的不断进步,致使人们获取地表信息的手段越来越多样快捷。面对数据源的多样化与数据量的成倍增长,许多常规算法很难满足对海量数据进行高速计算的要求。而现代图形硬件GPU日益增加的可编程性和高效能计算能力,则为摄影测量与遥感中可并行化算法的加速提供很大的空间。本文仅就GPU大规模并行计算影像匹配研究中的若干问题进行了详细的分析,并提出了相应的解决方案。具体工作概述如下:
     (1)通过对摄影测量与遥感领域中与影像匹配处理相关的四种算法在GPU上的并行处理进行研究,提出了基于CPU+GPU的异构群核架构的影像处理共通解决方案,探索了影像处理的GPU大规模并行计算设计模式。基于GPU的影像处理通用并行解决方案要在数据精度、延迟和计算量等几个方面进行GPU加速效果的预评估,算法设计和优化过程中也须采用功能和数据分解、线程映射等并行计算方法以及存储器访问优化、通信优化和指令流优化等优化策略。基于GPU的影像处理通用解决方案设计与性能优化是与GPU的体系结构、求解问题的特征结合在一起的,通常需要多重因素整体考虑并不断尝试,最终达到理想的性能。针对GPU与CPU的不同,重点分析和讨论了GPU的加速原理以及当前比较成熟的统一计算设备架构(Compute Unified Device Architecture, CUDA)通用计算模型构架及其特点。
     (2)提出多GPUs加速的Wallis变换影像增强并行算法。借助于GPU较强的运算能力,利用CUDA并行计算架构在个人计算机(Personal Computer, PC)上实现了快速Wallis图像滤波算法,包括GPU上任务分解、大规模计算核心的分解方法,结合使用了共享存储器、全局存储器对算法进行加速。使用线程块内的共享存储器较好地解决了同一计算子空间的各线程同步问题。对比CPU和GPU计算Wallis影像变换的时间,实验结果表明,Wallis变换并行算法可以把计算速度提高2个数量级。该方法具有较好的实时性,可大大提高图像增强过程的处理速度,显著地减少计算时间。
     (3)研究基于GPU的Harris角点检测多设备控制并行算法,使用众多线程将计算中耗时的图像高斯卷积平滑滤波部分改造成单指令多线程(Single Instruction Multiple Thread, SIMT)模式,并采用GPU中共享存储器、常数存储器和锁页内存机制在CUDA上完成图像角点检测的全过程。实验结果表明,基于多GPUs的Harris角点检测并行算法成功实现了硬件加速,相对于CPU上运行的Harris角点检测算法,其执行效率有近60倍的提高。
     (4)提出基于CUDA架构的快速相关系数影像匹配并行算法,它能够在SIMT模式下完成高性能并行计算。并行算法系根据GPU的并行结构和硬件特点,采用执行配置技术、高速存储技术和全局存储技术三种加速技术,优化了数据存储结构,提高了数据访问效率。实验结果表明,并行算法充分利用了GPU的并行处理能力,速度是基于CPU实现的近20倍并能获得最高多处理器warp占有率。
     (5)研究面向CPU+GPU群核架构的尺度不变特征变换(Scale Invariant Feature Transform, SIFT)特征匹配并行算法,优化了数据存储结构,提高了数据访问效率。实验结果表明,与SIFT特征匹配的串行CPU实现方式相比,CUDA实现能够实现超过27倍的性能加速,极大地提高了SIFT特征匹配算法在实际应用中的实时性。
     (6)基于CPU+GPU的影像匹配系统集成研究。包括单GPU/多GPUs加速的Wallis-Harris-相关系数(WHR)影像匹配系统和单GPU/多GPUs加速的Wallis-SIFT(WS)影像匹配系统。实验结果表明,GPU加速的WHR影像匹配系统比CPU实现方法整体提速最高达37倍,GPU加速的WS影像匹配系统比CPU实现方法整体提速最高达39倍。
The rapid upgrade of multi-core CPU and Graphics Processing Unit (GPU) not only brings along the advance of the related applied technology such as image process, virtual reality, and computer simulation, but also provides an operating platform for low power consumption general-purpose computing of good price/performance ratio except for graphics process. Therefore, general-purpose computing based on GPU has become a very hot research topic in the field of high-performance computing.
     With the continuous development of sensor technology, resulting in the means for people to obtain the surface information more and more diverse quickly. The face of diverse data sources and doubling data quantity, many conventional algorithms could not well meet the challenge of the high-speed computing of large-scale data. The increasing programmability and high performance computational power of GPU present in modern graphics hardware provides great scope for acceleration of photogrammetry and remote sensing algorithms which can be parallelized. This dissertation gives a detailed analysis research on massively parallel computing based on GPU in issues of image matching, and also proposes effective solutions. Specific tasks are outlined below.
     (1) Based on the heterogeneous manycore architecture consisted of CPU and GPU schemes for image processing in common is given by studying the field of photogrammetry and remote sensing image matching processing associated with the four algorithms in parallel processing on the GPU. GPU-based massively parallel computing design patterns is explored in image processing. General parallel schemes based on GPU in image processing need to be pre-evaluated in terms of data accuracy, latency, and computing quantity etc. In addition, in the algorithms design and optimization, parallel computing methods such as function and data partition and thread mapping etc, optimization strategies such as memory access optimization, communication optimization and dictation optimization, should be adopted. In the design and optimization of general schemes based on GPU in image processing, various factors should be taken into consideration as a whole such as the architecture of GPU and the characteristics of problem solving. With trial and error, the desired performance can be ultimately achieved. For the difference between GPU and CPU, the acceleration principles of GPU are analyzed, and the general-purpose computing model of current mature framework Compute Unified Device Architecture (CUDA) and its characteristics are discussed.
     (2) A image enhancement parallel algorithm based on multi-GPU acceleration for Wallis transform is proposed. With the help of the strong computing ability of GPU and the parallel computing architecture of CUDA, the fast algorithm of image filter for Wallis transform is implemented on a Personal Computer. The method of large scale thread division is put forward along with the task division on GPU. Along with the use of shared memory and coalesced global memory access the algorithm is accelerated. Threads for the computation of the same computing subspace are properly synchronized by shared memory in thread block. It compares GPU's speed with CPU's for Wallis image transformation. The experimental result shows that Wallis transform parallel algorithm could get two orders of magnitude speedup. The method is excellent in real time processing ability. It accelerates processing speed of image enhancement process and reduces the computing time significantly.
     (3) Multi-device control parallel algorithm of Harris corner detection based on GPU is presented, so that time-consuming Gaussian image convolution filtering part during the whole image corner detection process can be implemented by many parallel threads. Finally, implementation of this Single Instruction Multiple Thread (SIMT) parallel algorithm using GPU mechanism of shared memory and constant memory and pinned host memory in CUDA is detailed. The experiments show that the parallel algorithm of Harris corner detection based on multi-GPU for the successful implementation of hardware acceleration is nearly 60 times faster than the traditional Harris corner detection algorithm implemented on CPU.
     (4) A fast correlation coefficient image matching parallel algorithm is presented based on architecture of CUDA. The algorithm can execute high performance parallel computing in SIMT Pattern. On the basis of the parallel architecture and hardware characteristic of GPU, the parallel algorithm introduces three speedup methods to improve the implementation performance:execution configuration technology, high-speed storage technology and global storage technology optimizes the data storage structure and improves the data access efficiency. The experiment result shows that parallel algorithm takes full advantage of GPU's parallel processing capability and obtain the highest Multiprocessor Warp Occupancy, processing speed is nearly 20 times faster than CPU-based implementation.
     (5) Parallel algorithm of Scale Invariant Feature Transform (SIFT) feature matching for manycore architecture of CPU and GPU is proposed, which optimized the data storage structure and enhanced the data accessing efficiency. Experimental results show that the CUDA implementation can achieve more than 27 times speedup in comparison with serial CPU implementation of SIFT feature matching. By virtue of GPU, the real-time processing ability of SIFT feature matching algorithm can be greatly improved in practical application.
     (6) CPU and GPU-based image matching system integration. Including single GPU/multi-GPU accelerating Wallis-Harris-correlation coefficient(WHR) image matching system and single GPU/multi-GPU accelerating Wallis-SIFT(WS) image matching system. Experimental results show that GPU implementing WHR image matching system achieves up to a 37 times speedup over the CPU version, GPU implementing WS image matching system achieves up to a 39 times speedup over the CPU version.
引文
1. [张祖勋2009] 张祖勋,柯涛,郭大海等.数字摄影测量网格在汶川大地震中的快速响应[J].中国工程科学,2009,11(6):54-62,89-93.
    2. [艾海滨 2009] 艾海滨.分布式无缝测图系统的研究与实现[D].武汉:武汉大学遥感信息工程学院,2009.
    3. [孙明伟 2009] 孙明伟.正射影像全自动快速制作关键技术研究[D].武汉:武汉大学遥感信息工程学院,2009.
    4. [I.Jazayeri 2008] I.Jazayeri, C.S.Fraser. INTEREST OPERATORS IN CLOSE-RANGE OBJECT RECONSTRUCTION[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing.2008:XXXVII(Part B5),69-74.
    5. [Wallis K F 1976] Wallis K F. Seasonal adjustment and relations between variables[J]. Journal of the American Statistical Association,1976,69(345):18-31.
    6. [Baltsavias E P 1991] Baltsavias E P. Multliphoto geometrically constrained matching[D]. America:Institute of Geodesy and Photogrammetry, ETH Zurich,1991:49,221.
    7. [Remondino F 2006] Remondino F. Image-based modelling for object and human reconstruction[D]. America:Institute of Geodesy and Photogrammetry,ETH Zurich, 2006:91,174.
    8. [王智均2000]王智均,李德仁,李清泉.Wallis变换在小波影像融合中的应用[J].武汉测绘科技大学学报,2000,25(4):338-342.
    9. [柯涛 2008] 柯涛.旋转多基线数字近景摄影测量[D].武汉:武汉大学遥感信息工程学院,2008.
    10. [Chang Li 2009] Chang Li, Hongmin Wu, Min Hu, et al. A novel method of straight-line extraction based on wallis filtering for the close-range building[C]//Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics,2009:290-293.
    11. [M.W.Sun 2008] M.W.Sun, J.Q.Zhang. DODGING RESEARCH FOR DIGITAL AERIAL IMAGES[C]//The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, Beijing.2008:Vol.XXXVII.Part B4,349-353.
    12. [Yu Lijun 2008] Yu Lijun, Nie Yueping, Zhang Yan. REMOTE SENSING CHANGE DETECTION STUDY OF THE GRAND CANAL AND ENVIRONS——A CASE STUDY IN THE YANGZHOU SECTION, JIANGSU, CHINA[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing. 2008:Vol.XXXVII.Part B7,1591-1594.
    13. [Lina Zhu 2006] Lina Zhu, Jianqing Zhang, Li Pa. River change detection based on remote sensing image and vector[C]//Proceedings of the First International Multi-Symposiums on Computer and Computational Sciences, IMSCCS'06. 2006:Vol.1,188-191.
    14. [Chunhua Zhu 2009] Chunhua Zhu, Yueping Nie. Study on the effects of Grand Canal on city pattern change of Hangzhou based on Remote Sensing[J]. Urban Remote Sensing Event,2009,69(345):1-6.
    15.[张力1999]张力.Wallis滤波在影像匹配中的应用[J].武汉测绘科技大学学报,1999,24(1):24-27.
    16.[胡贵菊2010] 胡贵菊.利用GPU实时处理反走样的新方法[J].科技创新导报,2010,(3):14.
    17. [Jian-ming Xia 2010] Jian-ming Xia, De-min Wei. Molecular structural mechanics approach to carbon nanotubes on graphics processing units[J]. European Journal of Mechanics-A/Solids,2010,29(3):440-447.
    18. [Xiaoxiao Wu 2008] Xiaoxiao Wu, Xiaohui Liang, Qidi Xu, et al. GPU-Based Feature-Preserving Distance Field Computation[C]//2008 International Conference on Cyberworlds.2008:203-208.
    19. [Robidoux Nicolas 2009] Robidoux Nicolas, Minglun Gong, John Cupitt, et al. CPU, SMP and GPU implementations of nohalo level 1, a fast co-convex antialiasing image resampler[C]//ACM International Conference Proceeding Series, Proceedings of the 2009 C3S2E Conference.2009:185-195.
    20. [Jian Li 2009] Jian Li, Yuqiang Lu, Bo Pu, et al. Accelerating Active Shape Model using GPU for facial extraction in video[C]//IEEE International Conference on Intelligent Computing and Intelligent Systems.2009:vol 4.522-526.
    21. [Oliver Kutter 2009] Oliver Kutter, Ramtin Shams, Nassir Navab. Visualization and GPU-accelerated simulation of medical ultrasound from CT images[J]. Computer Methods and Programs in Biomedicine,2009,94(3):250-266.
    22. [Peter B. Noel 2010] Peter B. Noel, Alan M. Walczak. Jinhui Xu, Jason J. Corso. GPU-based cone beam computed tomography[J]. Computer Methods and Programs in Biomedicine,2010,98(3):271-277.
    23. [Fang Xu 2010] Fang Xu, Wei Xu, Mel Jones, et al. On the efficiency of iterative ordered subset reconstruction algorithms for acceleration on GPUs[J]. Computer Methods and Programs in Biomedicine,2010,98(3):262-270.
    24. [Ruwen Schnabel 2008] Ruwen Schnabel, Sebastian Mo"ser, Reinhard Klein. Fast vector quantization for efficient rendering of compressed point-clouds[J]. Computers & Graphics, 2008,32(2):246-259.
    25. [Yuanyuan Zhang 2010] Yuanyuan Zhang, Jianhui Zhao, Zhiyong Yuan, et al. CUDA Based GPU Programming to Simulate 3D Tissue Deformation[C]//2010 International Conference on Biomedical Engineering and Computer Science.2010:1-5.
    26. [Naga K 2007] Naga K. Govindaraju a, Dinesh Manocha. Cache-efficient numerical algorithms using graphics hardware[J]. Parallel Computing,2007,33(10):663-684.
    27. [Damien Vintache 2010] Damien Vintache, Bernard Humbert, David Brasse. Iterative Reconstruction for Transmission Tomography on GPU Using Nvidia CUDA[J]. Tsinghua Science & Technology,2010,15(l):11-16.
    28. [Ch.W.Lerche 2009] Ch.W.Lerche, A.Ros, J.M.Monzo, et al. Maximum likelihood positioning for gamma-ray imaging detectors with depth of interaction measurement[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2009,604(1-2):359-362.
    29. [Eric B. Ford 2009] Eric B. Ford. Parallel algorithm for solving Kepler's equation on Graphics Processing Units:Application to analysis of Doppler exoplanet searches[J], New Astronomy,2009,14(4):406-412.
    30. [Fang Xu 2010] Fang Xu. Fast Implementation of Iterative Reconstruction with Exact Ray-Driven Projector on GPUs[J]. Tsinghua Science & Technology,2010,15(1):30-35.
    31. [Michael S. Vaz 2007] Michael S. Vaz, Yuri Sneyders, Matthew McLin, et al. GPU accelerated CT reconstruction for clinical use:Quality driven performance[C]//Progress in Biomedical Optics and Imaging-Proceedings of SPIE.2007:Vol.6510,65105G-1-65105G-8.
    32. [Haitao Zhang 2006] Haitao Zhang, Arie Kaufman. Interactive point-based isosurface exploration and high-quality rendering[J]. IEEE Transactions on Visualization and Computer Graphics,2006,12(5):1266-1274.
    33. [Sungkil Lee 2009] Sungkil Lee, Gerard Jounghyun Kim, Seungmoon Choi. Real-Time Depth-of-Field Rendering Using Anisotropically Filtered Mipmap Interpolation[J]. IEEE Transactions on Visualization and Computer Graphics,2009,15(3):453-464.
    34. [EVGUENI PARILOV 2008] EVGUENI PARILOV, DENIS ZORIN. Real-time rendering of textures with feature curves[J]. ACM Transactions on Graphics, 2008,27(1):1-15.
    35. [Li-hui Zou 2008] Li-hui Zou, Jie Chen, Juan Zhang, et al. The Comparison of Two Typical Corner Detection Algorithms[C]//Second International Symposium on Intelligent Information Technology Application.2008:vol.2,211-215.
    36. [Wang Wei 2009] Wang Wei, Tang Yiping, Hong Jun, et al. Image Corner Detection Technique Research on Machine Vision[C]//International Workshop on Intelligent Systems and Applications.2009:1-4.
    37. [Xin Kang 2006] Xin Kang, Chongzhao Han, Yi Yang, et al. Optic Flow Target Tracking Method Based on Corner Detection[C]//2006 IEEE International Conference on Acoustics, Speech and Signal Processing.2006:vol.2,837-840.
    38. [Yuran. Liu 2008] Yuran. Liu, Mingliang. Hou, Xuejun. Rao, et al. A Steady Corner Detection of Gray Level Images Based on Improved Harris Algorithm[C]//IEEE International Conference on Networking, Sensing and Control.2008:708-713.
    39. [Andrew Willis 2009] Andrew Willis, Yunfeng Sui. An algebraic model for fast corner detection[C]//2009 IEEE 12th International Conference on Computer Vision. 2009:2296-2302.
    40. [Hua-jun Song 2009] Hua-jun Song, Mei-li Shen. Optic Flow Target Tracking Method Based on Corner Detection[C]//2nd International Congress on Image and Signal Processing.2009:1-5.
    41. [Guo Chenguang 2009] Guo Chenguang, Li Xianglong, Zhong Linfeng, et al. A Fast and Accurate Corner Detector Based on Harris Algorithm[C]//Third International Symposium on Intelligent Information Technology Application.2009:49-52.
    42. [Hua J P 1995] Hua J P, Liao Q M. Multiscale corner detection by using wavelet transform[J]. IEEE Transactions on Image Processing,1995,4(1):100-104.
    43. [KITCHEN L 1982] KITCHEN L, ROSENFELD A. Gray-level corner detection[J]. Pattern Recognition Letters,1982,1(2):95-102.
    44. [MOKHTARIAN F 1998] MOKHTARIAN F, SUOMELA R. Robust image corner detection through curvature scale space[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1998,20(12):1376-1381.
    45. [FREEMAN H 1977] FREEMAN H, DAVIS L S. A corner finding algorithm for chain-coded curves[J]. IEEE Transaction on Computers,1977, C-26(3):297-303.
    46. [WANG H 1995] WANG H, BRADY M. Real-time corner detection algorithm for motion estimation[J]. Image and Vision Computing,1995,13(9):695-703.
    47. [Harris C G 1988] Harris C G, Stephens M J. A Combined Corner and Edge Detector[C]//Proceedings the Fourth Alvey Vision Conference, Manchester, UK. 1988:147-151.
    48. [MORAVEC H P 1977] MORAVEC H P. Towards automatic visual obstacle avoidance [C]//Proceedings of the 5th International Joint Conference on Artificial Intelligence, Cambridge, MA, USA.1977:584-590.
    49. [TRAJKOVIC M 1998] TRAJKOVIC M, HEDLEY M. Fast corner detection[J]. Image and Version Computing,1998,16(2):75-87.
    50. [SMITH S M 1997] SMITH S M, BRADY M. SUSAN——a new approach to low level image processing[J]. International Journal of Computer Version,1997,23(1):45-78.
    51. [Hongtao Xie 2010] Hongtao Xie, Ke Gao, Yongdong Zhang, et al. GPU-based fast scale invariant interest point detector[C]//2010 IEEE International Conference on Acoustics Speech and Signal Processin.2010:2494-2497.
    52. [Dongxiang Zhou 2004] Dongxiang Zhou, Yun-hui Liut, Xuanping Cai. An efficient and robust corner detection algorithm[C]//Fifth World Congress on Intelligent Control and Automation.2004:vol.5,4020-4024.
    53. [ZHANG Jin-ping 2010] ZHANG Jin-ping, LIAN Yong-xiang..JIAO Chun-wang, et al. An improved Harris corner distraction method based on B_spline[C]//2010 The 2nd IEEE International Conference on Information Management and Engineering.2010:504-506.
    54. [Christopher Claus 2009] Christopher Claus. Robert Huitl, Joachim Rausch, et al. Optimizing the SUSAN corner detection algorithm for a high speed FPGA implementation [C]//19th International Conference on Field Programmable Logic and Applications. 2009:138-145.
    55.[王渝2010] 王渝,王刚,梅员.基于FPGA的改进Harris角点检测方法[J].通信技术,2010,43(4):158-160.
    56. [Fabio Bellavia 2009] Fabio Bellavia, Marco Cipolla, Domenico Tegolo, et al. An Evolution of the Non-Parameter Harris Affine Corner Detector:A Distributed Approach[C]// 2009 International Conference on Parallel and Distributed Computing, Applications and Technologies.2009:18-25.
    57. [L.Teixeira 2008] L.Teixeira, W.Celes, M.Gattass. Accelerated corner-detector algorithms[EB/OL]. [2008]. http://www.comp.leeds.ac.uk/bmvc2008/proceedings/papers/45.pdf.
    58.[谢洪涛2010] 谢洪涛,高科,张勇东等.基于GPU的快速图像拷贝检测[J].计算机辅助设计与图形学学报,2010,22(9):1483-1490.
    59.[杜全叶2010]杜全叶.无地面控制的航空影像与LiDAR数据自动高精度配准[D].武汉:武汉大学遥感信息工程学院,2010.
    60. [Il-Kyun JUNG 2001] Il-Kyun JUNG, Simon LACROIX. A Robust Interest Points Matching Algorithm[C]//Eighth IEEE International Conference on Computer Vision.2001, vol.2:538-543.
    61. [Irene G. Karybali 2008] Irene G. Karybali, Emmanouil Z. Psarakis, Kostas Berberidis, et al. An efficient spatial domain technique for subpixel image registration[J]. Signal Processing: Image Communication,2008,23(9):711-724.
    62. [Cao Aizeng 2009] Cao Aizeng, Han Yanbin, Yin Jianqin. The Research of Image Matching Algorithm Based on Gradation Projection[C]//2009 International Forum on Information Technology and Applications.2009:Volume.2,359-361.
    63. [Wang Jun 2007] Wang Jun, Zhang Ming-zhu. Progress on Image Matching Algorithm[J]. Journal Of Atmosphere And Environmental Optics.2007,2:11-15.
    64.[Jaeweon Kim 2000] Jaeweon Kim, Shishir Shah. Fast stereo matching using multilevel enhancement[C]//Proceedings of the Third International Conference on Information Fusion. 2000:vol.2, WEB3/3-WEB3/8.
    65.[CHANGMING SUN 2002] CHANGMING SUN. Fast stereo matching using rectangular subregioning and 3D maximum-surface techniques[J]. International Journal of Computer Vision,2002,47(1-3):99-117.
    66. [LEI Ming 2006] LEI Ming, ZHANG Guangjun. A matching algorithm based on multi-resolution and edge enhancement using the optimum size of image[C]//Sixth Intl. Symp. on Instrumentation and Control Technology:Sensors, Automatic Measurement, Control, and Computer Simulation.2006:Vol.6358,63581B-1-63581B-7.
    67. [Barbara Zitova 2003] Barbara Zitova, Jan Flusser. Image registration methods:A survey[J]. Image and Vision Computing,2003,21(11):977-1000.
    68. [Daniel I Barnea 1972] Daniel I Barnea, Harvey F Silverman. A class of algorithms for fast digital image registration[J]. IEEE Transactions on Computers,1972,21 (2):179-186.
    69.[张祖勋2007] 张祖勋,张剑清.数字摄影测量学[M].武汉:武汉大学出版社,2007.
    70. [Kuglin C. D.1975] Kuglin C. D., Hines D. C.. The phase correlation image alignment method[C]//Proc. IEEE 1975 Int.Conf. Cybernet. Society.1975:163-165.
    71. [Casasent D.1976] Casasent D., Psaltis D.. Position oriented and scale invariant optical correlation[C]//Appl. Opt..1976:1793-1799.
    72. [Allney S.1986] Allney S., Morandi C. Digital image registration using projections[C]// IEEE Trans. Pattern Anal.Machine Intell. PAMI-8.1986:222-233.
    73. [Castro E. D.1987] Castro E. D., Morandi C. Registration of translated and rotated images using finite Fourier transforms[J]. IEEE Trans. Pattern Anal. Mach. Intell, 1987,9(5):700-703.
    74. [Lee D. J.1987] Lee D. J., Kpile T. F., Mitra S.. Digital registration techniques for sequential fundus images[C]//IEEE Proc. SPIE:Applic. Digital Image Processing X.1987: vol.829,293-300.
    75. [Appicella A.1989] Appicella A., Kippenhan J. S., Nagel J. H.. Fast multi-modality image matching[C]//SPIE Med.Imaging 111:Image Processing.1989:vol.1092,252-263.
    76.|Brown L. G. 1992] Brown L. G.. A survey of image registration techniques[J]. ACM Comput. Surv,1992,24(4):325-376.
    77. [Zitova B.2003] Zitova B., Flusser J.. Image registration methods:a survey[J]. Image and Vision Computing,2003,21:977-1000.
    78. [Li Zhuo 2007] Li Zhuo, Qiu Hui-juan. Fast image matching based on correlation coefficient[J]. Transactions of Beijing Institute of Technology,2007,27(11):998-1000.
    79. [J.B. Armstrong 1998] J.B. Armstrong, A. Maheswaran, M.D. Theys, et al. Parallel Image Correlation:Case Study to Examine Trade-Offs in Algorithm-to-Machine Mappings[J]. The Journal of Supercomputing,1998,12:7-35.
    80. [Tao Zhang 2009] Tao Zhang, Haojun Quan, Liang Zhao, et al. High Efficient Implementation of Image Matching Algorithm [C]//2nd International Congress on Image and Signal Processing.2009:1-5.
    81. [Shoji Muramatsu 2001] Shoji Muramatsu, Yoshiki Kobayashi, Kazuya Takahashi, et al. Development of template matching hardware and its high-speed processing strategy[J]. Electronics and Communications in Japan,2001,84(11):1-10.
    82. [Juergen.kadidlo 2008] Juergen.kadidlo, Alfred Strey. Exploiting Data-and Thread-Level Parallelism for Image Correlation[C]//16th Euromicro Conference on Parallel, Distributed and Network-Based Processing.2008,407-413.
    83.[张春玲2006] 张春玲,邱振戈.基于机群的并行匹配算法[J].测绘科学,2006.31(06):127-128,136.
    84.[宗亮2009] 宗亮,邬延辉.基于集群系统的并行图像灰度匹配[J].宁波大学学报:理工版,2009,22(01):74-77.
    85. [Xiaobai Sun 2008] Xiaobai Sun, Nikos P. Pitsianis, Paolo Bientinesi. Fast computation of local correlation coefficients[C]//Proceedings of SPIE-The International Society for Optical Engineering, Advanced Signal Processing Algorithms, Architectures, and Implementations XVIII.2008:vol.7074,707405-1-707405-8.
    86. [Lowe D G 1999] Lowe D G. Object Recognition from Local Scale-Invariant Features[C]//International Conference on Computer Vision, Corfu, Greece,1999:1150-1157.
    87. [Lowe D G 2004] Lowe D G. Distinctive Image Features from Scale-invariant Keypoints[J]. International Journa of Computer Vision,2004,60(2):91-110.
    88. [Mikolajczyk K 2005] Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors[J]. IEEE Trans Pattern Analysis and Machine Intelligence,2005, 27(10):1615-1630.
    89.[Ke Y 2004] Ke Y. Sukthankar R. PCA-SIFT:A more distinctive representation for local image descriptors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Washington DC,USA,2004:506-513.
    90.[王晓华2009] 王晓华,傅卫平,梁元月.提高SIFT特征匹配效率的方法研究[J].机械科学与技术,2009,28(9):1252-1255,1260.
    91.[王立中2009] 王立中,麻硕士,薛河儒等.一种改进的SIFT特征点匹配算法[J].内蒙古大学学报:自然科学版,2009,40(5):615-619.
    92.[高健2008] 高健,黄心汉,彭刚等.一种简化的SIFT图像特征点提取算法[J].计算机应用研究,2008,25(7):2213-2215,2222.
    93.[吕冀2009]吕冀,高洪民,汪渤等.图像制导的目标匹配算法与系统设计[J].弹箭与制导学报,2009,29(5):43-45,52.
    94.[刘立 2008] 刘立,彭复员,赵坤等.采用简化SIFT算法实现快速图像匹配[J].红外与激光工程,2008,37(1):181-184.
    95.[骞森 2007] 骞森,朱剑英.基于改进的SIFT特征的图像双向匹配算法[J].机械科学与技术,2007,26(9):1179-1182.
    96. [S. Sinha 2007] S. Sinha, J. Frahm, M. Pollefeys, et al. Feature tracking and matching in video using programmable graphics hardware[EB/OL]. [2007-3]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.81.9737&rep=repl&type=pdf.
    97. [Qi Zhang 2008] Qi Zhang, Yurong Chen, Yimin Zhang, et al. SIFT implementation and optimization for multi-core systems[C]//Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium, Program and CD-ROM. Miami, USA:IEEE Press, 2008:1-8.
    98.[田文2010] 田文,徐帆,王宏远等.基于CUDA的尺度不变特征变换快速算法[J].计算机工程,2010,36(8):219-221.
    99. [Matthias Hopf 2000] Matthias Hopf, Thomas Ertl. Hardware accelerated wavelet transformations[C]//Proceedings of EG/IEEE TCVG Symposium on Visualization.VisSym.Netherlands.2000:93-103.
    100. [Erik Lindholm 2001] Erik Lindholm, M.J.Kligard, Henry Moreton. A user-programmable vertex engine[C]//Proceedings of the 28th annual conference on Computer graphics and interactive techniques.2001:149-158.
    101. (Martin Rumpf 2001] Martin Rumpf, Robert Strzodka. Using graphics cards for quantized FEM computations[C]//Proceedings of VIIP.Marbella.2001:98-107.
    102. [E.S.Larsen 2001] E.S.Larsen, M.David. Fast matrix multiplies using graphics hardware[C]//Proceedings of Super Coumputing,Denver.2001:55-60.
    103. [Mark J.Harris 2002] Mark J.Harris, Greg Coombe, et al. Physically-based visual simulation on graphics hardware[C]//Proceedings of the ACM conference on Graphics hardware, Saarbrucken.2002:109-118.
    104. [C.J.Thompson 2002] C.J.Thompson, S.Hahn, M.Oskin. Using modern graphics architectures for general-purpose cumputing:A framework and analysis[C]//Proceedings of International Symposium on Microarchitecture,Istanbul.2002:306-317.
    105. [Kenneth Moreland 2003] Kenneth Moreland, Edward Angel. The FFT on a GPU[C]// Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, San Diego, California.2003:112-119.
    106. [Karl E.Hillesland 2003] Karl E.Hillesland, Sergey Molinov, Radek Grzeszczuk. Nonlinear optimization framework for image-based modeling on programmable graphics hardware[J]. ACM SIGGRAPH,2003,22(3):925-934.
    107. [Jeff Bolz 2003] Jeff Bolz, Ian Farmer, Eitan Grinspun,et al. Sparse matrix solvers on the GPU:Conjugate gradients and multigrid[J]. ACM SIGGRAPH,2003,22(3):917-924.
    108. [J.Fung 2004] J.Fung, S.Mann. Computer Vision Signal Processing on Graphics Processing Units[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.2004:5,93-96.
    109. [K.Bjorke 2006] K.Bjorke. Image Processing on Parallel GPU Pixel Units[J]. Computational Imaging IV,2006,(6065):342-353.
    110. [admin 2009] admin.我国2500亿次个人计算机研制成功[EB/OL]. [2009-02-16]. http://www.sklse.whu.edu.cn/news/ShowArticle.asp?ArticleID=670.
    111.[王渭巍 2009] 王渭巍.浪潮桌面“万亿次超算中心”实测报告[EB/OL]. [2009-03-19]. http://server.chinabyte.com/130/8754630.shtml.
    112. [baoht 2010] baoht. Mellanox为中科院新一代基于GPU的千万亿次级超级计算机提供同类最佳性能[EB/OL]. [2010-5-26]. http://www.unsbiz.com/information.do?method=detail & id=192303.
    113. [admin 2010] admin.国产曙光星云超级计算机跃身世界第二位[EB/OL]. [2010-05-31]. http://www.sklse.whu.edu.cn/news/ShowArticle.asp?ArticleID=816.
    114. [kill_bill 2010] kill_bill.天津国家超级计算中心大河-1A速度全球最快[EB/OL]. [2010-10-28]. http://www.bohaibbs.org/thread-178201-1-1.html.
    115. [SAMUEL 2008] SAMUEL K MOORe. Multicore is bad news for supercomputers[J]. IEEE Spectrum,2008,45(11):15-19.
    116.[张舒2009] 张舒,褚艳利,赵开勇等.GPU高性能运算之CUDA[M].北京:中国水利水电出版社,2009,10.
    117.[张繁2010] 张繁,干章野,姚建等.应用GPU集群加速计算蛋白质分子场[J].计算机辅助设计与图形学学报,2010,22(3):412-419.
    118.[王智广 2008] 王智广,刘伟峰.“并行计算”课程算法实践教学的新工具:CUDA编程模型[J].计算机教育,2008,23:103-106.
    119. [Nvidia 2009] Nvidia. CUDA_Getting_Started_2.3_Windows[EB/OL]. [2009-7]. http://developer.download.nvidia.com/compute/cuda/2_3/docs/CUDA_Getting_Started_2.3_Windows.pdf.
    120. [B.Bouda 2007] B.Bouda, Lh.Masmoudi, B.Chaouki, et al. Gray-level Corner Detection by Virtual Electric Field Model[C]//International Symposium on Computational Intelligence and Intelligent Informatics.2007:45-49.
    121. [Wei Liu 2009] Wei Liu, Jin Shen, Wengang Chen. Image Mosaic Technology Based on Overlapped Area Linear Transition Method[C]//2nd International Congress on Image and Signal Processing.2009:1-3.
    122. [OUYANG Cheng 2005] OUYANG Cheng, WANG Guangzhi, ZHANG Quan, et al. Evaluating Harris Method in Camera Calibration[C]//27th Annual International Conference of the Engineering in Medicine and Biology Society.2005:6383-6386.
    123. [Soo-Chang Pei 2007] Soo-Chang Pei, Jian-Jiun Ding. Improved Harris' Algorithm for Corner and Edge Detections[C]//IEEE International Conference on Image Processing. 2007:57-60.
    124.[李桐 2010] 李桐.图像融合中角点检测技术研究[J].北京印刷学院学报,2010,18(2):39-41,51.
    125. [Zhiyong Ye 2009] Zhiyong Ye, Yijian Pei, Jihong Shi. An Adaptive Algorithm for Harris Corner Detection[C]//International Conference on Computational Intelligence and Software Engineering.2009:1-4.
    126. [Hang-Ki Ryu 2007] Hang-Ki Ryu, Jae-Kook Lee, Eoun-Taeg Hwang, et al. A new comer detection method of gray-level image using Hessian matrix[C]//International Forum on Strategic Technology.2007:537-540.
    127. [Xin Zhang 2009] Xin Zhang, Guojin He, Jiying Yuan. A Rotation Invariance Image Matching Method Based on Harris Corner Detection[C]//2nd International Congress on Image and Signal Processing.2009:1-5.
    128. [Haibin Huang 2008] Haibin Huang, Guangfu Ma, Yufei Zhuang. Vehicle license plate location based on Harris corner detection[C]//Proceedings of the International Joint Conference on Neural Networks.2008:352-355.
    129. [Li Hua 2009] Li Hua, Wang Cui, Wang anna. Medical Image Registration Based on More Features and Artificial Immune Algorithm[C]//International Joint Conference on Artificial Intelligence.2009:469-472.
    130. [Lei Wang 2009] Lei Wang, Yuming Shen. An algorithm based on the harris corner detector to identify the palmprint extraction[C]//The Ninth International Conference on Electronic Measurement & Instruments.2009:4-11-4-14.
    131. [Flore Faille 2004] Flore Faille. A fast method to improve the stability of interest point detection under illumination changes[C]//2004 International Conference on Image Processing.2004:Vol.4,2673-2676.
    132. [Xu Guan 2009] Xu Guan, Su Jian, Pan Hongda, Zhang Zhiguo, Gong Haibin. A Novel Corner Point Detector for Calibration Target Images Based on Grayscale Symmetry[C]// 2009 Second International Symposium on Computational Intelligence and Design.2009: vol.1,64-67.
    133. [Bing Han 2009] Bing Han, Jiyin Sun, Jing Liu. A Fast Approximate Harris Corner Detector[C]//Proceedings of SPIE-The International Society for Optical Engineering. 2009:74952 W-1-74952 W-7.
    134. [F.Bellavia 2008] F.Bellavia, D.Tegolo, C.Valenti. A non-parametric scale-based corner detector[C]//19th International Conference on Pattern Recognitio.2008:1-4.
    135. [Pradip Mainali 2010] Pradip Mainali, Qiong Yang, Gauthier Lafruit,et al. Lococo:low complexity corner detector[C]//2010 IEEE International Conference on Acoustics Speech and Signal Processing.2010:810-813.
    136. [Hakan Ardo 2009] Hakan Ardo, Kalle Astrom. Bayesian formulation of image patch matching using cross-correlation[C]//Third ACM/IEEE International Conference on Distributed Smart Cameras.2009:1-8.
    137. [Ji Bing 2009] Ji Bing, Shan Gan-lin, Zhou Yun-feng, et al. Aircraft pose estimation based on integrated feature matching[C]//4th IEEE Conference on Industrial Electronics and Applications.2009:vol.2,226-229.
    138. [Mingsheng LIAO 1999] Mingsheng LIAO, Li ZHANG, Zuxun ZHANG, et al. An automatic matching strategy for INSAR data[C]//IEEE International on Geoscience and Remote Sensing Symposium.1999:vol.1,488-490.
    139. [Lu zhaijun 2009] Lu zhaijun, Tian hongqi, Liu yinglong, et al. Correlation matching algorithm based on dynamic gray threshold for catadioptric stereo vision[C]//IEEE International Conference on Intelligent Computing and Intelligent Systems.2009:vol.4, 588-592.
    140. [Arif Mahmood 2007] Arif Mahmood, Sohaib Khan. Early Termination Algorithms for Correlation Coefficient Based Block Matching[C]//IEEE International Conference on Image Processing.2007:vol.2, II-469-II-472.
    141. [Marshall S. Sussman 2003] Marshall S. Sussman, Graham A. Wright. Factors affecting the correlation coefficient template matching algorithm with application to real-time 2-D coronary artery MR imaging[J]. IEEE Transactions on Medical Imaging, 2003,22(2):206-216.
    142. [Arif Mahmood 2008] Arif Mahmood, Sohaib Khan. Exploiting local auto-correlation function for fast video to reference image alignment[C]//15th IEEE International Conference on Image Processing.2008:vol.2.2412-2415.
    143. [Mi Wang 2005] Mi Wang, Baorong Zhang, Xiaogang Ning. Automatic change detection based on least square image matching[C]//Proceedings of SPIE-The International Society for Optical Engineering.2005:v6045 ,Ⅱ,604534-1-604534-7.
    144. [M.Trujillo 2004] M.Tiujillo. E.Izquierdo. A robust correlation measure for correspondence estimation[C]//Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission.2004:155-162.
    145. [Peter Bunting 2008] Peter Bunting, Richard Lucas, Frederic Labrosse. An Area based Technique for Image-to-image Registration of Multi-Modal Remote Sensing Data[C]//IEEE International on Geoscience and Remote Sensing Symposium.2008:vol.5,212-215.
    146. [Wei Liu 2009] Wei Liu, Jin Shen, Wengang Chen. Image Mosaic Technology Based on Overlapped Area Linear Transition Method[C]//2nd International Congress on Image and Signal Processing.2009:8-11.
    147. [Koenderink J J 1984] Koenderink J J. The Structure of Image[J]. Biological Cybernetics,1984,50.
    148. [Lindeberg, T 1994] Lindeberg, T. Scale-space theory:A basic tool for analysing structures at different scales[J]. Journal of Applied Statistics,1994,21(2).
    149. [Junchul Kim 2009] Junchul Kim, Eunsoo Park, Xuenan Cui, et al. A fast feature extraction in object recognition using parallel processing on CPU and GPU[C]//IEEE International Conference on Systems, Man and Cybernetics.2009:3842-3847.
    150. [Warren Cheung 2009] Warren Cheung, Ghassan Hamarneh. n-SIFT:n-Dimensional scale invariant feature transform[J]. IEEE Transactions on Image Processing,2009, 18(9):2012-2021.
    151. [Jonathan Horgan 2009] Jonathan Horgan, Francis Flannery, Daniel Toal. Towards real time vision based UUV navigation using GPU technology[C]//OCEANS 2009-EUROPE. 2009:1-6.
    152. [Seth Warn 2009] Seth Warn, Wesley Emeneker, Jackson Cothren, et al. Accelerating SIFT on parallel architectures[C]//IEEE International Conference on Cluster Computing and Workshops.2009:1-4.
    153. [Aldo Camargo 2010] Aldo Camargo, Kyle Anderson, Yi Wang, et al. Real-time unmanned aircraft systems surveillance video mosaicking using GPUs[C]//Proceedings of SPIE-The International Society for Optical Engineering.2010:vol.7668, 76680S-1-76680S-8.
    154. [Mark Murphy 2009] Mark Murphy, Kurt Keutzer, Hong Wang. Image feature extraction for mobile processors[C]//IEEE International Symposium on Workload Characterization.2009:138-147.
    155.[Gee-Sem Hsu 2009] Gee-Sem Hsu, Chyi-Yeu Lin, Jia-Shan Wu. Real-time 3-D object recognition using Scale Invariant Feature Transform and stereo vision[C]//4th International Conference on Autonomous Robots and Agents.2009:239-244.
    156. [Yu Qiao 2009] Yu Qiao, Wei Wang, Jianzhuang Liu, et al. A theory of phase singularities for image representation and its applications to object tracking and image matching[J]. IEEE Transactions on Image Processing,2009,18(10):2153-2166.
    157. [Marko Heikkil"a 2009] Marko Heikkila, MattiPietik'ainen, CordeliaSchmid. Description of interest regions with local binary patterns[J]. Pattern Recognition,2009, 42(3):425-436.
    158. [Amit Mukherjee 2009] Amit Mukherjee, Miguel Velez-Reyes, Badrinath Roysam. Interest points for hyperspectral image data[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(3):748-760.
    159. [Weiliang Wang 2009] Weiliang Wang, Zhiqiang Wei, Bo Yin. Research on binocular stereo matching algorithm based on feature points[C]//2009 International Conference on Information Engineering and Computer Science, ICIECS 2009.2009:1-4.
    160.[刘贵喜2008] 刘贵喜,刘冬梅,刘凤鹏等.一种稳健的特征点配准算法[J].光学学报,2008,28(3):454-461.
    161.[王峰2004]王峰,曾湧,何善铭等.实现CBERS图像自动几何精校正的地面控制点数据库的设计方法[J].航大返回与遥感,2004,25(2):45-49.
    162.[姬亭2010] 姬亭,盛庆红,宗鹏.大重叠度影像的相关系数匹配精度分析[J].计算机应用,2010,30(2):57-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700