高炉煤气余压发电装置中炉顶压力稳定性分析与控制试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高炉煤气余压发电装置(简称TRT装置)技术,是利用了高炉炼铁工艺中
    所产生煤气的压力能驱动透平发电,将原本通过减压阀消耗掉的压力能转变为
    电能,同时还减弱了由减压阀组产生的噪音污染,因此TRT是一种低投入、高
    产出的高技术环保节能设备。但由于TRT装置的高炉顶压的稳定性是影响主流
    程高炉生产工艺的重要因素,因此如何解决安装TRT装置后的高炉顶压稳定性
    问题对于TRT技术的质量和推广是很关键的。本论文的研究通过对顶压稳定性
    的分析,研制了控制软件,成功地解决了顶压稳定性的控制问题。
     论文的研究工作是由陕鼓集团主持的“高炉TRT环保节能技术产业化示范
    工程”项目的一部分,该项目已被国家计委列入“国家高技术产业发展项目计
    划”。本论文具有重要工程应用意义和经济价值。
     本文基于流体力学理论对TRT系统中的顶压波动进行了深入的理论分析和
    研究,建立了TRT管路系统的流体力学平衡控制方程;同时首创性地设计和建
    造了TRT装置模拟试验台,并制定了TRT装置顶压稳定性问题的实验方案;本
    文根据流体力学控制模型成功地研制出基于SIEMENS WINCC组态平台的TRT
    顶压稳定性控制软件(STPC),并在TRT装置模拟试验台上对STPC软件进行
    了反复试验,结果表明该软件对模拟炉顶压力波动和重故障紧急停机切换过程,
    控制准确、有效,精度高,可以工程应用。
     论文的创新点主要表现在:
     .(1)首次对TRT装置中管路系统压力流量变化进行流体力学理论分析,建
    立了控制顶压稳定性的理论模型与数学方程,并据此研制出顶压稳定性软件。
     (2)设计并制造了TRT装置的模拟试验台,并成功地进行了项压稳定性的
    控制软件的模拟试验。这在国内是首创的,国际上也未见报道。
     (3)采用本论文的控制软件,通过在模拟试验台上的实验,表明该软件对
    于顶压稳定性的控制精度大大高于目前工程中所采用的PID控制精度,在国内
    是领先的,国际上居先进水平。
     本论文的成果已经通过陕西省科技厅主持的成果鉴定,并获得“中国机械
    工业科学技术”二等奖。
The blast furnace top pressure power recovery turbine unit (briefly as TRT) makes use of pressure energy from the process gas of a blast furnace, driving a turbine for power generation, which also eliminates noise pollution caused by relief valve group and avoids waste of gas pressure energy caused by throttle of relief valve group. So TRT unit is an equipment of low investment, high output and environment protection. Meanwhile, as TRT is popularized, customers often worry about instability of the blast furnace top pressure caused by TRT unit and the influence on the product when TRT unit is applied for power generation. Consequently, it is more and more important to keep the stability of the blast furnace top pressure. And how to keep the stability of the blast furnace top pressure becomes on of the urgent problem in improving the ability of competition of TRT and the popularity of TRT.Based on the theory of fluid mechanics, we analyzed the instability of the blast furnace top pressure in the TRT system in detailed and derived the physical and mathematic models (system balance control equations) according to analysis of TRT system. We established the control and experimental system for research and test of TRT top pressure stability and solve the problem of the blast furnace top pressure successfully. Meanwhile, The STPC control software devised by us is based on the SIMENS WINCC system. We also do a lot of experiment to STPC control software on the TRT control and experimental system. And all of the results indicated that the STPC control software is very effective on controlling the blast furnace top pressure when TRT works and it is easily popularized.The major conclusion has been obtained as follows:(1) We firstly analyze the pipe system in the TRT system theoretically by the theory of fluid mechanics and established the physical and mathematic models. The STPC control software is developed to solve the keep the stability of the blast furnace top pressure.(2) The control and experimental system for research and test of TRT top pressure stability is established firstly. And the STPC control software has been testified successfully in the experimental system.(3) STPC software developed by the authors have more advantages compared with the optimized PID controller (the control method is mostly adopted in TRT products) under the same condition of the TRT system test device and the two indexes
    of top pressure offset peak value and peak value lasting time have greatly improved in emergency change-over and stator blades stabilization process.The production of present dissertation had passed through the authenticated by the Science Committee of Shan Xi province and wined the second price of the China mechanical engineering science technology.
引文
[1] De Henau, V., Raithby, G.D, A transient two-fluid model for the simulation of slug flow in pipelines - II. Validation, International Journal of Multiphase Flow, 1996 (22) :119-126.
    [2] Ke, S.L., Ti, H.C Transient analysis of isothermal gas flow in pipeline network, Chemical Engineering Journal, 2000, 76(2): 169-177.
    [3] Tao, W.Q., Ti, H.C ,Transient analysis of gas pipeline network, Chemical Engineering Journal, 1998, 69(1): 47-52.
    [4] Dukhovnaya, Yulia; Adewumi, Michael A., Simulation of non-isothermal transients in gas/condensate pipelines using TVD scheme, Powder Technology, 2000, 112(2): 163-171.
    [5] Osiadacz, Andrzej J., Chaczykowski, Maciej, Comparison of isothermal and non-isothermal pipeline gas flow models, Chemical Engineering Journal, 2001, 81(3): 41-51.
    [6] De Henau, V., Raithby, G. D., A transient two-fluid model for the simulation of slug flow in pipelines-II. Validation, International Journal of Multiphase Flow, 1995, 21(3): 351-363.
    [7] De Henau, V.; Raithby, G.D. A study of terrain-induced slugging in two-phase flow pipelines, Previews of Heat and Mass Transfer , 1995, 21( 4): 324-333 .
    [8] Tentis, E., Margaris, D., Papanikas, D., Transient gas flow simulation using an Adaptive Method of Lines, Comptes Rendus Mecanique, 2003, 331( 7): 481-487.
    [9] Osiadacz A. J., Hierarchical control of transient flow in natural gas pipeline systems, International Transactions in Operational Research, 1998, 5(4): 285-302.
    [10]Ng, Moses L.; Lin, Chien-Liang; Cheng, Ya-Tang, Operation of an on-site fuel cell power plant using natural gas with excess carbon dioxide, Journal of Power Sources,1998, 74(2): 159-168.
    [11] Anon, Software toolkit for pipeline engineers, International Journal of Multiphase Flow, 1996, 22(1): 138-144.
    [12] Casadei, F., Halleux, J. P., Sala, A., Chille, F., Transient fluid-structure interaction algorithms for large industrial applications, Computer Methods in Applied Mechanics and Engineering, 2001, 190(25): 3081-3110.
    [13] Taitel, Y., Bamea, D., Effect of gas compressibility on a slug tracking model, Chemical Engineering Science, 1998, 53(11): 2089-2097.
    [14] Yow W., Numerical error in natural: Gas transient Calculations, ASME, 1972.
    [15] Gray Z., Watters, Modem analysis and control of unsteady flow in pipelines, Ann arboselences Publisher's Inc, 1979.
    [16] Wylie, E. B., Streeter, Y. L., Stoner M. A., Unsteady natural gas calculations in complex piping system, SPEJ, 1974, 36-48.
    [17] Deuton T. D., Through flow calculation for transonic axial flow turbines, ASME J. of power Eng, 1978.
    [18] Jennions I. K., Stow P., A Quasi-three-dimensional turbomachinery black desigh system: part Ⅰ Throughflow analysis, Trans. ASME, vol. 1078, 1985.
    [19] Yecn C. C., Young, Non-equilibrium streamline curvature through flow calculations in wet stream turbines, Trans. ASME, vol. 104, 1982
    [20] Sullerey R. K., Kumar S., A study of axial turbine loss models in a streamline curvature computing scheme, ASME. Vol. 106, 1984.
    [21] Haeki N et al, Top pressure control system for pressure recovery turbine power plant (blast furnace gas pressure energy recovery), Hitachi Zosen Technical Review, 1980, 41(2): 34-38.
    [22] Shimoda H. et al, Measurement of blade vibratory stress in a blast furnace top pressure recovery turbine, Hitachi Zosen Technical Review, 1983, 44(4): 225-230.
    [23] Kitamura N., Development of top pressure recovery turbine, Int Iron & Steel Inst. 1983, 211-233.
    [24] Laval P., Turbine for recovery of top-pressure blast furnace, b.s.t-cockerill solution, CNRM, 1970, 24: 21-33.
    [25] Shigeoka K., Power-generating system utilizing recovered surplus heat, Meidensha Review (International Edition), 1995, 1: 14-15.
    [26] Sasaki Y., Present state of top gas pressure recovery turbine plants, Journal of the Iron and Steel Institute of Japan, 1978, 64(13): 1906-1913.
    [27] Busib G., Simonetti S., Thermodynamic analysis of blast furnace top gas pressure recovery turbines, Proceedings of the Intersociety energy conversion engineering conference, 1995, 169-174.
    [28] Ruggiero F., Lagorgia D., Energy recovery of blast-furnace gas coke: The importance of a correct regulation system, Proceedings of the intersociety energy conversion engineering conference, 1991, 5: 503-518.
    [29] Azzam, M., Nour, M. Abdul-Sadek. Energy An expert system for voltage control of a large-scale power system Conversion and Management. 1996, 37(1): 81-86
    [30] Wang, Wen Jie; Tang, Bing Yong. A fuzzy adaptive method for intelligent control, Expert Systems with Applications, 1999, 16(1): 43-48.
    [31] Hong, Ying-Yi, An enhanced expert system with fuzzy reasoning for line flow control in power systems, Electric Power Systems Research, 1996, 39(1): 1-8.
    [32] Udupa, A. Narendranath; Thukaram, D., An expert fuzzy control approach to voltage stability enhancement, 1999, 21(4): 279-287.
    [33] Herrera, F.; Lozano, M.; Verdegay, J. L. A learning process for fuzzy control rules using genetic algorithms, Fuzzy Sets and Systems, 1998, 100(1-3): 143-158.
    [34] Gurocak, H. B. A, Genetic-algorithm-based method for tuning fuzzy logic controllers, Fuzzy Sets and Systems, 1999, 108(1): 39-47.
    [35] Johnston, R. Fuzzy logic control, Microelectronics Journal (Incorporating Journal of Semicustom ICs), 1995, 26(5): 481-495.
    [36] Herrera, E, Lozano, M., Verdegay, J. L. Tuning Fuzzy Logic Controllers by Genetic Algorithms, International Journal of Approximate Reasoning, 1995, 12(3-4): 299-315.
    [37] Nageswararao, Bodapati; Jeyasurya, B. Fuzzy-expert system for voltage stability monitoring and control, 1998, 47(3): 215-222.
    [38] Krczy, Laszlo T. Algorithmic Aspects of Fuzzy Control, 1995, 12(3-4): 159-219.
    [39] Szafnicki, K.; Gentil, S. A knowledge base for an expert identification package, Control Engineering Practice, 1995,3(6): 783-792.
    [40]Hammel II, Robert J.; Sudkamp, Thomas, An Adaptive Hierarchical Fuzzy Model, Expert Systems with Applications, 1996, 11(2): 125-136.
    [41]Sun, Chi Ki; Uraikul, Varanon; Chan, Christine W.; Tontiwachwuthikul, Paitoon. An integrated expert system/operations research approach for the optimization of natural gas pipeline operations, Engineering Applications of Artificial Intelligence, 2000, 13(4): 465-475.
    [42]Monostori, L., Egresits, C, On hybrid learning and its application in intelligent manufacturing. Computers in Industry, 1997,33 (1): 111-117.
    [43]Jamsa-Jounela, Sirkka Liisa; Oja, M., Modelling Module of the Intelligent Control System for the Variable Volume Pressure Filter, Filtration arid Separation, 2000, 37(2): 38-49.
    [44]Bandyopadhyay, R.; Chakraborty, U.K.; Patranabis, D. Auto tuning a PID controller: A fuzzy-genetic approach, Journal of Systems Architecture, 2001,47(7): 663-673.
    [45]Balakrishnan, S.R.; Santhakumar, S. Fuzzy modelling considerations in an aero gas turbine engine start cycle, Fuzzy Sets and Systems, 1996, 78(1): 1-4.
    [46]Dumont,G.A., Application of advanced control methods in the pulp and paper industry - a survey, Automatica, 1986,22: 143-153.
    [47]Gegov,A., Multilevel intelligent fuzzy control of oversaturated urban traffic networks, Int J Systems Sci,1994,24(6): 967-978.
    [48]Porter,B.,Jones,A.H.,Mckeown,C.B., Real-time Expert Tuners for PI Controllers, IEE Proceedinds,1987,4: 260-263.
    [49]Brernji,H.R.,Khedkar,R, Learning and Tuning Fuzzy Logic Controllers Through Teinforcements, IEEE Trans Neural Networks, 1992,3(5): 724-740.
    [50]Kontopoulos, A.; Krallis, K.; Koukourakis, E.; Denaxas, N.; Kostis, N.; Broussaud, A.; Guyot, O., A hybrid, knowledge-based system as a process control 'tool' for improved energy efficiency in alumina calcining furnaces, Applied Thermal Engineering, 1997,17( 8-10):. 935-945.
    [51] 王清福,湿式高炉煤气透平的热力膨胀计算,动力工程,1986(2):6~14.
    [52] 俞俊权,高炉炉顶发电机型和回收系统的选用,钢铁,1990,25(5):60~67.
    [53] 刘苏,我国高炉煤气顶压发电(TRT)机组发展概况,冶金动力增刊,1990(2):18~21.
    [54] 俞俊权,高炉顶压回收透平发电装置的现状和发展前景,冶金能源,1990,15(3):50~53.
    [55] 徐伟民,国产TRT推广中应注意的几个问题,炼铁,1998,17(1):31~33.
    [56] 潘宏,彭劲松,高炉炉顶煤气实际能量利用率及其技术应用展望,冶金动力,2000(4):57~59.
    [57] 叶长青,高炉煤气余压透平发电装置(TRT)的发展与创新,节能,2000(8):13~15.
    [58] 胡小敏,简述武钢新三号高炉的煤气除尘及余压发电,冶金动力,1990(1):37~38.
    [59] 吴亚平,武钢3号高炉TRT现状分析及潜力探讨,武钢技术,1994:58~64.
    [60] Peter Kreuzhuber,斯洛伐克Kosice冶金工厂利用炉顶气涡伦膨胀机回收能量,冶金设备和技术,1997(2):8~10.
    [61] 何平,蒋钧,吴成林,干湿两用TRT装置在攀钢的应用,冶金能源,1999,18(1):42~46.
    [62] 王海祥,TRT技术在马钢2500M~3高炉上的应用,马钢技术,2001(3):22~26.
    [63] 刘云玲,张旭华,TRT系统在邯钢1260M~3和900M~3高炉中的应用,邯钢科技,2000(7):7~9.
    [64] 戚国祥,挖掘高炉阿米起能源回收利用的潜力,重钢技术,2001(3):34~36.
    [65] 合平 兰向东 张俊良 谢金铭,(5):提高干式TRT运转率的煤气净化工艺改造,冶金能源,2001,20(5):11~14.
    [66] 郑礼民,年7月,国产高炉阿米起余压膨胀透平发电装置的运行分析,冶金能源,1988,7(4):38~40.
    [67] 余俊权,提高TRT运转率的可行性措施,冶金能源,1989,8(6):22~26
    [68] 张连瑞,唐钢1号高炉煤气余压发电装置及其建设与运行实践,冶金能源,1994,13(5):52~55.
    [69] 扬先桥,影响5~#TRT发电出力因素分析,冶金动力,1998(5):41~45.
    [70] 余耀波 张灵,武钢4~#高炉大修煤气系统改造设计,冶金动力,1999(1):41~42.
    [71] E.Faber,环保型高炉,资金改备,2000(4):12~18.
    [72] 强文政,武钢新3号高炉TRT装置运行状况良好,炼铁,1992(6):63~64
    [73] 黄国斌 沈云备,,宝钢1号高炉炉顶煤气余压发电效益好,炼铁,1992(6):83-89.
    [74] 陈世鹄,大型高炉的煤气干法除尘,武钢技术,1988(3):68~72.
    [75] 丁小榕,全干式布袋除尘自动控制系统(温度控制系统):太钢科技,1988(3):58~66.
    [76] [日]藤岛 英胜等,高炉炉顶余压发电干式静电除尘(EP)的开发,宝钢情报,1989(3):54~61.
    [77] 路学和,莱钢750M~3高炉阿米起净化装置的选型,冶金动力,1989(3):29~30.
    [78] 吴世华,鞍钢高炉煤气干法除尘及余压透平的应用问题,冶金动力,1990(1):34~36.
    [79] 程明璜,三高炉煤气干式布袋除尘装置布袋破损原因浅析,太钢科技,1990(3):18~21.
    [80] 潘华珊,顶压发电和干法除尘节能效果分析与实践,冶金动力,1991(3):6~8.
    [81] 孙原生,干式除尘-高炉炉顶煤气压力控制系统,太钢科技,1991(1):27~31.
    [82] 潘华珊,新一代高炉煤气节能高效湿式精净化设备,冶金能源,1994,13(6):47~49.
    [83] 齐振华,高连胜,刘俊天,太钢1350M~3高炉炉顶煤气降温装置的设计和运行,钢铁,1994(11):56~58.
    [84] 王风歧,高炉煤气干式电除尘特点和规律,钢铁,1995,30(2):12~13.
    [85] 郑玉梅,4号高炉干式布袋除尘运行实践,柳钢科技,1997(3):8~11.
    [86] 孙在等,管式电除尘器的试验研究,冶金动力,2000(1):27~30.
    [87] 张振聪,高炉煤气布袋除尘工艺的应用实践与探讨,冶金动力,2000(2):40~42.
    [88] 肖志军,吕勇,昊成林,干式布袋除尘技术在大容积高炉除尘希统的应用,冶金动力,2000(3):39~42.
    [89] 邓茂忠,成爱萍,高炉煤气高速外滤式脉冲清灰布袋除尘的应用,冶金环境保护,2000(5):30~33.
    [90] 李东迈,高炉煤气干式电除尘技术浅谈,冶金环境保护,2000(5):34~36
    [91] 黄增军,高炉煤气布袋除尘内滤式与外滤式设计优劣分析,冶金环境保护,2000(5):19~20
    [92] 向君中,高炉煤气布袋除尘是重要的环保节能工程,冶金环境保护,2000 (6):23~27.
    [93] 王东,利用干热高炉煤气的探讨,冶金动力,2001(3):27~28.
    [94] 徐祖银,4063m~3高炉炉顶煤气余压发电自动调节系统,冶金自动化,1989,13(4):14~1.
    [95] 徐祖银 刘建一,高炉炉顶压力控制的改进,冶金自动化,1993(1):51~52.
    [96] 单力斌,宝钢3~#高炉炉顶压力控制系统,冶金自动化,1995(5):49~50.
    [97] 毛宇丰,唐钢1号高炉TRT控制系统,冶金自动化,1996(4):13~16.
    [98] 张灵,宇耀波,武钢4~#高炉提高炉顶压力的改造设计,钢铁,1998(11):6~8.
    [99] 钱红辉,武钢建立高炉煤气高压管网系统的实践,冶金动力,1999(6):55~59.
    [100] 张红庆等,武钢2号高炉TRT自动控制系统,冶金自动化,2001(4):42~46.
    [101] 胡小敏,浅析5号高炉炉顸压力控制系统,武钢技术,2000,38(5):11~14.
    [102] 黄景华,TRT影响高炉定亚问题的解决,冶金动力,2000(4):60~61.
    [103] 王贵良,叶理德,宣钢TRT控制系统的设计,炼铁,2001,20(2):49~50.
    [104] 贾凤泳,黄新中,赵文刚,PLC在.高炉气动式鼓风机监控系统的应用,鞍钢技术,2001(3):50~52.
    [105] 杜凤祥,高炉煤气余压发电机装置的系统调试,冶金动力,2001(4):71~73.
    [106] 唐炜,曹佳斌,姜远柯,攀钢4号高炉TRT的炉顶压力控制系统,冶金动力,2001 (4):29~31.
    [107] 朱育元,TRT透平机的修复,宝钢技术,1992 (3):12~17.
    [108] 朱育元,TRT透平机检修中几个技术问题的探讨,冶金动力,1992(4):250~255.
    [109] 齐广和,TP3380型透平机组振动问题及对策,冶金动力,2000(6):77-85.
    [110] 贾聚凤,杜一庆,高炉TRT机组故障诊断,冶金能源,2000,19 (5):50~52.
    [111] 方勇,TRT叶片损坏原因及防范措施,武钢技术,2001 (4):53~54.
    [112] 王清福,王丁,裘昌泳等,梅山1号高炉轴流鼓风机的节能,动力工程,1986 (6):36-43.
    [113] 俞俊权,在高炉顶压回收装置中应用异步发电机的电器问题,冶金设备,1992 (4):21~25.
    [114] 俞俊权,将感应发电机用于TRT的建议,冶金能源,1992,11(5):36~40.
    [115] 朱虹宇,武钢新3号高炉应用的新技术新设备,冶金设备,1993 (1):55~56.
    [116] 李少南,高炉7000m~3/min轴流风机安装调试经验,冶金设备,1994 (4):27~29.
    [117] 袁福责,鞍钢30万m~3煤气柜柜容和柜型的确定,鞍钢技术,1994 (6):48~52.
    [118] 肖爱民,高炉鼓风机技术改造设想,梅山科技,1999 (2):54~57.
    [119] 金国范,宝钢2号高炉采用的节能技术,冶金能源,1990,9 (3):20~23.
    [120] 刘贵明,回收高炉煤气制纯碱的设想,水钢科技,1992 (2):45~48.
    [121] 杨晓宇,李岩,高炉煤气发电技术,节能,1993 (8):33~34.
    [122] 马焕芬,董文林,河北省高炉煤气发电工程的实践和探讨,冶金能源,1996,15 (3):54~57。
    [123] 梁景理,程吉虹等,柳钢高炉煤气综合利用的技术关键及节能效果,广西节能,1999 (4):25~29.
    [124] 蒋汉华,节能与副产煤气回收利用,冶金能源,2000,19 (6):35~39.
    [125] 钱伯章,膨胀机回收工艺气体压用节能技术,能源技术,1995 (4):41~45.
    [126] 杨若议,COREX煤气与煤气利用,钢铁技术,1994 (3):30~37.
    [127] 刘小梅,COREX炉顶煤气联合循环发电方案的研究,宝钢技术,1995 (5):38~43.
    [128] 娄马宝,高炉阿米起燃气轮机发电-利用高炉煤气的好形式,上海气轮机,2000 (1):33~35。
    [129] 董振东,马秀珍,燃气发电在济钢的发展前景,山东治金,2001,23 (4):66~67.
    [130] 杨中,何红飞,上海宝钢高炉煤气联合循环发电机组简介,燃气轮机技术,2001,14 (3):34~38.
    [131] 陈代京,翁泽民,陈党慧,姜国栋,张三元,混合气体透平通用设计分析软件包的研制,1991。
    [132] 王仲奇,秦仁,透平机械原理,机械工业出版社,1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700