YBCO及其复合体系的超导和磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近,许多文献报导了小尺度下超导材料具有室温铁磁性,这在传统超导理论框架下几乎是不可以理解的,甚至大量的实验已经证实铁磁性在某些条件下可以与超导性能共存。大量研究工作已经表明铁磁性是低维无机纳米材料的一般属性,而且提出了缺陷诱导的铁磁性机理。但对于低维超导体系的磁性问题的研究还不够成熟,在超导体系中磁性的起源是什么?更关键的是磁性在低温下能否与超导态共存?超导机制是否与磁性存在关联等一系列问题还悬而未决。正是受这些问题的驱动,我们探究低维超导体系中的超导和磁性问题。本文的主要研究内容和结果如下:
     1.YBa2Cu3O7-δ的室温铁磁性问题
     我们采用柠檬酸盐热分解法制备了超导YBa2Cu3O7-δ体系。通过磁性测试揭示我们制备的样品具有室温铁磁性。低温磁性结果表明样品具有超导电性。低温ESR谱线上出现了象征超导的低场共振峰,进一步确认超导电性的存在。变场ZFC-FC曲线的结果表明超导的转变温度约为92K,并随着磁场的增大,超导转变温度略有下降。在氩气气氛下的低温热处理实验表明,热处理后样品的磁性有了明显的提高,而超导性能有所下降,这说明样品的磁性源于氧缺陷。另外,低温下的FC曲线上翘,暗示低温下铁磁和超导态的共存。
     2. Y2BaCuO5的室温铁磁性问题
     采用柠檬酸盐热分解法制备了绿色相的Y2BaCuO5颗粒体系。形貌测试表明样品颗粒约为几百纳米,形成了颗粒链。VSM测试表明在不同退火温度下所得样品均具有室温铁磁性,并且磁性随着退火温度的升高逐渐减小。EDS和前驱体磁性结果说明样品不存在任何铁磁污染,样品的铁磁性是本征的。在ZFC-FC曲线上我们观察到了两个磁性相变点的存在,11K为样品的反铁磁相变点,110K处为自旋玻璃转变温度。同样,为了研究样品中磁性来源,我们在氩气气氛中对样品进行了低温热处理,处理后的样品磁性有明显的提高,而且随着氩气流量的增加,磁性进一步提高。这些结果说明Y2BaCuO5颗粒的磁性来源于样品中的氧缺陷。
     3. Y2O3内米颗粒的室温铁磁性问题
     我们采用甘氨酸盐热分解法制备了Y203纳米颗粒。磁性测试结果表明Y203纳米颗粒具有室温铁磁性。XPS测试结果揭示样品中不存在其它铁磁污染,证明样品的铁磁性是本征属性。在真空中热处理和压片处理后,样品的铁磁性都有所提高,而空气中烧结使铁磁性降低,这些结果暗示样品的磁性与氧缺陷存在联系。高分辨氧峰位XPS谱的多峰拟合结果进一步证实了氧缺陷诱导的铁磁性机理。
     4.YBa2Cu3O7-δ-Y2BaCuO5复合体系的室温铁磁性问题
     在该部分研究工作中,我们分别采用水热法和柠檬酸盐热分解法制备了YBa2Cu3O7-δ-Y2BaCuO5复合体系。我们先采用水热法制备了YBa2Cu3O7-δ-Y2BaCuO5复合体系。SEM结果揭示样品由微米量级的球状物构成。磁性测试结果表明各复合体系都具有铁磁性。低温磁性和ESR的测试都说明样品具有超导电性,且超导临界温度约为93K。XPS和EDS结果说明样品中不存在磁性污染,样品的铁磁性是本征的。在氩气中的低温热处理实验揭示样品磁性可能与两相界面有关,在高分辨TEM中也清晰可见两相界面的存在。为了进一步揭示两相界面与磁性的关系,我们采用柠檬酸盐热分解法制备了不同两相比例的YBa2Cu3O7-8-Y2BaCuO5复合体系。磁性测试结果表明复合体系的磁性要明显强于对应的单相体系。氩气中的低温退火实验也揭示复合体系磁性机理不同于单相体系,应该与两相界面存在关联。在HRTEM图中也观测到了两相界面的存在。这两部分工作都揭示了(?)Ba2Cu3O7-δ-Y2BaCuO5复合体系中磁性来源于两相界面。
In recent years, room temperature ferromagnetism has been reported in small-scale superconducting materials. Within the BCS theory region, it is difficult to understand these. Furthermore, numerous experiments have revealed ferromagnetism can coexist with superconducting state. A great number of works have also shown that ferromagnetism is an intrinsic nature of nonorganic nanoparticles materials, and a defect-induced-ferromagnetism mechanism is established. But for low-dimensional superconducting systems, the origination of ferromagnetism is open question. A key problem is whether ferromagnetism can coexist with superconductivity at low temperature. It remains controversy that superconductivity is based on magnetism. Inspired by these, we try to explore the mechanism of ferromagnetism in low-dimensional superconductors. The main content and results is as follows:
     1. Room temperature ferromagnetism in YBa2Cu3O7-δ particles
     In this section, we employed a citrate pyrolysis technique to prepare superconducting YBa2Cu3O7-δ system. Magnetic measurement revealed room temperature ferromagnetism in the samples. Magnetic data at low temperature indicated the existence of superconductivity. Electron spin resonance spectra at low temperatures further confirmed that there is a transition from the normal to the superconducting state. The ZFC-FC curves at various applied magnetic fields showed that the superconducting transition temperature is92K, and it decreases with increasing of the magnetic field. Post-heating treatment at argon gas displayed that the ferromagnetism is enhanced but the superconductivity suppressed, suggesting that the ferromagnetism maybe originate from the oxygen defects. In addition, the upturn of FC curve at low temperature indicated the coexistence of ferromagnetism and superconductivity.
     2. Room temperature ferromagnetism in Y2BaCuO5particles
     Green phaseY2BaCuO5particles were prepared via a citrate pyrolysis technique. Scanning electron microscopy and transmission electron microscopy observation showed the formation of a particle chain Y2BaCuO5phase with the size of hundreds of nanometers. Magnetic measurements showed that all annealed samples exhibit room temperature ferromagnetism and the saturation magnetization decreases with increasing sintering temperature. The magnetic data of the precursor and the EDS result showed that there is not any magnetic contamination. So the ferromagnetism is intrinsic nature. Two magnetic phase transitions located at about11and110K were revealed at the ZFC-FC curves. The peak at about11K was associated with antiferromagnetic phase transition and a spin-glass transition at about110K was confirmed. Similarly, post-heating treatment under argon atmosphere was also performed on the samples. After heating treatment, the ferromagnetism increased greatly. And it was further enhanced as the flow rate increased. These results suggested that the magnetism of Y2BaCuO5particles is attributed to the surface oxygen defects.
     3. Room temperature ferromagnetism in Y2O3nanoparticles
     We adopted a glycine-nitrate method to synthesize nanoparticles of Y2O3. Magnetic measurement showed the existence of room temperature ferromagnetism. X-ray photoelectron spectroscopy results indicated that there is not any magnetic contamination and then the observed ferromagnetism is intrinsic. After post-heated at vacuum and pressed, an obvious increase of the ferromagnetism was observed. But for the sample heated in the air, the ferromagnetism decreased. These results suggested that the ferromagnetism is responsible for oxygen defects. By analyzing the multicomponent fitting to the O1s peaks for these samples, the correlation between the ferromagnetism and oxygen defects in Y2O3nanoparticles is established.
     4. Room temperature ferromagnetism in YBa2Cu3O7-δ-Y2BaCuO5composites
     In this section, we prepared YBa2Cu3O7-δ-Y2BaCuO5composites by a citric acid complexing-hydrothermal synthesis coupled method and a citrate pyrolysis technique. Firstly, the composite system was obtained via the citric acid complexing-hydrothermal synthesis coupled method. Scanning electron microscopy observation showed the formation of microspheres. Magnetic measurement showed room temperature ferromagnetism in these composites. Electron spin resonance spectra and magnetic data at low temperature confirmed the superconducting behavior. Also the superconducting transition located at93K was revealed by ZFC-FC curves. X-ray photoelectron spectroscopy and EDS results indicated that there is not magnetic contamination, suggesting the intrinsic nature of the ferromagnetism. Post-heating treatment at argon gas showed that the observed ferromagnetism should not be attributed to oxygen defects and be associated to the interface at the composites, which was observed in HRTEM. In addition, we employed the citrate pyrolysis technique to prepare the YBa2Cu3O7-δ-Y2BaCuO5composites. Magnetic measurement revealed that the ferromagnetism of the composites is greater than that of their pure phases. Also post-heating treatment at argon gas confirmed that the ferromagnetism results from oxygen defects and is attributed to the interface at the composites. A clear interface in the composite is observed in the HRTEM picture. These work revealed that the ferromagnetism in the YBa2Cu3O7-δ-Y2BaCuO5composites originates from the interface between the two phases.
引文
[I]Onnes, H.K. The resistance of pure mercury at helium temperatures. Commun. Phys. Lab.1911,12:120.
    [2]Onnes, H.K. The resistance of pure mercury at helium temperatures.Commun. Leiden.1911,120b.
    [3]Ronald, J.C. Record superconductor at 22.3 K.1973,26:17.
    [4]Bednorz, J.G, Muller. K.A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B.1986,64:189.
    [5]赵忠贤,陈立泉,杨乾声,黄玉珍,陈赓华,唐汝明,刘贵荣,崔长庚,陈烈,王连忠,郭树权,李山林,毕建清.Ba-Y-Cu氧化物液氮温区的超导电性.科学通报.1987,6:412.
    [6]Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y. Q., Chu, C.W. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett.1987,58:908.
    [7]Gao, L., Xue, Y.Y., Chen, F., Xiong, Q., Meng, R.L., Ramirez, D., Chu, C. W. Superconductivity up to 164 K in HgBa2Cam-1CumO2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures. Phys. Rev. B.1994,50:4260.
    [8]Nagamatsu, J., Nakagawa, N., Muranaka, T, Zenitani, Y, Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature.2001,410:63.
    [9]Yoichi, K., Takumi, W., Masahiro, H., Hideo, H. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x=0.05-0.12) with Tc=26 K. J. Am. Chem. Soc.2008,130:3296.
    [10]Ren, Z.A. Lu, W., Yang, J., Yi, W., Shen, X.L., Li, Z.C., Che, G.C., Dong, X.L., Sun, L.L., Zhou, F., Zhao, Z.X.. Superconductivity at 55K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx]FeAs. Chin. Phys. Lett.2008, 25:2215.
    [11]Bednorz, J.G, Muller, K.A. Z. Phys. B. Possible high Tc superconductivity in the Ba-La-Cu-O system.1986,64:189.
    [12]Lejay, P., et al. Superconductivity up to 110 K in Bi2Sr2Ca2Cu3010 compounds. Revue de physique appliquee.1989,24:485.
    [13]Torardi, C.C., Subramanian, M.A., Calabrese, J.C, et al. Crystal structure of Tl2Ba2Ca2Cu3010, a 125 K superconductor. Science.1988,240:631.
    [14]Schilling, A., Cantoni, M., Guo, J.D., et al. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. Nature.1993,363:56.
    [15]Ivan, A.P. Microstructure and Properties of High-Temperature Superconductors. New York:Springer-Verlag Berlin Heidelberg.2007.
    [16]Bardeen, J., Cooper, L.N., Schrieffer, J.R. Theory of Superconductivity. Phys. Rev.1957,108:1175.
    [17]Meissner, W.R., Ochsenfeld. Ein neuer Effekt bei Eintritt der Supraleitfahigkeit. Naturwissenschaften.1933,21:787.
    [18]Anderson, P.W. The Resonating Valence Bond State in La2Cu04 and Superconductivity. Science.1987,235:1196.
    [19]Alexandrov, A., Ranninger, J. Bipolaronic superconductivity. Phys. Rev. B.1981, 24:1164.
    [20]Agranovich, V.M. Exciton Theory. Nauka:Moscow.1968.
    [21]Saxena, A.K. High-Temperature Superconductors. New York:Springer-Verlag Berlin Heidelberg.2009.
    [22]Abrikosow, A. A. Gor'Kov, L. P. Zh. Eksp. Teor. Fiz.1960,39:1781.
    [23]Ginzburg, V. L. Zh. Eksp. Teor. Fiz.1956,31:202
    [24]Matthias, B.T. Suhl, H. Corenzwit, E. Spin Exchange in Superconductors. Phys. Rev. Lett.1958,1:92.
    [25]Matthias, B.T., Corenzwit, E., Vandenberg, J.M., Barz, H.E. High superconducting transition temperatures of new rare earth ternary borides. Proc. Nat. Acad. Sci. USA 1977,74:1334.
    [26]Fisher,φ., Treyvaud, A., Chevrel, R., Sergent, M. Superconductivity in the RexMo6S8. Solid State Commun.1975,17:721.
    [27]Cheetham, A.K., Day, P. Solid State Chemistry:Compounds. New York:Oxford University Press.2001.
    [28]Maple, M.B., Fischer, O. Superconductivity in ternary Compounds Ⅱ, Topics Current Phys., Berlin:Springer.1982.
    [29]Maple, M.B. Interplay between Superconductivity and Magnetism.Physica B. 1995,215:110.
    [30]Fischer,φ., Maple, M.B. Topics in Current Physics. New York:Springer-Verlag. 1983.
    [31]Lynn, J.W., Gotaas, J.A., Erwin, R.W., Ferrell, R.A., Bhattacharjee, J.K., Shelton, R.N., Klavins, P. Temperature-Dependent Sinusoidal Magnetic Order in the Superconductor HoMo6Se8. Phys. Rev. Lett.1984,52:133.
    [32]Fertig, W.A., Johnston, D.C., Delong, L.E., McCallum, R.W., Maple, M.B., Matthias, B.T. Destruction of Superconductivity at the Onset of Long-Range Magnetic Order in the Compound ErRh4B4. Phys. Rev. Lett.1977,38:987.
    [33]Gootas, J.A., Lynn, J.W., Shelton, R.N., Klavins, P., Braun, H.F. Suppression of superconductivity by antiferromagnetism in Tm2Fe3Si5. Phys. Rev. B.1987, 36:7277.
    [34]Schmidt, H., Weber, M., Braun, H.F. Composition dependent magnetoresistivity studies on HoNi2B2C. Physica C.1966,256:393.
    [35]Eisaki, H., et al. Competition between magnetism and superconductivity in rare-earth nickel boride carbides. Phys. Rev. B.1994,50:647.
    [36]Nagarajan, R., et al. Bulk superconductivity at an elevated temperature (Tc≈12K) in a nickel containing alloy system Y-Ni-B-C. Phys. Rev. Lett.1994,72:274.
    [37]Vava, R.J., et al. Superconductivity in the quaternary intermetallic compounds LnNi2B2C. Nature.1994,367:252.
    [38]Lynn, J.W., Skanthakumar, S., Huang, Q., Sinha, S.K., Hossain, Z., Gupta, L.C., Nagarajan, R., Godrat, C. Magnetic order and crystal structure in the superconducting RNi2B2C materials. Phys. Rev. B.1997,55:6584.
    [39]Fisk, Z., et al. Heavy-Electron Metals:New Highly Correlated States of Matter. Science.1988,239:33.
    [40]Steglich, F., Aarts, J., Bredl, C.D., Lieke, W., Meschede, D., Franz, W., Schafer, H. Superconductivity in the Presence of Strong Pauli Paramagnetism:CeCu2Si2. Phys. Rev. Lett.1979,43:1892.
    [41]Misra, P. Handbook of Metal Physics:Heavy Fermion Systems. Netherland: Elsevier.2008.
    [42]Chandra, P., Coleman, P., Mydosh, J.A., Tripathi, V. Science is a computer program. Nature.2002,417:381.
    [43]Sato, N.K., Aso, N., Miyake, K., Shiina, R., Thalmeier, P., Varelogiannis, G., Geibel, C., Steglich, F., Fulde, P., Komatsubara, T. Strong coupling between local moments and superconducting‘heavy’electrons in UPd2Al3. Nature.2001, 410:340.
    [44]Geibel, C., et al. A new heavy-fermion superconductor:UNi2Al3. Z. Phys. B: Cond. Mat.1991,83:305.
    [45]Lohneysen, H.V. The superconducting phases of UPt3. Physica B.1994,197:551.
    [46]Mathur, N.D., et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature.1998,394:39.
    [47]Saxena, S.S., et al. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2. Nature.2000,406:587.
    [48]Pfleiderer, C., Uhlarz, M., Hayden, S.M., Vollmer, R., Lohneysen, H.V., Bernhoeft, N.R., Lonzarichk, GG Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn2. Nature.2001,412:58.
    [49]Matthias, B.T., Bozorth, R.M. Ferromagnetism of a Zirconium-Zinc Compound. Phys. Rev.1958,109:604.
    [50]Sleight, A.W. Synthesis of Oxide Superconductors. Phys. Today.1991,44:24.
    [51]Jorgensen, J.D. Defects and Superconductivity in the Copper Oxides. Phys. Today.1991,44:34.
    [52]Mott, N.F. The basis of the electron theory of metals, with special reference to the transition metals. Proceedings of the Physical Society of London Series A. 1949,62:416.
    [53]Cava, R.J., van Dover, R.B., Batlogg, B., Rietman, E.A. Bulk superconductivity at 36 K in La1.8Sr0.2CuO4. Phys. Rev. Lett.1987,58:408.
    [54]Katsumata, K., Kitazawa, H., Nagamine, K. Focused on Superconductivity, RIKEN Review,1993.
    [55]Lynn, J.W., Rosov, N., Narilo, S.N., Kurnevitch, L., Zhokhov, A. Pr Magnetic Order and Spin Dynamics in the Cuprates. Chin. J. Phys.2000,38:286.
    [56]Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D. Thin films:Unexpected magnetism in a dielectric oxide. Nature,2004,430:630.
    [57]Hong, N.H., Sakai, J., Poirot, N., Brize, V. Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys. Rev. B.2006,73:132404.
    [58]Hu, J.F., Zhang, Z.L., Zhao, M., Qin, H.W., Jiang, M.H. Room-temperature ferromagnetism in MgO nanocrystalline powders. Appl. Phys. Lett.2008, 93:192503.
    [59]Liu, Y.L., Lockman, Z., Aziz, A., Driscoll, J.M. Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies. J. Phys.:Condens. Matter.2008,20:165201.
    [60]Banerjee, S., Mandal, M., Gayathri, N., Sardar, M. Enhancement of ferromagnetism upon thermal annealing in pure ZnO. Appl. Phys.Lett.2007, 91:182501.
    [61]Darshana, Y.I., Amit, D.L., Arjun, K.P., Igor, D., Naushad, A., Shailaja, M. Ferromagnetism in ZnO Nanocrystals:Doping and Surface Chemistry. J. Phys. Chem. C.2010,114:1451.
    [62]Song, B., Zhu, K.X., Liu, J., Jian, J.K., Han, J.C., Bao, H.Q., Li, H., Liu, Y., Zuo, H.B., Wang, W.Y., Wang, G, Zhang, X.H., Meng, S.H., Wang, W. J., Chen, X.L. Experimental observation of ferromagnetism evolution in nanostructured semiconductor InN. J. Mater. Chem.2010,20:9935.
    [63]Gao, D.Q., Yang, G J., Zhang, J., Zhu, Z.H., Si, M.S., Xue, D.S.d0 ferromagnetism in undoped sphalerite ZnS nanoparticles. Appl. Phys. Lett.,2011, 99:052502.
    [64]Sundaresan, A., Rao, C.N.R. Ferromagnetism as a universal feature of inorganic Nanoparticles. Nano Today.2009,4:96.
    [65]Anderson, P.W., Suhl, H. Spin Alignment in the Superconducting State. Phys. Rev.1959,116:898.
    [66]Aoki, D., Huxley, A., Ressouche, E., Braithwaite, D., Flouquet, J., Brison, J.P., Lhotel, E., Paulsen, C. Coexistence of superconductivity and ferromagnetism in URhGe. Nature,2001,413:613.
    [67]Tallon, J., Bernhard, C, Bowden, M., Gilberd, P., Stoto, T., Pringle, D. Coexisting ferromagnetism and superconductivity in hybrid rutheno-cuprate superconductors. IEEE Trans. Appl. Supercond.,1999,9:1696.
    [68]Li, W.H., Wang, C.W., Li, C.Y., Hsu, C.K., Yang, C.C., Wu, C.M. Coexistence of ferromagnetism and superconductivity in Sn nanoparticles. Phys. Rev. B 2008, 77:094508.
    [69]Alves, L.M.S., et al. Superconductivity and magnetism in the KxMoO2-δ. J. Appl. Phys.2012,112:073923.
    [70]Kumar, A., et al. Superconductivity in the vicinity of ferromagnetism in oxygen free perovskite MgCNi3:An experimental and density functional theory study. J. Appl. Phys.2012,111:033907.
    [71]Ma, L., et al. Microscopic Coexistence of Superconductivity and Antiferromagnetism in Underdoped Ba(Fe1-xRux)2As2. Phys. Rev. Lett.2012, 109:197002.
    [72]Liu, M.S., et al. Nature of magnetic excitations in superconducting BaFe1.9Ni0.1As2. Nature 2012,8:376.
    [73]Zeng, R., et al. Magnetic and superconducting properties of spin-fluctuation-limited superconducting nanoscale VNX. J. Appl. Phys.2012,111:07E142.
    [74]Shipra, Gomathi, A., Sundaresan, A., Rao, C.N.R. Room-temperature ferromagnetism in nanoparticles of superconducting Materials. Solid State Commun.2007,142:685.
    [75]Hasanain, S.K., Akhtar, N., Mumtaz, A. Particle size dependence of the superconductivity and ferromagnetism in YBCO nanoparticles. J. Nanopart. Res. 2010,13:1953.
    [1]Cava, R.J., Batlogg, B., van Dover, R.B., Murphy, D.W., Sunshine, S., Siegrist, T., Remeika, J.P., Rietman, E.A., Zahurak, S., Espinosa, G.P. Bulk superconductivity at 91 K in single-phase oxygen-deficient perovskite Ba2YCu3O9-δ. Phys. Rev. Lett.1987,58:1676.
    [2]Sleight, A.W. Chemistry of high-temperature superconductors. Science.1988, 242:1519.
    [3]Kordas, G Sol-gel processing of ceramic superconductors. J. Non. Cryst. Solids. 1990,121:436.
    [4]Kordas, G, Moore, G.A., Jorgenson, J.D., Rotella, F., Hitterman, R.L., Volin, K.J., Faber, J. Structure evolution during thermal processing of high-Tc ceramic superconductors produced using sol-gel techniques. J. Mater. Chem.1991,1:175.
    [5]Vilminot, S., Hadigui, S.E., Desory, A. Synthesis and characterization of YBa2Cu3O7-x. Superconducting materials. Mater. Res. Bull.1988,23:521.
    [6]Bowmer, T.N., Shokoohi, F.K. Synthesis of superconductors from metal neodecanoates. J. Mater. Res.1991,6:670.
    [7]Lopez-Quintela, M.A., Rivas, J. Chemical reaction in microemulsion:A powerful method to obtain ultrafine particles. J. Colloid Interface Sci.1993,158:446.
    [8]Carpenter, E.E., Sims, J.A., Wienmann, J.A., Zhou, W.L., Oconnor, C.J. Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques. J. Appl. Phys.2000,87:5615.
    [9]Lee, H.S., Lee, W., Furubayashi, T. A comparison of coprecipitation with microemulsion methods in the preparation of magnetite. J. Appl. Phys.1999, 85:5231.
    [10]Kumar, P., Pillai, V., Shah, D.O. Preparation of Bi-Pb-Sr-Ca-Cu-O oxide superconductors by coprecipitation of nanosize oxalate precursor powders in the aqueous core of water-in-oil microemulsions. Appl. Phys. Lett.1993,62:765.
    [11]Ayyub, P., Maitra, A.N., Shah, D.O. Formation of theoretical-density microhomogeneous YBa2Cu3O7-x using a microemulsion-mediated process. Physica C.1990,168:571.
    [12]Xu, X.L., Guo, J.D., Wang, Y.Z., Sozzi, A. Synthesis of nanoscale superconducting YBCO by a novel technique, Physica C.2002,371:129.
    [13]Zhang, Y, Zhang, L., Deng, J.G., Dai, H.X., He, H. Hydrothermal Fabrication and Catalytic Properties of YBa2Cu3O7 Single Crystallites for Methane Combustion. Catal Lett.2010,135:126.
    [14]施尔畏等.《水热结晶学》.科学出版社.2004年9月.
    [15]倪星元.《纳米材料制备技术》.化学工业出版社.2008年1月.
    [16]王英华.《X光衍射技术基础》原子能出版社.1993年.
    [17]晋勇,孙小松,薛屺.《X射线衍射分析技术》.国防工业出版社.2008年.
    [18]干蜀毅,陈长琦,朱武,王先路.环境扫描电子显微镜工作原理及实现.真空电子技术.2003年06期。
    [19]付洪兰.《实用电子显微技术》.高等教育出版社.2004年.
    [20]孟庆昌.《透射电子显微学》.哈尔滨工业大学出版社.1998.
    [21]付军丽.非晶纳米线及同轴纳米电缆的制备和研究.兰州大学博士毕业论文,2008年.
    [22]Wangner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., Muilenberg, G.E. Handbook of X-ray Photoelectron Spectroscopy. Minnesota:Perkin-Elmer Corporation.1979.
    [23]本社.X射线光电子能谱仪检定方法.凤凰出版社.2010.
    [24]张志杰,贺天民,孙昕,杜晓波.物理实验.2007,27:37.
    [25]Mike, M. Fundamentals of Magnetism and Magnetic Measurements Featuring Quantum Design's Magnetic Property Measurement System, Purdue University. 1994.
    [26]王建波.兰州大学博士毕业论文.2002年.
    [27]赵敏光.晶体场合电子顺磁共振理论.1999.
    [28]廖立兵等.《矿物材料现代测试技术》.化学工业出版社.2010年.
    [29]朱诚身.《聚合物结构分析》.科学出版社.2010年.
    [1]Wu, M.K., Ashburn, J.R., Timg, C.J., Meng, R.L., Gao, Huang, Z.L, Wang, Y.Q., Zhu, C.W. Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure. Phys. Rev. Lett.1987,58:908.
    [2]Bardeen, J., Cooper, L.N., Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957,108:1175.
    [3]P. W. Anderson and H. Suhl, Spin Alignment in the Superconducting State. Phys. Rev.,1959,116:898.
    [4]Saxena, S.S., Agarwal, P., Ahilan, K., Grosche, F.M., Haselwimmer, R.K.W., Steiner, M.J., Pugh, E., Walker, I.R., Julian, S.R., Monthoux, P., Lonzarich, G.G, Huxley, A., Sheikin, I., Braithwaite, D., Flouquet, J. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2. Nature.2000,406:587.
    [5]Huxley, A.D., Raymond, S., Ressouche, E. Magnetic Excitations in the Ferromagentic Superconductor UGe2. Phys. Rev. Lett.2003,91:207201.
    [6]Aoki, D., Huxley, A., Ressouche, E., Braithwaite, D., Flouquet, J., Brison, J.P., Lhotel, E., Paulsen, C. Coexistence of superconductivity and ferromagnetism in URhGe. Nature,2001,413:613.
    [7]Tallon, J., Bernhard, C, Bowden, M., Gilberd, P., Stoto, T., Pringle, D. Coexisting ferromagnetism and superconductivity in hybrid rutheno-cuprate superconductors. IEEE Trans. Appl. Supercond.1999,9:1696.
    [8]Shipra, Gomathi, A., Sundaresan, A., Rao, C.N.R. Room-temperature ferromagnetism in nanoparticles of superconducting Materials. Solid State Commun.2007,142:685.
    [9]Sundaresan, A., Rao, C.N.R. Ferromagnetism as a universal feature of inorganic Nanoparticles. Nano Today.2009,4:96.
    [10]Hasanain, S.K., Akhtar, N., Mumtaz, A. Particle size dependence of the superconductivity and ferromagnetism in YBCO nanoparticles. J. Nanopart. Res.2010,13:1953.
    [11]Li, W.H., Wang, C.W., Li, C.Y., Hsu, C.K., Yang, C.C., Wu, CM. Coexistence of ferromagnetism and superconductivity in Sn nanoparticles. Phys. Rev. B.2008, 77:094508.
    [12]Xu, X.L., Guo, J.D., Wang, Y.Z. Sozzi, A. Synthesis of nanoscale superconducting YBCO by a novel technique. Physica C.2002,371:129.
    [13]Ayyappan, S., Philip Raja, S., Venkateswaran, C., Philip, J., Raj, B. Room temperature ferromagnetism in vacuum annealed ZnFe2O4 nanoparticles. Appl. Phys. Lett.2010,96:143106.
    [14]Qin, H.W., Zhang, Z.L., Liu, X., Zhang, Y.J., Hu, J.F. Room-temperature ferromagnetism in CuO sol-gel powders and films. J. Magn. Magn. Mater.2010, 322:1994.
    [15]Rettori, C, Davidov, D., Belaish, I., Felner, I. Magnetism and critical fields in the high-Tc superconductors YBa2Cu3O7-xSx (x=0,1):An ESR study. Phys. Rev. B. 1987,36:4028.
    [16]Blazey, K.W., Miiller, K.A., Bednorz, J.G., Berlinger, W, Amoretti, G, Buluggiu, E., Vera, A., Matacotta, F.C. Low-field microwave absorption in the superconducting copper oxides. Phys. Rev. B.1987,36:7241.
    [17]Hsu, C.K., Hsu, D., Wu, C.M., Li, C.Y., Hung, C.H., Lee, C.H., Li, W.H. Coexistence of ferromagnetism and superconductivity in Pb/PbO core/shell nanoparticles. J. Appl. Phys.2011,109:07B528.
    [18]Liu, S.H., Hsu, H.S., Lin, C.R., Lue, C.S., Huang, J.C.A. Effects of hydrogenated annealing on structural defects, conductivity, and magnetic properties of V-doped ZnO powders. Appl. Phys. Lett.2007,90:222505.
    [19]Scalapino, D.J., Denton, R. Statistical Mechanics of One-Dimensional Ginzburg-Landau Fields. Phys. Rev. B.1972,6:3409.
    [20]Saxena, A.K. High-Temperature Superconductors. New York:Springer.2009.
    [21]Manthiram, A., Goodenough, J,B. Synthesis of the high-Tc superconductor YBa2Cu307_δ in small particle size. Nature.1987,329:701.
    [22]Yin, Y.W., Liu, H. Xie, L., Su, T.S., Teng, M.L., Li, X.G Coexistence of Superconductivity and Ferromagnetism in La2-xSrxCuO4 Nanoparticles. J. Phys. Chem. C.2013,117:3028.
    [1]Mathieu, J.P., Cano, I.G., Koutzarova, T., Rulmont, A., Vanderbemden, Ph., Dew-Hughes, D., et al. The contribution of 211 particles to the mechanical reinforcement mechanism of 123 superconducting single domains. Supercond. Sci. Technol.2004,17:169.
    [2]Jin, S., Tiefel, T.H., Sherwood, R.C., Davis, M.E., van Dover, R.B., Kammlott, G.W., et al. High critical currents in Y-Ba-Cu-O superconductors. Appl. Phys. Lett. 1988,52:2074.
    [3]Akinori, K., Hirokata, O., Hitoshi, O., Soichi, I. Effects of variations in crystal structure on microwave dielectric properties of Y2BaCuO5 system. J. Eur. Ceram. Soc.2001,21:2593.
    [4]Fernandez, F., Colon, C, Duran, A., Barajas, R., dOrs, A., Becerril, M., Llopis, J., Paje, S.E., Saez-Puche, R., Julian, I. The Y2BaCuO5 oxide as green pigment in ceramics. J. Alloys and Compounds.1998,750:275.
    [5]Kanoda, K., Takahashi, T., Kawagoe, T., Mizoguchi, T., Kagoshima, S., Hasumi, M. Antiferromagnetic Transiton in YiBaCuO5. Japn. J. Appl. Phys.1987, 26:L2018.
    [6]Knafo, W., Meingast, C., Inaba, A., Wolf, Th., Lohneysen, Hv. Heat capacity and magnetic phase diagram of the low-dimensional antiferromagnet Y2BaCuO5. J. Phys. Condens. Matter.2008,20:335208.
    [7]Golosovsky, I.V., Boni, P., Fischer, P. Magnetic Structure of Y2BaCuO5. Solid State Commun.1993,87:1035.
    [8]Chattopadhyay, T., Brown, P.J., Kobler, U., Wilhelm, M. Evidence for the Antiferromagnetic Ordering of the Green Phase Y2BaCuO5. Europhys. Lett.1989, 8:685.
    [9]Neel, L. In Temperature Physics:Lectures Delivered at Les Houches During the 1961 Session of the Summer School of Theoretical Physics. New York:University of Grenoble.1962.
    [10]Makhlouf, S.A., Parker, F.T., Spada, F.E., Berkowitz, A.E. Magnetic anomalies in NiO nanoparticles. J. Appl. Phys.1997,81:5561.
    [11]Punnoose, A., Magnone, H., Seehra, M.S., Bonevich, J. Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles. Phys. Rev. B.2001, 64:174420.
    [12]Ghosh, M., Sampathkumaran, E.V., Rao, C.N.R. Synthesis and magnetic properties of CoO nanoparticles Chem. Mater.2005,17:2348.
    [13]Tiwari, S.D., Rajeev, K.P. Signatures of spin-glass freezing in NiO nanoparticles. Phys. Rev. B.2005,72:104433.
    [14]Winkler, E., Zysler, R.D., Mansilla, M.V., Fiorani, D. Surface anisotropy effects in NiO nanoparticles. Phys. Rev. B.2005,72:132409.
    [15]Yi, J.B., Ding, J., Feng, Y.P., Peng, G.W., Chow, G.M., Kawazoe, Y, et al. Size-dependent magnetism and spin-glass behavior of amorphous NiO bulk, clusters, and nanocrystals:Experiments and first-principles calculations. Phys. Rev. B. 2007,76:224402.
    [16]Salabas. E.L., Rumplecker, A., Kleitz, F., Radu, F., Schiith, F. change anisotropy in nanocasted Co3O4 nanowires. Nano. Lett.2006,6:2977.
    [17]Benitez, M.J., Petracic, O., Tuysuz, H., Schiith, F., Zabel, H. Decoupling of magnetic core and shell contributions in antiferromagnetic Co3O4 nanostructures. Europhys. Lett.2009,88:27004.
    [18]Zeng, R., Wang, J.Q., Chen, Z.X., Li, W.X., Dou, S.X. The effects of size and orientation on magnetic properties and exchange bias in Co3O4 mesoporous nanowires. J. Appl. Phys.2011,109:07B520.
    [19]Yin, S.Y., Yuan, S.L., Tian, Z.M., Liu, L., Wang, C.H, Zheng, X.F., Duan, H.N., Huo, S.X. Effect of particle size on the exchange bias of Fe-doped CuO nanoparticles. J. Appl. Phys.2010,107:043909.
    [20]Seehra, M.S. A. Punnoose Particle size dependence of exchange-bias and coercivity in CuO nanoparticles. Solid State Commu.2003,128:299.
    [21]Zhou, L., Chen, S.K., Wang, K.G., Wu, X.Z., Zhang, P.X., Feng, Y. Synthesis of ultrafine Y2BaCuO5 powder and its incorporation into YBCO bulk by powder melting process. Physica C.2001,363:99.
    [22]Bharagava, A., Alarco, J.A., Mackinnon, I.D.R., Yamashita, T. Manufacture of fine grained Y2BaCuO5 powder by co-precipitation. Mater. Lett.1995,24:181.
    [23]Li, F., Vipulanandan, C. Characterization of Y2BaCuO5 nanoparticles synthesized by nanoemulsion method. J. Nanopar. Res.2007,9:841.
    [24]Huang, J.F., Cao, L.Y., He, H.Y., Wu, J.P., Zhang, G.Y. Preparation and Kinetics Mechanism of Y2BaCuO5 Nano-Crystallites Synthesized by Sonochemical Process. Rare Metal Materials and Engineering.2006,35:1632.
    [25]Xu, X.L., Guo, J.D., Wang, Y.Z., Sozzi, A. Synthesis of nanoscale superconducting YBCO by a novel technique. Physica C.2002,371:129.
    [26]Hagiwara, M., Yamao, T., Matsuura, M. Ambient pressure synthesis of YBa2Cu4O8 using citrate pyrolysis method. Physica C.2003,392:66.
    [27]Markovich, V., Fita, I., Wisniewski, A., Mogilyansky, D., Puzniak, R., Titelman, L., et al. Size effect on the magnetic properties of antiferromagnetic La0.2Ca0.8MnO3 nanoparticles. Phys. Rev. B.2010,81:094428.
    [28]Gao, D.Q., Li, J.Y., Li, Z.X., Zhang, Z.H., Zhang, J., Shi, H.G., et al. Defect-Mediated Magnetism in Pure CaO Nanopowders. J. Phys. Chem. C.2010, 114:11703.
    [29]Paul, S., Dhananjay, K., Ashutosh, T. Unexpected magnetic behavior of Cu-doped CeO2. Appl. Phys. Lett.2010,96:142506.
    [30]Sakamoto, Y, Oba, Y, Maki, H., Suda, M., Einaga, Y, Sato, T., Mizumaki, M., Kawamura, N., Suzuki, M. Ferromagnetism of Pt nanoparticles induced by surface chemisorption. Phys. Rev. B.2011,83:104420.
    [31]Benitez, M.J., Petracic, O., Salabas, E.L., Radu, F., Tuysuz, H., Schuth, F., Zabel, H. Evidence for Core-Shell Magnetic Behavior in Antiferromagnetic Co3O4 Nanowires. Phys. Rev. Lett.2008,101:097206.
    [32]He, L., Chen, C.P., Wang, N., Zhou, W., Guo, L. Finite size effect on Neel temperature with Co3O4 nanoparticles.J. Appl. Phys.2007,102:103911.
    [33]Marysko, M., Jirak, Z., Hejtmanek, J., Knizek, K. Glassy ferromagnetism and phase separation in Pr0.5Ca0.5CoO3. J. Appl. Phys.2012, 111:07E110.
    [34]Noguesa, J., Sort, J., Langlais, V., Skumryev, V., Surinach, S., Munoz, J.S., Baro, M.D. Exchange bias in nanostructures. Physics Reports.2005,422:65.
    [35]Ayyappan, S., Philip Raja, S., Venkateswaran, C., Philip, J., Raj, B. Room temperature ferromagnetism in vacuum annealed ZrFe2O4 nanoparticles. Appl. Phys. Lett.2010,96:143106.
    [36]Qin, H.W., Zhang, Z.L., Liu, X., Zhang, Y.J., Hu, J.F. Room-temperature ferromagnetism in CuO sol-gel powders and films. J. Magn. Magn. Mater.2010, 322:1994.
    [1]Adolph, L., Dennis, F., et al., High-density yttria for praticle ceramic application. J Am Ceramic Soc.1992,73:709.
    [2]Van, T.T., Chang, J.P. Controlled erbium incorporation and photoluminescence of Er-doped Y2O3. Appl. Phys. Lett.2005,87:011907.
    [3]Cava, R.J., Batlogg, B., van Dover, R.B., Murphy, D.W., Sunshine, S., Siegrist, T., Rameika, J. P., Rietman, E.A., Zahurak, S., Espinosa, GP. Bulk superconductivity at 91 K in single-phase oxygen-deficient perovskite Ba2YCu3O9-δ. Phys. Rev. Lett. 1987,58:1676.
    [4]Sleight, A.W. Chemistry of high-temperature superconductors. Science.1988, 242:1519.
    [5]Liu, X.G., Du, J., Geng, D.Y., Ma, S., Liang, J.M., Tong, M., Zhang, Z.D. Co-doped Y2O3 optical functional nanoparticles and novel self-assembly squama-like aggregates. J. Alloys Compd.2008,457:517.
    [6]Soo, Y.L., Wu, T.S., Wang, C.S., Chang, S.L., Lee, H.Y., Chu, P.P., Chen, C.Y., Chou, L.J., Chan, T.S., Hsieh, C.A., Lee, J.F., Kwo, J., Hong, M. Thermal annealing and grain boundary effects on ferromagnetism in Y2O3:Co diluted magnetic oxide nanocrystals. Appl. Phys. Lett.2011,98:031906.
    [7]Yanmaz, E., Basoglu, M., Grovenor. C.R.M. Anomalous ferromagnetic behaviour of Y2O3 and CuO nanoparticles in YBa2Cu3Oy superconductor. Phys. Status Solidi A.2009,206:2844.
    [8]Gao, H.L., Chen, W.F., Li, F.S., Liu, Y, Yu, J.Y., Deng, G.D. Preparation of Ultrafine Yttria by Wet-Solid-Phase Mechanochemicai Reaction. Chin. J. Rare Metals.2006,30:795.
    [9]刘学东,卢佃清,范喆,等.LiLaxFe5-xO8纳米铁氧体粉末的微波吸收特性.内蒙古大学学报(自然科学版).2008,39:452.
    [10]Tanner, P.A., Fu, L.S. Morphology of Y2O3:Eu3+prepared by hydrothermal synthesis. Chem Phys Lett.2009,470:75.
    [11]Li, Q.S., Feng, C.H., Jiao, Q.Z., et al. Shape-controlled synthesis of yttria nanocrystals under hydrothermal conditions. Phys Stat Sol.2004,201:3055.
    [12]Fang, Y.P., Xu, A.W., You, L.P., et al. Hydrothermal synthesis of rare earth (Tb,Y) hydroxide and oxide nanotubes. Adv. Funct. Mater.2003,13:955.
    [13]Zhang, J., Liu, Z.G., Lin, J., Fang. J.Y. Y2O3 Microprisms with Trilobal Cross Section. Cryst. Growth Des.2005,5:1527.
    [14]Devaraju, M.K., Yin, S., Sato. T. A Fast and Template Free Synthesis of Tb:Y2O3 Hollow Microspheres Via Supercritical Solvothermal Method. Cryst. Growth Des.2009,9:2944.
    [15]景晓燕,洪广言.醇盐水解法肄盐法制备稀土化物超微粉末.应用化学.1990,7:92.
    [16]Olmedo, L., Hourquebie, P., Jouse, F. Microwave properties of conductive polymers. Synthesis Metals.1995,69:205.
    [17]Subramanian, R., Shankar, P., Kavithaa, S., et al. Synthesis of nanocrystalline yttria by sol-gel method. Mater. Lett.2001,48:342.
    [18]赵新字,张煜.喷雾热解制备稀土超细粉束:氧化钇粒子形态与形成机理.高等学校化学学报.1998,19:507.
    [19]Sohna, S., Kwonb, Y., Kimc, Y., et al. Synthesis and characterization of near-monodisperse yttria particles by homogeneous precipitation method. Powder Technol.2004,142:136.
    [20]孔德明,胡慧芳,冯建辉.掺杂聚苯胺吸波材料的研究.高分子材料科学与工程.2000,16:169.
    [21]Yao, J., Sun, L.D., Qian, C., Fu, X.F., Liao, C.S., Yan, C.H. Synthesis and Optical Properties of Nanosized Rare Earth Composite Oxides RE2O3:Eu (RE=Y,Gd). Chin. J. Rare Earths.2001,19:426
    [22]Tao, Y., Zhao, G.W., Zhang, W.P., Xia, S.D., Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors. Mater. Res. Bull. 1997,32:501.
    [23]Madhu, C., Sundaresan, A., Rao, C.N.R. Room-temperature ferromagnetism in undoped GaN and CdS semiconductor nanoparticles. Phys. Rev. B.2008, 77:201306(R).
    [24]Cullity, B.D. Introduction to Magnetic Materials. (Addison-Wesley, Reading, MA,1972).
    [25]Hu, J.F., Qin, H.W., Xue, T.F., Cao, E.S., Li, D.T. Room-temperature ferromagnetism of Zn0.97Co0.03O pressed nanocrystalline powders. Appl. Phys. Lett.2008,93:022510.
    [26]Ayyappan, S., Philip Raja, S., Venkateswaran, C., Philip, J., Raj, B. Room temperature ferromagnetism in vacuum annealed ZnFe2O4 nanoparticles, Appl. Phys. Lett.2010,96:143106.
    [27]Qin, H.W., Zhang, Z.L., Liu, X., Zhang, Y.J., Hu, J.F. Room-temperature ferromagnetism in CuO sol-gel powders and films. J. Magn. Magn. Mater.2010, 322:1994.
    [28]Mi, W.B., Jiang, EY., Bai, H.L. High-temperature ferromagnetism observed in facing-target reactive sputtered MnxTi1-xO2 films. Acta. Mater.2008,56:3511.
    [29]Yan, W.S., Sun, Z.H., Pan, Z.Y., Liu, Q.H., Yao, T., Wu, Z.Y., Song, C., Zeng, F., Xie, Y.N., Hu, T.D., Wei. S.Q. Oxygen vacancy effect on room-temperature ferromagnetism of rutile Co:TiO2 thin films. Appl. Phys. Lett.2009,94:042508.
    [30]Araujo, C.M., Kapilashrami, M., Jun, X., Jayakumar, O.D., Nagar, S., Wu, Y., Arhammar, C., Johansson, B., Belova, L., Ahuja, R., Gehring, G.A., Rao K.V. Room temperature ferromagnetism in pristine MgO thin films. Appl. Phys. Lett. 2010,96:232505.
    [31]Singhal, R.K., Kumari, P., Samariya, A., Kumar, S., Sharma, S.C., Xing, Y.T., Saitovitch, E.B. Role of electronic structure and oxygen defects in driving ferromagnetism in nondoped bulk CeO2. Appl. Phys. Lett.2010,97:172503.
    [32]Zhang, L., Ge, S.H., Zuo, Y.L., Zhang, B.M., Xi, L. Influence of Oxygen Flow Rate on the Morphology and Magnetism of SnO2 Nanostructures. J. Phys. Chem. C.2010,114:7541.
    [33]Lee, S., Shon, Y, Kim, D.Y., Kang, T.W., Yoon, C.S. Enhanced ferromagnetism in H2O2-treated p-(Zn0.93Mn0.07)O layer. Appl. Phys. Lett.2010,96:042115.
    [34]Natile, M.M., Glisenti, A. Study of Surface Reactivity of Cobalt Oxides: Interaction with Methanol. Chem. Mater.2002,14:3090.
    [35]Grace, B.P.J., Venkatesan, M., Alaria, J., Coey, J.M.D., Kopnov, G, Naaman, R. The Origin of the Magnetism of Etched Silicon.Adv. Mater.2009,21:71.
    [36]Gao, D.Q., Zhang, J., Yang, GJ., Zhang, J.L., Shi, Z.H., Qi, J., Zhang, Z.H., Xue, D.S. Ferromagnetism in ZnO Nanoparticles Induced by Doping of a Nonmagnetic Element:Al. J. Phys.Chem. C.2010,114:13477.
    [1]Serrano, A., Pinel, E.F., Quesada, A., Lorite, I., Plaza, M., Perez, L., Jimenez-Villacorta, F., de la Venta, J., Martin-Gonz a lez, M.S., Costa-Kramer, J.L., Fernandez, J.F., Llopis, J., Garcia, M.A. Room-temperature ferromagnetism in the mixtures of the TiO2 and Co3O4 powders. Phys. Rev. B.2009,79:144405.
    [2]Martin-Gonzalez, M.S., Fernandez, J.F., Rubio-Marcos, F., Lorite, I., Costa-Kramer, J.L., Quesada, A., Banares, M.A., Fierro, J.L.G. Insights into the room temperature magnetism of ZnO/Co3O4 mixtures. J. Appl. Phys.2008,103:083905.
    [3]Gao, D.Q., Zhang, Z.P., Yang, Z.L., Xue, D.S. Interface mediated ferromagnetism in bulk CuO/Cu2O composites. Appl. Phys. Lett.2012,101:132416.
    [4]Brinkman, A., Huijben, M., Vanzalk, M., Huijben, J., Zeitler, U., Maan, J.C., Van der wiel, W.G, Rijnders, G, Blank, D.H.A., Hilgenkamp, H. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater.2007,6:493.
    [5]Bert, J.A., Kalisky, B., Bell, C, Kim, M., Hikita, Y, Hwang, H.Y, Moler, K.A. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTi03 interface. Nat. Phys.2011,7:767.
    [6]Li, L., Richter, C, Mannhart, J., Ashoori, R.C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat. Phys.2011, 7:762.
    [7]Dikin, D.A., Mehta, M., Bark, C.W., Folkman, C.M., Eom, C.B., Chandrasekhar, V. Coexistence of Superconductivity and Ferromagnetism in Two Dimensions. Phys. Rev. Lett 2011,107:056802.
    [8]Mathieu, J.P., Cano, I.G., Koutzarova, T., Rulmont, A., Vanderbemden, Ph., Dew-Hughes, D., et al., Supercond. Sci. Technol.2004,17:169.
    [9]Jin, S., Tiefel, T.H., Sherwood, R.C., Davis, M.E., van Dover, R.B., Kammlott, G.W., et al., Appl. Phys. Lett.1988,52:2074.
    [10]Zhang, Y, Zhang, L., Deng, J.G., Dai, H.X., He, H. Hydrothermal Fabrication and Catalytic Properties of YBa2Cu307. Catal. Lett.2010,135:126.
    [11]Kim, C.J., Kim, K.B., Jee, Y.A., Kuk, I.H., Hong. G.W. Effects of the heating rate on conversion of the precursor powders used for melt processes into YBa2Cu3O7. y. J. Mater. Res.1999,14:1212.
    [12]Slusser, P., Kumar, D., Tiwari, A. Unexpected magnetic behavior of Cu-doped CeO2. Appl. Phys. Lett.2010,96:142506.
    [13]Sakamoto, Y.,Y, Maki, Oba, H., Suda, M., Einaga, Ya., Sato, T., Mizumaki, M., Kawamura, N., Suzuki, M. Ferromagnetism of Pt nanoparticles induced by surface chemisorption.Phys. Rev. B 83 (2011) 104420.
    [14]Zhu, Z.H., Gao, D.Q., Dong, C.H., Yang, G.J., Zhang, J., Zhang, J.L., Shi, Z.H, Gao, H., Luo, H.G, Xue, D.S. Coexistence of ferromagnetism and superconductivity in YBCO nanoparticles. Phys. Chem. Chem. Phys.2012, 14:3859.
    [15]Rettori, C., Davidov, D., Belaish, I., Felner, I. Magnetism and critical fields in the high-Tc superconductors YBa2Cu3O7-xSx (x=0,1):An ESR study. Phys. Rev. B. 1987,36:4028.
    [16]Saxena, A.K. High-Temperature Superconductors. New York:Springer.2009.
    [17]Manthiram, A., Goodenough, J.B. Synthesis of the high-Tc superconductor YBa2Cu307-δ in small particle size. Nature.1987,329:701.
    [18]Natile, M.M., Glisenti, A. Study of Surface Reactivity of Cobalt Oxides: Interaction with Methanol. Chem. Mater.2002,14:3090.
    [19]Grace, B.P.J., Venkatesan, M., Alaria, J., Coey, J.M.D., Kopnov, G, Naaman, R. The Origin of the Magnetism of Etched Silicon. Adv. Mater.2009,21:71.
    [20]Gao, D.Q., Zhang, J., Yang, GJ., Zhang, J.L., Shi, Z.H., Qi, J., Zhang, Z.H., Xue, D.S. Ferromagnetism in ZnO Nanoparticles Induced by Doping of a Nonmagnetic Element:Al. J. Phys.Chem. C.2010,114:13477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700