多重价态锰钙钛矿氧化物的电输运性质及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究多重价态锰钙钛矿氧化物的电输运性质及其机理。
     我们用水热方法合成了多重价态锰钙钛矿氧化物的一系列样品,并在不同的外界条件下进行煺火。在煺火的过程中自然使样品中的氧元素溢出或外界的氧进入,当有氧进入时,使La1-x-y CaxKyMnO3中氧的原子数变成3+δ;而当有氧溢出的,使氧的原子数变成3-δ。这一过程以及δ数值的大小会完全改变化合物的性质,我们发现经过这些处理后,样品的导电性确实发生了变化,而X-射线测试显示样品经过处理后结构没有发生变化。我们认为样品的导电性的变化是氧的增加与缺失导致的。
     为了探明经过不同煺火条件处理后样品性质的变化的原因,我们对样品进行了X-射线光电子能谱分析。在对样品表面元素含量分析中,我们发现La、Ca、K、Mn元素外界条件的影响不大,不会对样品的性质产生巨大的影响;而氧元素变化很大,原有的晶格氧含量变化很大,同时在晶格氧峰位附近出现另一种氧的峰,判断为0价氧的峰,峰位比晶格氧略高。同时,相应的样品的价带谱也随之发生变化,并且eg电子的权重也发生变化。这一现象充分说明,氧在这一个过程中的重要作用及对样品电输运性质的影响。
     在研究多重价态锰钙钛矿氧化物过程中,我们发现此化合物具有超流特性,这种超流现象只有在超导体进入超导态时才存在。样品通过的电流密度可达5×104 A/cm2,我们对这种现象提出了理论解释:在外加电场和热的作用下,体系首先形成了长寿命的激子,然后这个激子与电子相互作用,最终在这种作用下两个电子相互作用成对,形成电子对,电子对的导电能力极强,从而出现超流现象。
Research on the manganites has revealed many novel phenomenons,for example,colossal magnetoresistance(CMR), at the same time,it has lad to some new physical concepts,such as,double-exchang and Jahn-Teller polaron and so on.Early research mainly forcused on searching for insulating ferromagnets with a large magnetization for high-frequency applications, and now we has put light on finding out and explaining large negative magnetoresistance effects which appear near and below the Curie temperature. Based on the abundant physical properties, the manganites can be used for solid electrolytes, catalysts, sensors and novel electronic materials. Their rich electronic phase diagrams reflect the fine balance of interactions which determine the electronic ground state. These compounds represent, in microcosm, the interplay of experiment,theory and application which is at the heart of solid state physics.This kind of compouds is the core in the area of microscopic world, experiment , theory and applications of the solid state physics.
     Mixed-valence manganese oxides (R1-xAx)MnO3 (R rare-earth cation, A alkali or alkaline earth cation), with a structure similar to that of perovskiteCaTiO3, exhibit a rich variety of crystallographic, electronic and magnetic phases.Historically they led to the formulation of new physical concepts such as double exchange and the Jahn-Teller polaron. More recent work on thin flms has revealed new phenomena, including colossal magnetoresistance near the Curie temperature, dense granular magnetoresistance and optically-induced magnetic phase transitions. Issues addressed include the nature of the electronic ground states, the metal-insulator transition as a function of temperature, pressure and applied magnetic field, the electronic transport mechanisms, dielectric and magnetic polaron formation, magnetic localization, the role of cation disorder and the Jahn- Teller effect.
     Manganese oxides are generally charge-transfer type, but also close to the Mott-Hubbard-type region. Parent-phase LaMnO3 is a charge-transfer-type insulators. When using a small amount of divalent alkaline-earth metal instead of La, the introduction of hole (mainly in the oxygen), the system's chemical potential change, until the ground state from an insulator into a metal, occurs insulator-metal transition (IM). This band fills the control of IM changes greatly affected by the system bandwidth. When using different sizes of the alkaline earth metals do an alternative, system bandwidth will be subject to modulation (A bit larger ionic radius, bandwidth is also larger). IM changes would give rise to the threshold required for carrier concentration is small. On this basis, we will be mixed with alkali metal K which is bound to introduce some sort of doping disorder, which disorder effects on the system is unpredictable.
     We have synthesised a series of manganese perovskite oxides by hydrothermal methods and annealed the samples in different conditions, that was at different temperatures and different atmosphere.In detail,the samples were dealt at 500℃, 700℃, 900℃and at the atmosphere of oxygen,vacuum (with or without graphite) and air.In the process, oxygen spilled or ran into the sample. And here, I think the second occurred at the the atmosphere of oxygen and air,as a result, La1-x-y CaxKyMnO3+δappeared. And La1-x-y CaxKyMnO3-δappeared in the first condition. As to the value ofδ, it depended on the properties of the compound, and such condition also was ture of YBCO which resulted in superconductivity. In the text, we found out that the conductivity changed after the annealing. What was more, the crystal structure had no change by XRD. In the process of electrical test, we could say that the conductivity grow good for the samples annealed at the atmosphere of oxygen and air,and the opposite condition occured at the atmosphere of vacuum (with or without graphite) which could be explained as a result ofδ.
     In order to clarify the reason of the changing nature through different anneal-treated samples, we use the X-ray photoelectron spectroscopy for element valence analysis. With the element content analysis of the sample surface, we found that La, Ca, K, Mn element peak intensity is slightly change and the peak is not remove strongly by the external conditions of sample handling process and the sample nature enormous impact did not change . In the contrast ,the oxygen environment has been different, the original oxygen content has changed dramatically, a shoulder structure at the high BE side of O 2p3/2 main peak has been observed which we conclude that derived from the zero valence oxygen.
     Meanwhile, the corresponding valence-band spectra of sample also has been changed. This phenomenon fully demonstrates that the oxygen in this process plays an important role in the electronic transport properties of the sample. In further studies, we also found room-temperature ferromagnetic phase in our samples.
     In the process, we also found that supercurrent about 5×104 A/cm2 appeared for the manganite perovskite oxide which could occurred in the superconducting state of the superconductor.We could explain as follows: at first the system formed the long-life exciton in the presence of the applied electrical field and heat, then as a result of the interactions of the exiton and the electron ,two elecrons formed a pair showing out the supercurrent.
引文
[1] Jin S, Tiefel T H, McCormack, M Fastnacht, R A Ramesh R and Chen L H.Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films[J] . Science, 1994, 264:413.
    [2] Hwang H Y, Cheong S W, Ong N P, and Batlogg B . Spin-Polarized Intergrain Tunneling in La2/3Sr1/3MnO3[J] . 1996, Phys ReV L ett, 77:2041.
    [3] Zener C . Interaction between the d Shells in the Transition Metals. II. Ferromagnetic Compunds of Maganese with Perovskite Structure[J] . 1951, Phys ReV, 81:440.
    [4] Zhao G, Conder K, Keller H and Mu?ller K A . Giant oxygen isotope shift in the magnetoresistive perovskite La1-xCaxMnO3+y [J] . Nature, 1996, 381:676.
    [5] Jonker G and van Santen J . Ferromagnetic Compounds of Manganese with Perovskite Structure[J] . Physica, 1950, 16:337.
    [6] von Santen J H and Jonker G H . Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure[J] . Physica, 1950, 16:599.
    [7] Jonker G H . Magnetic compounds with perovskite structure IV Conducting and non-conducting compounds[J] . Physica, 1956, 22:707.
    [8] Volger J . Further experimental investigations on some ferromagnetic oxidic compounds of manganese with perovskite structure[J] . Physica, 1954, 20:49.
    [9] Searle C W and Wang S T . Studies of the ionic ferromagnet (LaPb)MnO3 III Ferromagnetic resonance studies[J] . Can J Phys, 1969, 47:2703.
    [10] Searle C W and Wang S T.Studies of the ionic ferromagnet (LaPb)MnO3 V Electric transport and ferromagnetic properties[J] . Can J Phys, 1970, 48:2023.
    [11] Morrish A H, Evans B J, Eaton J A and Leung L K[J] . Can J Phys, 1969,47: 2691.
    [12] Leung L K, Morrish A H and Searle C W[J] . Can J Phys, 1969, 47:2697.
    [13] von Helmholt R, Wecker J and Holzapfel B . Giant negative magnetoresistancein perovskitelike La2/3Ba1/3MnOx ferromagnetic films[J] . Phys ReV Lett, 1993, 71:2331.
    [14] Chahara K, Ohno T, Kasai M and Kozono Y . Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure[J] . 1993, Appl Phys Lett, 63:1990.
    [15] Goodenough J B and Longho J . Landholdt- Boèrnstein, group III, Vol. 4a1970, (Berlin: Springer).
    [16] Verwey E J W and Boer J H de . Cation arrangement in a few oxides with crystal structures of the spinel type[J] . Recl Trav chim Pays-Bas Belg, 1936, 55:531-533.
    [17] Verwey E J W . Z Phys, 1935, 91:65.
    [18] Jonker G and Santen J van.Magnetic compounds wtth perovskite structure III. ferromagnetic compounds of cobalt[J] . Physica, 1953, 19:120-130.
    [19] Arima T and Tokura Y . Optical study of electronic-structure in perovskite-type RMO(3) (R=La, Y M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu)[J] . JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64:2488.
    [20] Sarma D, Shanthi N, Barman S, Hamada N, Sawada H and Terakura K . band theory for ground-state properties and excitation-spectra of perovskite LaMO(3) (M=Mn, Fe, Co, Ni)[J] . PHYSICAL REVIEW LETTERS, 1995, 75:1126.
    [21] Zaanen J, Sawatzky G A and Allen J W . Bband-gaps and electronic-structure of transition-metal compounds[J] . PHYSICAL REVIEW LETTERS, 1985, 55:418.
    [22] Zaanen J and Sawatzky G A . Systematics in band-gaps and optical-spectra of 3d transition-metal compounds[J] . JOURNAL OF SOLID STATE CHEMISTRY, 1990, 88:8.
    [23] Goodenough J B . Magnetism and the Chemical Bond[J] . Interscience(Wiley) , New York, 1963.
    [24] Burns R G.Mineralogical Applications of Crystal Field Theory[M].2nd ed. London: Cambridge University Press, 1992.
    [25] Abbate M, De Groot F M F, Fuggle J C, Fujimori A, Strebel O, Lopez F, Domke M, Kaindl G, Sawatzky G A, Takano M, Takeda Y, Eisaki H and Uchida S . Controlled-valence properties of La1-xSrxFeO3 and La1-xSrxMnO3 studied by soft-x-ray absorption-spectroscopy[J] . PHYSICAL REVIEW B, 1992, 46:4511.
    [26] Lawler J F, Lunney J G and Coey J M D . Magnetooptic faraday-effect in (La1-xCax)MnO3 films[J] . APPLIED PHYSICS LETTERS, 1994, 65:3017.
    [27] Sherman D . The electronic-structures of manganese oxide minerals[J] . AMERICAN MINERALOGIST, 1984, 69:788.
    [28] Ju H L, Sohn H-C and Krishnan K M . Evidence for O-2p hole-driven conductivity in La1-xSrxMnO3 (0<=x<=0.7) and La0.7Sr0.3MnOz thin films[J] . PHYSICAL REVIEW LETTERS, 1997, 79:3230.
    [29] Jung J H, Kim K H, Eom D J, Noh T W, Choi E J, Yu J, Kwon Y S and Chung Y . Determination of electronic band structures of CaMnO3 and LaMnO3 using optical-conductivity analyses[J] . PHYSICAL REVIEW B, 1997, 55:15489.
    [30] Okimoto Y, Katsufuji T, Ishikawa T, Urushibara A, Arima T and Tokura Y . Anomalous variation of optical-spectra with spin polarization in double-exchange ferromagnet - La1-xSrxMnO3[J] . PHYSICAL REVIEW LETTERS, 1995, 75:109
    [31] Wei J Y T, Yeh N C and Vasquez R P . Tunneling eVidence of half-metallic ferromagnetism in La0.7Ca0.3MnO3[J] . PHYSICAL REVIEW LETTERS, 1997, 79:5150.
    [32] Chainani A, Mathew M and Sarma D D . Electron spectroscopic investigation of the semiconductor-metal transition in La1-xSrxMnO3[J] . PHYSICAL REVIEW B, 1993, 47:15397.
    [33] Park J H, Chen C T, Cheong S W, Bao W, Meigs G, Chakarian V and Idzerda Y U . Electronic aspects of the ferromagnetic transition in manganese perovskites[J] . PHYSICAL REVIEW LETTERS, 1996, 76:4215.
    [34] Saitoh T, Bocquet A E, Mizokawa T, Namatame H, Fujimori A, Abbate Y, Takeda Y and Takano M . Electronic-structure of La1-xSrxMnO3 studied by photoemission and x-ray-absorption spectroscopy[J] . PHYSICAL REVIEW B, 1995, 51:13942.
    [35] Bocquet A E, Mizokawa T, Saitoh T and Namatame H . Electronic-structure of 3d-transition-metal compounds by analysis of the 2p core-leVel photoemission spectra[J] . PHYSICAL REVIEW B, 1992, 46:3771.
    [36] NagaeV E L . Lanthanum manganites and other giant-magnetoresistance magnetic conductors[J] . Physics-Uspekhi, 1996, 39(8):781.
    [37] Saitoh T . Electronic structure of La1-xSrxMnO3 studied by photoemission and x-ray-absorption spectroscopy[J].Phys ReV B, 1995, 51:13942-13945
    [38] Chainani A, Mathew M and Sarma D D . Electronic structure and semi-conductor-metal transition in La1-xSrxMnO3 An electron spectroscopy study[J] . Phys ReV B, 1993, 47:15397.
    [39] Abbate M, Groot F M F de, Fuggle J C, Fujimori A, Strebel O, Lopez F, Domke M, Kaindl G, Sawatzky G A, Takano M, Takeda Y, Eisaki H and Uchida S . Controlled-valence properties of La1-xSrxFeO3 and La1-xSrxMnO3 studied by soft-x-ray absorption spectroscopy[J] . Phys ReV B, 1992, 46:4511-4519.
    [40] Bocquet A E, Saitoh T, Mizokawa T and Fujimori A . Electronic structure of 3d-transition-metal compounds by analysis of the 2p core-leVel photoemission spectra[J]. Phys ReV B, 1992, 46:3771-3784.
    [41] Bocquet A E, Saitoh T, Mizokawa T and Fujimori A . Systematics in the electronic structure of 3d transition-metal compounds[J] . Solid State Commun, 1992, 83:11-15.
    [42] Park J, Ryu S, Han M and Oh S J . Charge-transfer satellites in the 2p core-leVel photoelectron spectra of heavy-transition-metal dihalides[J] . Phys ReV B, 1988, 37:10867-10875; Oh S J , Gweon G H, and Park J G . Origin of 3s splittings in the photoemission spectra of Mn and Fe insulating compounds[J] . Phys ReV Lett, 1992, 68:2850-2853.
    [43] Fujimori A, Hase I, Nakamura M, Namatame H, Fujishima Y, Tokura Y, Abbate M, Groot F M F de, Fuggle J C, Strebel O, Domke M and Kaindl G . Doping-induced changes in the electronic structure of LaxSr1-xTiO3 Limitation of the one-electron rigid-band model and the Hubbard model[J] . Phys ReV B, 1992, 46:9841–9844.
    [44] Tanabe Y and Sugano S . On the Absorption Spectra of Complex Ions II [J] . J Phys Soc Jpn, 1954, 9:745-779.
    [45] Lam D J, Veal B W and Ellis D E . Electronic structure of lanthanum perovskiteswith 3d transition elements[J] . Phys ReV B, 1980, 22:5730-5739.
    [46] Garcia-Munoz J L, Fontcuberta J, Suaaidi M and Obradors X . Bandwidth narrowing in bulk L(2/3)A(1/3)MnO(3) magnetoresistive oxides[J]. J Phys condens Matter, 1996, 8:L787.
    [47] Pickett W E and Singh D J . Magnetoelectronic and magnetostructural coupling in the La1-xCaxMnO3 system[J] . EUROPHYSICS LETTERS, 1995, 32:759.
    [48] Pickett W E and Singh D J . Electronic structure and half-metallic transport in the La1-xCaxMnO3 system[J] . PHYSICAL REVIEW B, 1996, 53:1146.
    [49] Satpathy S, Popovic Z S and Vukajlovic F R . Electronic structure of the perovskite oxides La1-xCaxMnO3[J] . PHYSICAL REVIEW LETTERS, 1996, 76:960.
    [50] Satpathy S, Popovic Z S and Vukajlovic F R . Density-functional studies of the electronic structure of the perovskite oxides La1-xCaxMnO3[J] . JOURNAL OF APPLIED PHYSICS, 1996, 79:4555.
    [51] SolovyeV I, Hamada N and Terakura K . Crucial role of the lattice distortion in the magnetism of LaMnO3[J] . PHYSICAL REVIEW LETTERS, 1996, 76:4825.
    [52] Mizokawa T and Fujimori A . Unrestricted hartree-fock study of transition-metal oxides - spin and orbital ordering in perovskite-type lattice[J] . PHYSICAL REVIEW B, 1995, 51:12880.
    [53] Mizokawa T and Fujimori A . Electronic structure and orbital ordering in perovskite-type 3d transition-metal oxides studied by Hartree-Fock band-structure calculations[J] . PHYSICAL REVIEW B, 1996, 54:5368.
    [54] Tobola J, Kaprzyk S and Pierre J . Effect of alloying with Ca in LaMnO3 system studied by KKR-CPA method and giant magnetoresistance[J] . ACTA PHYSICA POLONICA A, 1997, 92:461.
    [55] SolovyeV I, Hamada N and Terakura K . t(2g) versus all 3d localization in LaMO(3) perovskites (M=Ti-Cu): First-principles study[J] . PHYSICAL REVIEW B, 1996, 53:7158.
    [56] Elemans J B A A, van Laar K R, van der Veen K R and Loopstra B O . Crystallographic and magnetic structures of La1-xBaxMn1-xMexO3 (ME = Mn CrTi)[J] . JOURNAL OF SOLID STATE CHEMISTRY, 1971, 3:238.
    [57]Shi F, Ding M and Lin T . Extraordinary large magnetoresistance in doped lamno3 oxide thin-films[J] . SOLID STATE COMMUNICATIONS, 1995, 96:931.
    [58] Maz zaferro J, Balseiro C A and Alascio B . Itinerant electron theory of transition-metal compounds of mixed valency - La1-xSrxMnO3[J] . JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1985, 46:1339.
    [59] Allub R and Alascio B . Effect of disorder on the magnetic and transport properties of La1-xSrxMnO3[J] . SOLID STATE COMMUNICATIONS, 1996, 99:613.
    [60] Allub R and Alascio B . Magnetization and conductivity for La1-xSrxMnO3-type crystals[J] . PHYSICAL REVIEW B, 1997, 55:14113.
    [61] Varma C M . Electronic and magnetic states in the giant magnetoresistive compounds[J] . PHYSICAL REVIEW B, 1996, 54:7328.
    [62] Viret M, Ranno L and Coey J M D . Magnetic localization in mixed-valence manganites[J] . PHYSICAL REVIEW B, 1997, 55:8067.
    [63] K.Horiba et al . Nature of theWell Screened State in Hard X-Ray Mn 2p Core-LeVel Photoemission Measurements of La1-xSrxMnO3 Films[J] . Phys ReV Lett, 2004, 93:236401.
    [64] Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G and Tokura Y . Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3[J] . Phys ReV B, 1995, 51:14103–14109.
    [65] Park J H et al . Direct eVidence for a half-metallic ferromagnet [J] . Nature(London), 1998, 392:794-796.
    [66] Fujishiro H, Ikebe M and Konno Y . Phase Transition to Antiferromagnetic State in La 1-XSrXMnO 3 (X≥0.5) [J] . J Phys Soc Jpn, 1998, 67:1799-1800.
    [67] K Horiba et al . In situ photoemission study on atomically-controlled La1-xSrxMnO3 thin films Composition dependence of the electronic structure [J] . Cond-mat , 0406315.
    [68] Chainani A, Mathew M and Sarma D D . Electron spectroscopic investigation of the semiconductor-metal transition in La1-xSrxMnO3[J] . Phys ReV B, 1993, 47:15397-15403.
    [69] Saitoh T et al . Electronic structure of La1-xSrxMnO3 studied by photoemission and x-ray-absorption spectroscopy [J] . Phys ReV B, 1995, 51:13942-13951; Saitoh T et al . Temperature-dependent valence-band photoemission spectra of La1-xSrxMnO3 [J] . Phys ReV B, 1997, 56:8836-8840.
    [70] Matsuno J et al . Chemical potential shift in La1 ? xSrxMnO3 Photoemission test of the phase separation scenario[J] . Europhys Lett, 2002, 59:252.
    [71] Park J H et al . Electronic Aspects of the Ferromagnetic Transition in Manganese Perovskites [J] . Phys ReV Lett, 1996, 76:4215-4218.
    [72] Taguchi M and Altarellli M . Orbital ordering in LaMnO3 cluster model calculation of resonant X-ray scattering and X-ray absorption at the Mn L2,3 edge [J] . Surf ReV Lett, 2002, 9:1167-1171.
    [73] J Imer M and Wuilloud E . A simple model calculation for XPS, BIS and EELS 4f-excitations in Ce and La compounds [J] . Z Phys B, 1987, 66:153;Bocquet A E et al . Effect of charge transfer to the conduction band within a single-impurity model on the Ni 2p core-leVel line shapes of Ni compounds[J] . Phys ReV B, 1995, 52:13838-13849.
    [74] Taguchi M et al . Bulk screening in core leVel photoemission from Mott-Hubbard and Charge-Transfer systems [J] . Condensed Matter And Materals Physics, 2005, 71, 0404200.
    [75] Kim H D et al . Core-LeVel X-Ray Photoemission Satellites in Ruthenates A New Mechanism ReVealing The Mott Transition [J] . Phys ReV Lett, 2004, 93:126404.
    [76] Pickett W E and Singh D J . Electronic structure and half-metallic transport in the La1-xCaxMnO3 system [J]. Phys ReV B, 1996, 53:1146-1160; Mizokawa T and Fujimori A . Electronic structure and orbital ordering in perovskite-type 3d transition-metal oxides studied by Hartree-Fock band-structure calculations [J] . Phys ReV B, 1996, 54:5368-5380.
    [77] Pedersen L A and Libby W F . Unseparated Rare Earth Cobalt Oxides as Auto Exhaust Catalysts[J] . Science, 1972, 176:1355-1356.
    [78] VoorhoeVe R J H, Remeika J P and Johnson D W . Rare-Earth ManganitesCatalysts with Low Ammonia Yield in the Reduction of Nitrogen Oxides[J] . Science, 1973, 180:62-64.
    [79] Parravano J . Catalytic Activity of Lanthanum and Strontium Manganite[J] . J Am chem Soc, 1953, 75:1497.
    [80] VoorhoeVe R J H, Remeika J P, Freeland P E and Matthias B T . Intrinsic absorptive optical bistability in CdS[J] . Science, 1972, 43:1088-1090.
    [81] Vrieland E G . The activity and selectivity of Mn3+ and Mn4+ in lanthanum calcium manganites for the oxidation of ammonia[J] . Catal, 1974, 32:415-428.
    [82] Venkatesan T, Rajeswari M, Dong Z W, Ogale S B and Ramesh R . Manganite-Based DeVices Opportunities Bottlenecks and Challenges[J] . Philos Trans roy Soc A, 1998, 356:1661-1680.
    [83] Goyal A, Rajeswari M, Shreekala R, Lofland R, Bhagat S M, Boettcher T, Kwon C, Ramesh R and Venkatesan T . Material characteristics of perovskite manganese oxide thin films for bolometric applications[J] . Appl Phys Lett, 1997, 71:2535-2537.
    [84] Lawler J F, Coey J F, Lunney J M D and SkumryeV V . Pulsed laser deposition of thin films of (La1-xCax)MnO3[J] . J Phys condens Matter, 1996, 8:10737-10752.
    [85] Mahendiran R, Mahesh R, Rangavittal N, Tewari S, Raychauduri A, Ramakrishnan T and Rao C . Structure electron-transport properties and giant magnetoresistance of hole-doped LaMnO3 systems [J] . Phys ReV B, 1996, 53:3348-3358.
    [86] Krinchik F S, Ganshina E A and Trifonov A Yu . Soviet Phys Solid, St, 1991, 33: 907.
    [87] Ranno L, Viret M, Valentin F, McCauley J and Coey J M D . Transport and magnetic properties of A3+1?xB2+xMnO3 (A = La, Y or Nd, B = Ca, Sr or Ba) magnetic perovskites[J] . J Magn magn Mater, 1996, 157/158:291-292.
    [88] Balcells L, Enrich R, Mora J, Calleja A, Fontcuberta J and Obradors X . Manganese perovskites Thick‐f ilm based position sensors fabrication[J] . Appl Phys Lett, 1996, 69: 1486-1488.
    [89] Jin S . Synthesis of nanocrystalline titanium carbide alloy powders by mechanicalsolid state reaction[J] . Mater Trans Japan Ins Metals, 1996, 37: 2374-2382.
    [90] Z W Dong, T Boettcher, C M Chen, I Takeuchi, M Rajeswari, R P Sharma and T Venkantesan . Enhanced magnetoresistance in YBa2Cu3O7/Nd0.7Sr0.3MnO3 heterostructures using magnetic flux focusing[J] . Appl Phys Lett, 1996, 69:3432-3434.
    [91] Owens F J . Giant magneto radio frequency absorption in magnetoresistive materials La0.7(Sr,Ca)0.3MnO3[J] . J Appl Phys, 1997, 82: 3054.
    [92] Gupta A, Gong G Q, Xiao G, Duncombe P R, Lecoeur P, Trouilloud P, Wang Y Y, Dravid V P and Sun J Z . Grain-boundary effects on the magnetoresistance properties of perovskite manganite films[J] . Phys ReV B, 1996, 54: R15629-R15632.
    [93] Balcells L, Fontcuberta J, Martinez B, and Obradors X . Magnetic surface effects and low-temperature magnetoresistance in manganese perovskites[J] . Phys condens Matter, 1998, 10: 1883.
    [94] Mathur N, Burnell G, Isaac S P, Jackson T J, Teo B S, MacManus J L, Cohen L F, Evetts J E and Blamire M G . Large low-field magnetoresistance in La0.7Ca0.3MnO3 induced by artificial grain boundaries[J] . Nature, 1997, 387: 266-268.
    [95] Hwang H Y, Cheong S W and Batlogg B . Enhancing the low field magnetoresistive response in perovskite manganites[J] . Appl Phys Lett, 1996, 68:3494-3496.
    [96] O’Donnell J, Onellion M, Rzchowski M S, Eckstein J N, and Bozovic I . Low-field magnetoresistance in tetragonal La1-x Cax MnO3 films[J] . Phys ReV B, 1997, 55:5873-5879.
    [97] Lu Y, Li X W, Gong G Q, Xiao G, Gupta A, Lecoeur P, Sun J Z , Wang Y Y and Dravid V P . Large magnetotunneling effect at low magnetic fields in micrometer-scale epitaxial La0.67Sr0.33MnO3 tunnel junctions [J] . Phys ReV B, 1996, 54: R8357-R8360.
    [98] Sun J Z, Gallagher W J, Duncombe P R, Krusin-Elbaum L, Altman R A , Gupta A, Lu Y, Gong G Q, and Xiao G . Observation of large low‐ fieldmagnetoresistance in trilayer perpendicular transport deVices made using doped manganate ;perovskites[J] . Appl Phys Lett, 1996, 69:3266-3268.
    [99] Viret M and Drouet M . Low-field colossal magnetoresistance in manganite tunnel spin valves[J] . Europhys Lett, 1997, 39: 545.
    [100] Vas’ko V A, Larkin V A, Kraus P A, NikolaeV K R, Grupp D E, Nordman C A and Goldman A M . Critical Current Suppression in a Superconductor by Injection of Spin-Polarized Carriers from a Ferromagnet[J] . Phys ReV Lett, 1992, 78:1134-1137.
    [101] Tang Y, Shaltout I, Braunstein R, Helmholt R von, Haupt H and Ba? rner K . Infrared Properties of Metallic and Insulating La1-zXzCu1-xMnxO3- Compounds (X = Sr, Ba) [J] . Phys Stat sol. (b) , 1994, 182: 509.
    [102] Mathews S, Ramesh R, Venkatesan T and J Benedetto . Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures[J] . Science, 1998, 276:238.
    [103] Rajeswar i M, Goyal A, Raychaudhuri A K, Robson M C, Xiong G C, Kwon C, Ramesh R, Greene L, Venkatesan T and Lakeou S . 1/f electrical noise in epitaxial thin films of the manganite oxides La0.67Ca0.33MnO3 and Pr0.67Sr0.33MnO3[J] . Appl Phys Lett, 1996, 69: 851-853.
    [104] Alers G B, Ramirez A P and Jin S . 1/f resistance noise in the large magnetoresistance manganites[J] . Appl Phys Lett, 1996, 68: 3644.
    [105] Hardner H T, Weissman M B, Jaime M, Treece R E, Dorsey P C, Horwitz J S and D. B. Chrisey [J] . Appl Phys Lett, 1997, 81: 272.
    [106] Dominguez M, Bhag S, Lofland S, Ramachandran J, Xiong G, Ju H, Venkatesan T and R Greene . Giant Magnetoresistance at Microwave Frequencies[J] . Europhys Lett, 1995, 32: 349-353.
    [107] Tyagi S, Lofland S, Dominguez M, and Bhagat S. Low-field microwave magnetoabsorption in manganites[J] . Appl Phys Lett, 1996, 68: 2893-2895.
    [108] Zhang X X, Tejada J, Xin Y, Sun G F, Wong K W, and Bohigas X. Magnetocaloric effect in La0.67Ca0.33MnOd and La0.60Y0.07Ca0.33MnOd bulk materials [J] . Appl Phys Lett, 1996, 69: 3596-3598.
    [109] Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P, and Feng D. Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides[J] . Phys ReV Lett, 1997, 78: 1142-1145.
    [110] Guo Z B, Zhang J R, Huang H, Ding W P, and Du Y W. Large magnetic entropy change in La0.75Ca0.25MnO3[J]. Appl Phys Lett, 1992, 70: 904-905.
    [111] Kiryuklin V, Casa D, Hill J P, Keimer B, Vigilante A, Tomioka Y and Tokura Y . An X-ray-induced insulator-metal transition in a magnetoresistive manganite[J]. Nature, 1997, 384: 813.
    [112] Miyano K, Tanaka T, Tomioka Y and Tokura Y. Photoinduced Insulator-to-Metal Transition in a Perovskite Manganite[J]. Phys ReV Lett, 1997, 78:4257-4260.
    [113] Asamitsu A, Tomioka Y, Kuwahara H and Tokura Y. Current switching of resistive states inmagnetoresistive manganites[J]. Nature, 1997, 388:50-52.
    [114] Mott N F, 1985, Metal- Insulator Transitions, second edition (London: Taylor &Francis).
    [115] Guinea F.Spin-flip scattering in magnetic junctions[J]. Phys ReV B, 1998, 58:9212-9216.
    [1] N F Mott . Metal-Insulator Trannsitions[M] . Taylor&Francis,1990 .
    [2] M Imada,A Fujimori . Metal-insulator transitions[J] . ReV Mod Phys, 1998, 70. : 1039 .
    [3] N F Mott . The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals[J] . Proc Phys Soc London Ser A, 1949, 62: 416 .
    [4] N F Mott . On the transition to metallic conduction in semiconductors[J] . Can J Phys, 1956, 34: 1356 .
    [5] N F Mott . Philos Mag, 1961, 6: 287 .
    [6] J Hubbard . Proc R.Soc London Ser A, 1963, 276: 238 .
    [7] J Hubbard . Proc R.Soc London Ser A, 1964, 27: 237 .
    [8] J Hubbard . Proc R.Soc London Ser A, 1964, 281: 401 .
    [1]焦正宽,曹光旱.磁电子学[M] .浙江:浙江大学出版社,2005
    [2]黄慧忠等.论表面分析及其在材料研究中的应用[M] .北京:科学技术出版社,2000
    [3] Lam D J,Veal B W and Ellis D E . Electronic structure of lanthanum perovskites with 3d transition elements[J] . Phys ReV B,1980,22:5730-5739.
    [4] Mizokawa T,Namatame H,Fujimori A,Akeyama K,Kondoh H, Kuroda H and N Kosugi . Origin of the band gap in the negative charge–transfer-energy compound NaCuO2[J] . Phys ReV Lett,1991,67:1638-1641.
    [5] Alvarado S F,Eib W,Munz P, Siegmann H C,Campagna M and Remeika J P . Itinerant versus localized d electrons in ionic metalliclike ferromagnets: La1-xPbxMnO3[J] . Phys ReV B,1976,13:4918-4921.
    [6]D Sarma D,Rader O,Kachel T,Chainani A,Mathew M,Holldack K,Gudat W and Eberhardt W . Contrasting behavior of homovalent-substituted and hole-doped systems: O K-edge spectra from LaNi1-xMxO3 (M=Mn , Fe , and Co) and La1-xSrxMnO3[J] . Phys ReV B,1994,49:14238-14243 .
    [7] K.Horiba et al . Nature of theWell Screened State in Hard X-Ray Mn 2p Core-LeVel Photoemission Measurements of La1-xSrxMnO3 Films[J] . Phys ReV Lett, 2004, 93:236401.
    [8] K Horiba et al . In situ photoemission study on atomically-controlled La1-xSrxMnO3 thin films Composition dependence of the electronic structure [J] . Cond-mat , 0406315.
    [9] Chainani A, Mathew M and Sarma D D . Electron spectroscopic investigation of the semiconductor-metal transition in La1-xSrxMnO3[J] . Phys ReV B, 1993, 47:15397-15403.
    [10] Saitoh T et al . Electronic structure of La1-xSrxMnO3 studied by photoemission and x-ray-absorption spectroscopy [J] . Phys ReV B, 1995, 51:13942-13951; Saitoh T et al . Temperature-dependent valence-band photoemission spectra ofLa1-xSrxMnO3 [J] . Phys ReV B, 1997, 56:8836-8840.
    [11] Matsuno J et al . Chemical potential shift in La1 ? xSrxMnO3 Photoemission test of the phase separation scenario[J] . Europhys Lett, 2002, 59:252.
    [1] Onnes H K . The resistance of pure mercury at helium temperature[J] . Leiden Comm, 1911, April 28:120 . Onnes H K The disappearance of the resistivity of mercury[J] . Leiden Comm, 1911, May 27:1226 . Onnwa H K On the sudden change in the rate at which the resistance of mercury disappears[J] . Leiden Comm, 1911, 11(25):124 .
    [2] Meissner W . Ochsenfeld R.Ein neuer effekt bei eintritt der supraleifahigkeit . Naturwissenschaften[J], 1933, 21:787
    [3] Bardeen J, Cooper L N and Schrieffer J R . Microscopic Theory of Superconductivity[J] . Phys ReV, 1957, 106:162.
    [4] Bednorz J G and Muller K A . Possible high Tc superconductivity in the Ba?La?Cu?O system[J] . Z Phys B, 1986, 64:189.
    [5] Little W A . Possibility of Synthesizing an Organic Superconductor[J] . Phys ReV1964, 134:A1416.
    [6] Jerome D, Rice T M and Kohn W . Excitonic Insulator[J] . Phys ReV, 1967, 158:462
    [7] Zittartz J . Transport Properties of the "Excitonic Insulator": Electrical Conductivity[J] . Phys ReV, 1968, 165: 605.
    [8] SheVchenko S I . Sov J Low Temp Phys, 1976, 2:251 .
    [9] Yu E Lozovik and Yudson V I . Feasibility of superfluidity of paired spatially separated electrons and holes; a new superconductivity mechanism[J] . JETP Lett, 1975, 22:274.
    [10] Allender D, Bray J and Bardeen J . Model for an Exciton Mechanism of Superconductivity[J] . Phys ReV B, 1973, 7:1020.
    [11] Millis A J . Lattice effects in magnetoresistive manganese perovskites[J] . Nature, 1998, 392:147.
    [12] Feng S H, Yuan H M, Shi Z, Chen Y, Wang Y W, Huang K K, Hou C M. , Li J X, Pang G S and Hou Y . Three oxidation states and atomic-scale p–n junctionsin manganese perovskite oxide from hydrothermal systems[J] . J Mater Sci, 2008, 43:2131 .
    [13] GiaeVer I . Electron tunneling and superconductivity[J] . Proceedings of the IEEE, 197, 62:832.
    [14] Taylor B N and Burstein E . Excess Currents in Electron Tunneling Between Superconductors[J] . Phys ReV Lett, 1963, 10:14 .
    [15] Schrieffer J R and Wilkins J W . Two-Particle Tunneling Processes Between Superconductors[J] . Phys ReV Lett, 1963, 10:17 .
    [16] Bednorz J G and Müller K A . Possible high Tc superconductivity in the a-La-Cu-O compound system [J]. J Phys B Condensed Matters, 1986, 64:189-193.
    [17] Mota A C, Pollini A, Visani P, Müller K A and Bednorz J G . Low-field magnetic relaxation effects in high-Tc superconductors Sr-La-Cu-O and Ba-La-Cu-O [J] . Phys ReV B, 1987, 36:4011 - 4013.
    [18] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu C W . Superconductivity at 93K in a new mixed-phase Y-Ba-Cu-O Compound system at ambient pressure[J] . Phys ReV Lett, 1987, 58:908.
    [19] Hor P H, Gao L, Meng R. L, Z J Huang , Wang Y Q, Forster K, Vassilious J, Chu C W, Wu M K, Ashburn J R and Torng C J . High-pressure study of the new Y-Ba-Cu-O superconducting compound system [J] . Phys ReV Lett, 1987, 58:911-912.
    [20]赵忠贤,陈立泉,杨乾声,黄玉珍,陈耿华,唐汝明,刘贵荣,倪永明,崔长庚,陈烈,王连忠,郭树权,李山林,毕建清,王昌庆,液氮温区的新氧化物超导体[J] .科学通报,1987年11期
    [21]赵忠贤,陈立泉,杨乾声,黄玉珍,陈耿华,唐汝明,刘贵荣,赵忠贤,陈立泉,杨乾声,黄玉珍,陈耿华,唐汝明,刘贵荣,毕建清,Ba-Y-Cu氧化物液氮温区的超导电性[J] .科学通报,1987年06期
    [22] Tarascon J M, LePage Y, Greene L H, Bagley B G, Barboux P, Hwang D M, Hull G W, McKinnon W R and Giroud M . Origin of the 110-K superconducting transition in the Bi-Sr-Ca-Cu-O system [J]. Phys ReV B, 1988, 38:2504-2508.
    [23] Uemura Y J et al . Universal Correlations between Tc and ns/m* (Carrier Densityover Effective Mass) in High-Tc Cuprate Superconductors[J]. Phys ReV Lett, 1989, 62:2317-2320.
    [24] Tokiwa-Yamamoto A, Isawa K and Itoh M et al . Composition crystal structure nd superconducting properties of Hg-Ba-Ca-Cu-O superconductors [J]. Physica C, 1993, 216:250-256.
    [25].Nunez-Regueiro M, Tholence J L, Antipov E V et al . Pressure-induced enhancement of Tc aboce 150K in Hg-1233 [J]. Science, 1993, 262:97-99.
    [26] Kamihara Y, Watanabe T, Hirano M et al . Iron-based layered superconductor La[O1?x Fx ]FeAs(x =0.05-0.12) with Tc=26 K [J]. J Am Chem Soc, 2008, 130: 296-3297.
    [27] Johnson V and Jeitschko W . ZrCuSiAs: A“filled”PbFCl type. J Solid State Chem, 1974, 11: 161-166.
    [28] Zimmer B I, Jeitschko W and Albering J H et al . The rare earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type structure[J]. J Alloys Comp, 1995, 229: 238-242 .
    [29] Chen G F, Li Z and Li G et al . Superconducting properties of Fe-based layered superconductor LaO0.9F0.1?δFeAs. Phys ReV Lett, 2008, 101: 057007 .
    [30] Zhu X Y, Yang H and Fang L et al . Upper critical field, Hall effect and magnetoresistance in the iron-based layered superconductor 2008年10月第53卷第19期: 2272 .
    [31] Sefat A S, McGuire M A and Sales B C et al . Electronic correlations in the superconductor LaFeAsO0.89F0.11 with low carrier density. Phys ReV B, 2008, 77: 174503 .
    [32] Chen X H, Wu T and Wu G et al . Superconductivity at 43 K in SmFeAsO1?x Fx . Nature, 2008, 453: 761-762 .
    [33] Chen G F, Li Z and Wu D et al . Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1?x Fx FeAs. Phys ReV Lett, 2008, 100: 247002 .
    [34]Ren Z A, Yang J and Lu W et al . Superconductivity in the iron-based F-doped layered quaternary compound Nd[O1?x Fx ]FeAs. Europhys Lett, 2008, 82: 57002 .
    [35] Ren Z A, Che G C and Dong X L et al . Superconductivity and phase diagram in the iron-based arsenic-oxides ReFeAsO1?δ(Re = rareearth metal) without F-doping. Europhys Lett, 2008, 83: 17002 .
    [36]沈志远著盛克敏译王家素校高温超导微波电路[M],国防工业出版社出版2000年1月第一版第3页
    [37] Joshi, Prum C H, Schiferl C B and Driscol R F l D I . Demonstration of two synchronous motors using high temperature superconducting field coils[J]. IEEE Transactions on Applied Superconductivity, 1995, 5: 968-970.
    [38] Funaki K et al . Preliminary tests of a 500 kVA-class oxide superconducting transformer cooled by subcooled nitrogen [J]. IEEE Transactions on Applied Superconductivity, 1997, 7:824-827.
    [39] Kwag D S, Cheon H G, Choi J H and Kim S H . Research on the electrical insulation design of a bushing for a 154 kV class HTS transformer [J]. Physica C, 2007, 463-465:1213-1217 .
    [40] Tachiki M, He D F and Itozaki H . Sensing of chemical substances using QUID-based nuclear quadrupole resonance [J]. Physica C, 2007, 463-465:1034-1037.
    [41] Cheon H.G, Kwag D S . Choi J H and Kim S H., The insulation design for transmission class HTS transformer with continuous disk winding [J]. Physica C, 2007, 463-465:1218-1222.
    [42] Adachi S, Hata K, Sugano T, Wakana H, Hato T, Tarutani Y and Tanabe K . Preparation of multilayer films for integrated high-Tc SQUIDs with ramp-edge Josephson junctions [J]. Physica C, 2008, 468:1936-1941.
    [43] Sosso A, Lacquaniti V, Andreone D, Cerri R and Klushin A M . Study and operating conditions of HTS Josephson arrays for metrological application [J]. Physica C , 2006, 435 : 125-127.
    [44] Shimakage Hisashi and Wang Zhen . MgB2 thin films and MgB2/AlN/MgBB2 [J]. Physica C, 2006, 435: 66-70.SIS junctions
    [45] Tanaka M, Kondo T, Sekiya A, Fujimaki A, Hayakawa H, Matsuzaki F, oshikawaN Y, Terai H and Yorozu S . Component test toward single-flux-quantumprocessors[J]. Physica C, 2003, 392-396:1490-1494.
    [46] Ohkubo M . Superconducting detectors for particles from atoms to proteins [J].Physica C, 2008, 468:1987-1991.
    [47] Suzuki T et al . A study on leVitation force and its time relaxation behavior for a bulk superconductor-magnet system [J]. Physica C, 2008, 468:1461-1464.
    [48] Chui Talso and Konstantin Penanen . Frequency-dependent hydrodynamic inductance and the determination of the thermal and quantum noise of a superfluid gyroscope [J].PHYSICAL REVIEW B, 2005, 71:132509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700