混凝土潮湿养护效率的电阻率评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
要使混凝土获得充分的潜在性能,合理充分的养护是必须的,尤其是早期的充分潮湿养护。然而,混凝土施工过程中并未给予足够的重视,甚至经常被完全忽视。其主要因为是目前尚没有一种有效的方法对混凝土的养护效果进行定量评价,对早期不良养护造成的后期混凝土质量的下降无法进行后评估,也无法在合同中对养护达到的效果进行约束。因此,准确评价混凝土的养护效率,有益于混凝土的质量控制。
     混凝土的电阻率对其内部含水率的影响非常敏感,混凝土含水率越高,电阻率越低,良好养护的混凝土在早期通常含有比较高的含水率,因此其电阻率比较低,而且由于不同养护情况下混凝土的含水率变化只在距离表层较小区域内,本文通过研究不同养护条件下表层混凝土电阻率的变化规律,来建立混凝土潮湿养护效率的电阻率评价方法。
     为了保证电阻率测量值稳定,首先研究了采用恒电位仪测量混凝土电阻率的稳定性和复现性,通过恒电位仪和数字万用表对阻值为0.33~100 k?十二个标准电阻进行了测试,发现恒电位仪与数字万用表测试电阻具有良好的相关性,而恒电位仪测试高电阻更为稳定,因此采用恒电位仪测试具有高电阻特性的混凝土电阻率更为合适。进一步采用恒电位仪研究了电极间距、离子浓度、电极与混凝土接触面积等因素对混凝土电阻率测试结果的影响,表明恒电位仪可以用于混凝土电阻率的测量,特别是比较容易获得稳定测试结果。
     设计了埋入深度10、20、30、40 mm和50 mm的多对电极可测量混凝土试件距表面不同位置的电阻率,混凝土的水灰比从0.25到0.45范围内变化,考虑到粉煤灰在混凝土中普遍采用,粉煤灰掺量在0%~50%范围内变化,采用水中养护6、13 d和27 d,以及自然干燥(不养护)、湿布覆盖、薄膜覆盖和涂刷养护剂等多种养护方式;同时还研究环境湿度变化对混凝土表层电阻率的影响。结果显示,混凝土表面层0~2 cm的电阻率对养护条件非常敏感,而混凝土表层3 cm以下的电阻率对养护条件的敏感性较小;掺加粉煤灰的混凝土对养护条件变化更为敏感;水养时间越长,混凝土表层电阻率随深度的变化越小,较短时间水中养护的粉煤灰混凝土的表层电阻率明显高于普通混凝土的电阻率;混凝土表层电阻率对环境相对湿度非常敏感,环境相对湿度降低,电阻率升高,环境相对湿度升高,电阻率降低。
     根据良好养护的混凝土表层与内部的电阻率差通常保持一个较小值的特点,通过对比分析不同养护条件下、混凝土水灰比以及粉煤灰掺量变化条件下混凝土表层电阻率变化规律,以不同位置电阻率之间的关系来建立混凝土的潮湿养护效率的评价方法。结果显示,以距离表面1 cm、2 cm的混凝土电阻率平均值和距离表面4 cm、5 cm的混凝土电阻率平均值之差ρd,能比较好地反映养护条件变化;混凝土28 d的ρd最为适合评价混凝土的养护效果;以ρd值评价混凝土养护效果,可排除混凝土本身性质的影响,而只与养护条件有关。
     为了使电阻率法能有效应用于混凝土养护效果的现场评定,对预埋电极与钻孔后埋置电极的电阻率测试结果相关性,并采用1000 mm×1000 mm×100 mm的大尺寸试件进行试验,还研究了电极形式以及钢筋的影响。结果显示,对于接近实际混凝土结构尺寸的试件,以28 d的ρd值来评价混凝土的养护效果仍然有效;预埋电极与钻孔后埋置电极的电阻率测试结果有非常好的相关性,棒状电极可以取代片状电极更有利于钻孔后埋置电极,表明实际工程应用无需预埋电极,可在测试前钻孔后埋置电极进行电阻的测量,这不仅有利于自由选取测试点,也更便于现场对混凝土养护效果的评价。
     采用电阻率法可实现对混凝土潮湿养护效果的评价,有望能发展成为混凝土养护效果进行现场检测的方法,进一步的研究可根据混凝土浸水后不同深度电极对的电阻率变化特征,再现混凝土的养护历程,实现对其养护效果的后评估。
Proper and adequate curing, especially adequate curing during early stage affect significantly the desired properties of concrete. However, in practice in China, it has not been paid an attention to that the curing of concrete structure and member in-site for a long time. Curing has always either been ignored or performed perfunctorily by specifiers or contractors. Lack of necessary care needed to insure good curing can be attributed to lack of a means by which a resulting poor end product can be identified at early age. Part of this problem may be due to at present lack of a effective method for making a quantitative assessment of how well concrete is cured and to contract documentation that makes no provision for penalties in the event of curing not being carried out. Therefore, it is beneficial for quality control of concrete through assessing its curing history accurately.
     The electrical resistivity of concrete is very sensitive to internal moisture content, the higher moisture content of concrete means the lower resistivity. The idea was that if a specimen was adequately cured, it would have a higher humidity within the near-surface layer concrete and smaller resistivity difference between the internal and near-surface layer during early stage, and in a case of poor curing, the opposite would be true. In this research, an improved method using potentiostat for measuring the electrical resistance of near-surface layer concrete at different depths is presented. The effects of different curing conditions on change in the electrical resistance of near-surface concrete with depths were investigated by the method. Moreover, the electrical resistivity method for assessing curing efficiency of concrete in-site was explored.
     To ensure the preciseness of measured values of resistivity, the stability and reproducibility of the electrical resistance test method performed on PS-6 potentiostat were investigated. Twelve standard resistances, resistance values varying from 0.33 k? to100 k?, were tested by potentiostat and digital multimeters, respectively. The test results were shown that the resistance values obtained by two test methods had a good correlation. And the high resistance values obtained by potentiostat were more stable. Thus, using potentiostat to measure the resistance of concrete is more appropriate for typically the resistance of concrete is higher。An investigation of the influence of the distance between two electrodes, ionic concentrations and electrode contact areas on the measuring results was carried out. The results indicate that the potentiostat is suitable for measuring the resistance of concrete with preciseness and stability.
     The small copper electrodes were embedded horizontally 50 mm within the surface 10, 20, 30, 40 mm and 50 mm of the specimens at the time of casting, the test of the electrical resistance of concrete was performed on PS-6 potentiostat. In this research, we made normal concrete and concrete containing fly ash. Fly ash concrete was prepared with the cement partially replaced by 15%, 30% and 50% of equal mass of fly ash, respectively. Three water binder ratios were 0.25、0.35 and 0.45, respectively. The curing conditions included 6、13 d or 27 d water curing, natural curing, plastic sheet or wet burlap curing and curing agent curing, etc. Simultaneously, the effect of different curing conditions on the electrical resistance change of near-surface concrete was examined. It is found that curing conditions have pronounced influence on the electrical resistivity of near-surface layer of concrete. Thus it affect mainly the resistivity of the concrete within about 0-2 cm from the surface, and the contribution of curing condition to electrical resistivity of the concrete beneath some 3 cm from the surface is negligible. Fly ash concrete was more sensitivity to curing condition. The longer the water curing duration, the smaller the resistivity changes with depths. The resistivity of the fly ash concrete specimens exposed to shorter duration of water curing was much higher than that of the plain concrete specimens. The results indicate that the resistivity of near-surface layer concrete is sensitive to relative humidity; when relative humidity decreases, the resistivity of near-surface layer concrete increases, and when relative humidity increases, the resistivity of near-surface layer concrete decreases.
     Based on the fact, i.e., the resistivity difference between the internal and near-surface layer is normally small under adequate curing condition. The change rule of resistivity under different curing conditions, water binder ratios and fly ash contents was investigated. The electrical resistivity method to assess curing efficiency of concrete was established based on the relationship between resistivity values at different positions. It is indicated that the difference (ρd) between the average value of the resistivity values of 1 cm (ρ1) and 2 cm (ρ2) and the average value of the resistivity values of 4 cm (ρ4) and 5 cm (ρ5) is most suitable for evaluating curing efficiency of concrete. Moreover, it can eliminate the effect of mix proportion itself, only related to curing conditions.
     To make the method more effectively applied to field test, the test of the electrodes embedded in advance and embedded afterwards electrodes by drilling hole was performed. It is found that the testing results of the electrodes embedded in advance can be well correlated with those of the embedded afterwards electrodes by drilling hole. For large-scale specimens measuring 1000 mm×1000 mm×100 mm under natural ambient condition, the electrical resistivity of concrete within about 0-2 cm from the surface is very sensitive, and the electrical resistivity of the concrete beneath some 3 cm from the surface is not sensitive regardless of by the electrodes embedded in advance or the embedded afterwards electrodes by drilling hole. The difference between internal and surface resistivity (ρd) was smaller under continuous plastic sheet curing than natural ambient condition. Test results for large-scale specimens were consistent with that for small-scale specimens. In practical field testing, the electrical resistance is measured by drilling hole, then embedding electrodes, it is not only beneficial for selecting freely test location, but also being used in-site. The electrical resistance test method that can be used to assess the curing history of concrete was validated using large-scale specimens. The resistivity difference between internal and near-surface (ρd) at 28 days obtained regardless of by the electrodes embedded in advance or the embedded afterwards electrodes by drilling hole is shown to be very sensitive to curing condition. The resistivity difference between internal and near-surface (ρd) at 28 days obtained by this testing method can reflect accurately the curing history of concrete.
     The test procedure is quick and uncomplicated, and found to be extremely sensitive to reflect changes in concrete curing condition. It will can be developed a new approach for making a quantitative assessment of how well concrete is cured in-site. By studying resistance profiles at different depths of water immerged specimens, concrete curing history and efficiency can accurately be evaluated.
引文
[1] Austin S A. Air permeability versus sorptivity: Effects of field curing on cover concrete after one year of field exposure[J]. Magazine of Concrete Research, 2000, 52(1): 17-24.
    [2] Mario Collepardi.混凝土新技术[M].刘数华,冷发光,李丽华译.北京:中国建材工业出版社, 2008: 197.
    [3] Alizadeh R, Ghods P. Chini M. Effect of Curing Conditions on the Service Life Design of RC Structures in the Persian Gulf Region[J]. Journal of Materials in Civil Engineering, 2008, Vol. 20, No. 1: 2-8.
    [4] Austin S A, Robins P J.Influence of early curing on the sub-surface permeability and strength of silica fume concrete[J]. Magazine of Concrete Research, 1997, 49(178): 23-34.
    [5] Steven H.Kosmatka, Beatrix Kerkhoff, William C.Panarese.混凝土设计与控制[M].钱觉时,唐祖全,卢忠远,王智译.重庆:重庆大学出版社, 2005: 277.
    [6] Basheer P A M, Harmon N, Long A E,et al. AUTOCLAM permeability system for measuring absorption and permeability of concrete in the laboratory and on site[C]. Proceeding of the 2006 International Workshop on Concrete Durability and Testing Techniques,Chongqing: China, 2006年9月: 54-84.
    [7] Al-Gahtani A S. Effect of curing methods on the properties of plain and blended cement concretes[J]. Construction and Building Materials, 2010, 24(3): 308-314.
    [8]钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社, 2002: 105.
    [9] Termkhajornkit P, Nawa T, Kurumissawa K. Effect of water curing conditions on the hydration degree and compressive strengths of fly-cement paste[J]. Cement﹠Concrete Composites, 2006, 8(9): 781-789.
    [10] Bijen J. Benefits of slag and fly ash[J]. Construction and Building Materials, 1996, 10(5): 309-314.
    [11] Van den Heede P, Gruyaert E, De Belie N. Transport properties of high-volume fly ash concrete: Capillary water sorption, water sorption under vacuum and gas permeability[J].Cement and Concrete Composites, 2010, 13(5) : 749-756.
    [12] Radlinski M, Olek J, Nantung T. Effect of Mixture Composition and Initial Curing Conditions on Scaling Resistance of Ternary (OPC/FA/SF) Concrete [J]. Journal of Materials in Civil Engineering 2008, 20(10): 668-677.
    [13] Razak H A, Chai H K, Wong H S. Near surface characteristics of concrete containing supplementary cementing materials[J]. Cement and Concrete Composites, 2004, 26(7):883-889.
    [14] Ozer B, Ozkul M H. The influence of initial water curing on the strength development of ordinary portland and pozzolanic cement concretes[J]. Cement and Concrete Research, 2004, 34(1): 1-6.
    [15] Tasdemir C. Combined effects of mineral admixtures and curing conditions on sorptivity coefficient of concrete[J]. Cement and Concrete Research, 2003, 33(10): 1637-1642.
    [16] Cather B. Curing: the true story[J]. Magazine of Concrete Research, 1994, 46(168): 157-161.
    [17]蒋正武,孙镇平,王培铭.高性能混凝土自身相对湿度变化的研究[J].硅酸盐学报, 2003, 31(8): 770-779.
    [18]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社, 1999: 10.
    [19]蒋亚清.混凝土外加剂应用基础[M].北京:化学工业出版社, 2004: 198.
    [20] GE Yong, KONG Lijuan, ZHANG Baosheng, et al. Effect of lightweight aggregate pre-wetting on microstructure and permeability of mixed aggregate concrete[J]. Journal of Wuhan Univerty of Technology-mater. Sci. Ed., 2009, 24(5): 838-842.
    [21]董淑惠,张宝生,葛勇等.轻骨料对混凝土自养护减缩效率的影响[J].硅酸盐学报, 2009, 37(3): 465-469.
    [22]蒋亚清,许仲梓,吴建林等.高性能混凝土中饱水轻集料的微养护作用及其机理[J].混凝土与水泥制品, 2003,总133(5): 13-15.
    [23] Bentur A, Igarashi S, Kovler K.Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates[J]. Cement and Concrete Research, 2001, 31(11): 1587-1591.
    [24] Zhutovsky S, Kovler K, Bentur A. Influence of cement paste matrix properties on the autogenous curing of high-performance concrete[J]. Cement and Concrete Composites, 2004, 26(5): 499-507.
    [25] Jensen O M, Hansen P F. Water-entrained cement-based materialsⅠ. Principles and theoretical background[J]. Cement and Concrete Research, 2001, 31(4): 647-654.
    [26] Jensen O M, Hansen P F. Water-entrained cement-based materialsⅡ. Experimental observations[J]. Cement and Concrete Research, 2002, 32(4): 973-978.
    [27]孔祥明,李启宏.高吸水性树脂对水泥砂浆体积收缩及力学性能的影响[J].硅酸盐学报, 2009, 37(5): 855-861.
    [28]陈浩,欧阳钦,卢记军.可控制渗透性模板内衬对提高混凝土表面层性能的研究[J].混凝土, 2008,总228(10): 111-114.
    [29] Wang K, Cable J K, Zhi G. Evaluation of Pavement Curing Effectiveness and Curing Effectson Concrete Properties [J]. Journal of Materials in Civil Engineering 2006, 18(3): 377-389.
    [30] Siddique Z Q, Hossain M, Parcells W H. Effect of curing on roughness development of concrete pavements[J]. Journal of Materials in Civil Engineering, 2007, 13(5): 575-582.
    [31]钱觉时,乔墩,石亮等.减缩剂外涂对混凝土的影响及作用机理[J].硅酸盐学报, 2009, 37(12): 2090-2096.
    [32]王智,乔墩,钱觉时等.减缩剂外涂对水泥基材料性能的影响[J].硅酸盐学报, 2009, 37(7): 1085-1091.
    [33]卞荣兵,马存前,刘姝等.新型混凝土减缩剂评价研究[J].建筑建筑材料学报, 2005, 8(4): 436-439.
    [34] Cather R. How to get better curing[J]. Concrete ,The journal of the Concrete Society, 1994, 26(5): 22-25.
    [35] Dan Y, Dan Z, Seongcheol C, et al. Literature review of curing in Portland cement concrete pavement[M]. Austin: The United States of America, 2006: 20-21.
    [36] Conroy-Jones G A, Barr B I G. Effect of curing on the tensile strength of medium to high strength concrete[J]. Magazine of Concrete Research, 2004, 56(3): 151-158.
    [37] Al-Khaiat H, Haque M N.Effect of curing on concrete in hot exposure conditions[J]. Magazine of Concrete Research, 1999, 51(4):269-274.
    [38] Haque M N. Some concretes need 7 days initial curing[J]. Concrete International, 1990, 12(2): 42-46.
    [39]刘竞,丁德华,刘赞群.养护措施和湿养时间对掺与不掺矿渣混凝土性能的影响[J].硅酸盐学报, 2008, Vol.36, No.5: 901-911.
    [40]蒲心诚.超高强高性能混凝土[M].重庆:重庆大学出版社, 2004: 77.
    [41] Poon C S, Wong Y L, Lam L. The influence of different curing conditions on the pore structure and related properties of fly-ash cement pastes and mortars[J]. Construction and Building Materials, 1997, 11(7-8): 383-393.
    [42] Shattaf N R, Alshamsi A M, Swamy R N. Curing/Environment Effect on Pore Structure of Blended Cement[J]. Journal of Materials in Civil Engineering, 2001, 13(5): 380-388.
    [43] Gowripalan N, Cabrera J G, Cusence A R, et al. Effect of curing on durability[J]. Concrete International, 1990, 12(2): 47-54.
    [44] Parrott L J. Influence of cement type and curing on the drying and air permeability of cover concrete[J]. Magazine of Concrete Research, 1995, 47(171): 103-111.
    [45] Shafiq N, Cabrera J G. Effects of initial curing condition on the fluid transport properties in OPC and fly ash blended cement concrete[J]. Cement﹠Concrete Composites, 2004, 26(4): 381-387.
    [46] Claisse P A, El-Sayad H, Shaaban I G. Permeability and pore volume of carbonated concrete[J]. ACI Materials Journal, 1999, 96(3): 378-381.
    [47] Jones M R, Dhir R K, Magee B J. Concrete containing ternary blended binders:resistance to chloride ingress and carbontion[J]. Cement and Concrete Research, 1997, 27(6): 825-831.
    [48] Parrott L J. Factors Influencing relative humidity in concrete[J]. Magazine of Concrete Research, 1991, 43(154): 45-52.
    [49]董淑慧,葛勇,张宝生等.低水灰比混凝土内部相对湿度变化规律研究[J].武汉理工大学学报, 2009, 31(7): 84-87.
    [50] McCarter W J, Watson W, Chrisp T M. Surface zone concrete: drying, absorption and moisture distribution[J]. ASCE J Mater Civ Eng 2001, 13(1): 49-57.
    [51]黄瑜,祁锟,张君.早龄期混凝土内部湿度发展特征[J].清华大学学报(自然科学版), 2007, 47(3): 309-312.
    [52] Fattuhi N I. Curing Compounds for Fresh or Hardened Concrete[J]. Building and Environment, 1986, 21 (2): 199-125.
    [53] Whiting N M, Snyder M B. Effectiveness of Portland cement concrete curing compound[M]. Transportation research record, 2003, No. 1834: 59-68.
    [54] Wang J, Dhir R K, Levitt M. Membrane Curing of Concrete: Moisture Loss[J]. Cement and Concrete Research, 1994, 24 (8): 1463-1474.
    [55] Wang K, Cable J K, Zhi G. Investigation onto Improved Pavement Curing Materials and Techniques: Part 1(PhaseⅠandⅡ),”Iowa DOT TR-451, CTRE 00-77, Center for Transportation Research and Education, Iowa State Univ., 2002 : 46.
    [56] Carrier R E, Cady P D. Evaluating Effectiveness of Concrete Curing Compounds[J]. Journal of Materiala, JMLSA, 1970, 5(2): 294-302.
    [57] Dong-Woo Ryu, Jeong-Won Ko, Takafumi Noguchi. Effects of simulated environmental conditions on the internal relative humidity and relative moisture content distribution of exposed concrete[J]. Cement and Concrete Composites, 2011, 33(1): 142-153.
    [58] Dinku A, Reinhardt H W. Gas permeability coefficient of cover concrete as a performance control[J]. Mater.Struct., 1997, 30(3): 387-393.
    [59] Blight G E, Lampacher B J. Applying cover concrete absorption test to in-situ tests on structures[J]. J.Mater.Civ.Eng.ASCE, 1995, 7 (1): 1-8.
    [60] Senbetta E, Scholer C F. A New Approach for Testing Concrete Curing Efficiency [J]. ACI JOURNAL, 1984, 81 (1): 82-86.
    [61] Sawyer J L. Wear Test on Concrete Using the German Sandard Method of Test Machine[C] Proceedings, ASTM, V.57: 1145-1153, 1957, July.
    [62] Reza F, Batson G B, Yamamuro J A, et al. Volume Electrical Resistivity of Carbon Fiber Cement Composites[J]. ACI Materials Journal, 2001, 98 (1): 25-35.
    [63] Bungey J H. Testing of concrete in structure[M]. London: Surrey University Press, 1988: 147-150.
    [64] Dhir R K, Shaabaa I G, Claisse P A, et al. Preconditioning in situ concrete for permeation testing Part 1: Initial surface absorption[J]. Magazine of Concrete Research, 1993, 45 (163): 113-118.
    [65]李美利,钱觉时,徐姗姗等.养护条件对混凝土表面层性能的影响[J].建筑材料学报, 2009, 12 (6): 724-728.
    [66] ASTM C 156-1998 Test method for water retention by concrete curing materials[S]. West Conshohocken, Pa.
    [67] BS 7542-1992 Method of testing for curing compounds for concrete[S].
    [68] ASTM C 309-1998 Standard specification for liquid membrane-forming compounds for curing concrete[S].
    [69] JC 901-2002水泥混凝土养护剂[s].
    [70] Senbetta E, Curing compound selection[J]. Concrete International: Design and Construction, 1989, 11 (2): 65-67.
    [71] Leitch H C, Laycraft N E. Water Retention Efficiency of Membrane Curing Compounds[J]. Journal of Materials, 1971, 6 (3): 606-616.
    [72] Andrews A J. Curing membrane efficiency[M]. Individual Project for A.C.T.Diploma Course, U.K., 1981-1982: 42.
    [73] Hossain K M A, Lachemi M. Strensth, durability and micro-structural aspects of high performance volcanic ash concrete[J]. Cement and Concrete Research, 2007, 37 (5): 759-766.
    [74] Bouikni A, Swamy R N, Bali A. Durability properties of concrete containing 50 % and 65% slag[J]. Construction and Building Materials, 2009, 23 (8): 2836-2845.
    [75]董淑慧,葛勇,张宝生等.混凝土内部相对湿度测试方法[J].低温建筑技术, 2008,总126 (6): 29-31.
    [76] Carrier R E. Concrete curing tests[J]. Concrete International: Design and Construction, 1983, 5 (4): 23-26.
    [77] WEI Xiaosheng, XIAO Lianzhen, LI Zongjin. Electrical Measurement to Assess Hydration Process and Porosity Formation[J]. Journal of Wuhan Univerty of Technology-mater. Sci.Ed., 2008, 23 (5): 761-766.
    [78] McCarter W J, Chrisp T M,Starrs G, et al. Field monitoring of electrical conductivity ofcover-zone concrete [J]. Cement&Concrete Composites, 2005, 27 (7-8): 809-817.
    [79] McCarter W J, Chrisp T M, Starrs G,et al.Charaterization and monitoring of cement-based systems using intrinsic electrical property measurements[J]. Cement and concrete Research, 2003, 33 (2): 197-206.
    [80]马文彬,李果.自然气候条件下混凝土内部温湿度相应规律研究[J].混凝土与水泥制品, 2007, 4: 18-21.
    [81] Kefei Li, Chunqiu Li, Zhaoyuan Chen. Influential depth of moisture transport in concrete subject to drying-wetting cycles[J]. Cement and Concrete Composites, 2009, 31 (10): 693-698.
    [82] Tan Ke-feng, Nichols J M. Performances of Concrete under Elevated Curing Temperature[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2004, 19 (3) : 65-67.
    [83] Toutanji H, Delatte N,Aggoun S,et al.Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete[J]. Cement and Concrete Research, 2004, 34 (2) : 311-319.
    [84]李美利,徐姗姗,钱觉时等.电阻率法用于高性能混凝土养护程度的评价[J].郑州大学学报(工学版), 2009, 30 (1): 106-110.
    [85] Bozhinov G, Barovsky N. To the analysis of the pore structure of cement stone[C]. Proceedings of the 8th international symposium on the chemistry of cement, Riodejaneiro: Brazil, 1986.
    [86] Powers T C. Phyical properties of cement paste[C]. Proceedings of the 4th international symposium on the chemistry of cement, Washington: U.S.A., 1960: 577-613.
    [87] ASTM C 1511-1987 Proposed test method for evaluating the effectiveness of materials for curing concrete[S].
    [88]詹炳根,丁以兵.一种评定高性能混凝土养护效果的新方法[J].混凝土, 2006, 196(2): 25-27.
    [89] Norris A, Saafi M, Romine P. Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors[J]. Construction and Building Materials, 2008, 22 (2): 111-120.
    [90] Spears R E. The 80 percent solution to inadequate curing problems[J]. Concrete International: Design and Construction, 1983, 5 (4) : 15-18.
    [91] Terrill J M, Richard M, Selby A R. Non-linear moisture profiles and shrinkage in concrete members[J]. Magazine of Concrete Research, 1991, 38 (137): 220-225.
    [92] Andrade C, Serria J A, Alonso C. Relative humidity in the interior of concrete exposed to natural and articial weathering[J]. Cement and Concrete Research, 1999, 29 (8): 1249-1259.
    [93] Li Z J, Li W L. Contactless transformer based measurement of the resistivity of materials[P]. US Patent, 6639401, 2003210228.
    [94] Wen S H, Chung D D L. Seebeck effect in carbon fiber-reinforced cement[J]. Cement and Concrete Research, 1999, 29 (12): 1989-1993.
    [95] Yazdani N, Asce F, Filsaime M. Accelerated Curing of Silica-Fume Concrete[J]. Journal of Materials in Civil Engineering, 2008, 20 (8): 521-529.
    [96] Goueygou M, Abraham O, Lataste J F. A comparative study of two non-destructive testing methods to assess near-surface mechanical damage in concrete structures[J]. NDT and E International, 2008, 41 (6): 448-456.
    [97] Karhunen K, Sepp?nen A, Lehikoinen A, Monteiro P J M, Kaipio J P. Electrical resistance tomography imaging of concrete[J]. Cement and Concrete Research, 2010, 40 (1): 137-145.
    [98]艾亿谋,杜成斌,居发亮.基于电阻率的混凝土裂缝测量方法[J].东南大学学报(自然科学版), 2008, 38 (2): 289-292.
    [99] Duffo G S, Farina S A. Development of an embeddable sensor to monitor the corrosion process of new and existing reinforced concrete structures[J]. Construction and Building Materials, 2009, 23 (8): 2746-2752.
    [100] Xiao Lianzhen, Li Zongjin. New understanding of cement hydration mechanism through electrical resistivity measurement and microstructure investigations[J]. Journal of Materials in Civil Engineering, 2009, 21 (8): 368-373.
    [101] Xiao Lianzhen, Li Zongjin. Early-age hydration of fresh concrete monitored by non-contact electrical resistivity measurement[J]. Cement and Concrete Research, 2008, 38 (3) : 312-319.
    [102] Xiao Lianzhen, Li Zongjin, Wei Xiaosheng. Selection of superplasticizer in concrete mix design by measuring the early electrical resistivities of pastes[J]. Cement and Concrete Composites, 2007, 29(5): 350-356.
    [103]王雪芳,郑建岚,罗素蓉.矿物掺合料对混凝土电阻率的影响[J].福州大学学报(自然科学版), 2008, 36 (3) : 408-412.
    [104] Cabeza M, Merion P, Novoa X R. Electrical effects generated by mechanical loading of hardened Portland cement paste[J]. Cement﹠Concrete Composites, 2003, 25(3): 351-356.
    [105] Heikal M, Morsy M S, Radwan M M. Electrical conductivity and phase composition of calcium aluminate cement containing air-cooled and water-cooled slag at 20, 40 and 60℃[J]. Cement and Concrete Research, 2005, 35 (7): 1438-1446.
    [106] McCarter W J, Chrisp T M, Starrs G., et al. Characterization and monitoring of cement-based systems using intrinsic electrical property measurements[J]. Cement andConcrete Research. 2003, 33 (2): 197-206.
    [107] Li Meili, Qian Jueshi, Xu Shanshan, et al. Assessment of curing efficiency and moist curing on performance of fly ash concrete. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2011, 26(2): 361-366.
    [108] BS8110-1997 Structural Use of Concrete[S].
    [109] ACI 318-2005 Building code requirements for structural concrete and commentary[S].
    [110] GB50204-2002混凝土结构工程施工及验收规范[S].
    [111] Sengul O, Tasdemir M A. Compressive strength and rapid chloride permeability of concretes with ground fly ash and slag[J]. Journal of Materials in Civil Engineering, 2009, 21 (9): 494-501.
    [112] Zhang M H, Bilodeau A, Malhotra V M, et al. Concrete incorporating supplementary cementing materials: effect on compressive strength and resistance to chloride-ion penetration[J]. ACI Materials Journal, 1999, 96 (2): 181-189.
    [113] Zhang M H, Tam C T, Leow M P. Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete[J]. Cement and Concrete Research. 2003, 33 (10): 1687-1694.
    [114] Holt E. Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages[J]. Cement and Concrete Research. 2005, 35 (3) : 464-472.
    [115] Tongaroonsri S, Tangtermsirikul S. Effect of mineral admixtures and curing periods on shrinkage and cracking age under restrained condition[J]. Construction and Building Materials, 2009, 23 (2) : 1050-1056.
    [116]刘志勇,詹镇峰.混凝土电阻率及其在钢筋混凝土耐久性评价中的应用[J].混凝土, 2006, 204 (10): 13-16.
    [117]姚武,张超.碳纤维水泥基材料与电极的接触电阻[J].材料导报, 2007, 21 (4): 104-106.
    [118]韩宝国,关新春,欧进萍.碳纤维水泥石电阻测试方法研究[J].玻璃钢/复合材料, 2003, 6: 6-8.
    [119] Wen S, Chung D D L. Electric polarization in carbon fiber reinforced cement[J]. Cement and Concrete Research, 2001, 31 (2):141-147.
    [120]唐祖全,钱觉时,李卓球.接触电阻对导电混凝土电热特性的影响[J].混凝土与水泥制品, 2003, 132 (4): 10-13.
    [121] Hansson I L H, Hansson C M. Electrical resistivity measurements of Portland cement based materials[J]. Cement and Concrete Research, 1983, 13 (5): 675-683.
    [122] Monfore G E. The electrical resistivity of concrete[J]. Journal of the PCA Research and Development Laboratories, 1968, 10 (2): 35-48.
    [123] Hughes B P, Soleit A K O, Brierley R W. New technique for determining the electrical resistivity of concrete[J]. Magazine of Concrete Research, 1985, 37 (133): 243-248.
    [124] McCarter W J, BROUSSEAU R. The AC response of hardened cement paste[J]. Cement and Concrete Research, 1990, 20 (6): 891-900.
    [125] Gowers K R, Millard S G. Measurement of concrete resistivity for assessment of corrosion severity of steel using Wenner Techniqne[J]. ACI Materials Journal, 1999, 96 (5): 536-541.
    [126]何真,王信刚,梁文泉等.水泥基材料电性能的研究进展[J].建筑材料学报, 2004, 7 (1): 46-51.
    [127]史美伦.交流阻抗谱原理及其应用[M].北京:国防工业出版社, 2001.
    [128]张镇雷,史美伦.混凝土中矿物掺和料水合机理的交流阻抗研究[J].建筑材料学报, 2006, 9 (3): 366-369.
    [129] Mason T O, Campo M A, Hixson A D, et al. Impedance spectroscopy of fiber-reinforced cement composites[J]. Cement and Concrete Composites, 2002, 24 (5): 457-465.
    [130] Peter J T. Relationship between resistivity, diffusivity and microstructural descriptors for mortars with silica fume[J]. Cement and Concrete Research, 2005, 35 (7): 1262-1268.
    [131]宋文娟,杨正宏,史美伦.水泥基材料的恒电流响应[J].建筑材料学报, 2008, 11 (3):363-367.
    [132] Whittington H W, McCarter J, Forde M C. The conduction of electricity through concrete[J]. Magazine of Concrete Research, 1981, 33(114): 48-59.
    [133] Koleva D A, Copuroglu O, Breugel K V, et al. Electrical resistivity and microstructural properties of concrete materials in conditions of current flow[J]. Cement and Concrete Composites, 2008, 30 (8): 731-744.
    [134] Chen B, Wu K R, Yao W. Conductivity of carbon fiber reinforced cement-based composites[J]. Cement and Concrete Composites, 2004, 26 (4): 291-297.
    [135] Chiarello M, Zinno R. Electrical conductivity of self-monitoring CFRC[J]. Cement and Concrete Composites, 2005, 27 (4): 463-469.
    [136] Banthia N, Djeridane S, Pigeon M. Electrical resistivity of carbon fiber and steel micro-fiber reinforced cements[J]. Cement and Concrete Research, 1992, 22 (6): 804-814.
    [137] Nikkannen P. On the electrical properties of concrete and their application[M]. In Finnish,Valtion Teknillinen Tutkimuslaitos. Tiedotus, SajraⅢ, Rakennus 60, 1962: 175.
    [138] Mesbah H A, Yahia A, Khayat K H. Electrical conductivity method to assess static stability of self-consolidating concrete[J]. Cement and Concrete Research, 2011, 41 (2): 451-458.
    [139]丁华涛,胡曙光,丁庆军,等.无机矿物掺合料对水泥石电阻率影响规律的研究[J].国外建材科技, 2008, 29(2): 4-7.
    [140] Khayat K H, Pavate T V, Assaad J, et al. Analysis of variations in electrical conductivity to assess stability of cement-based materials[J]. ACI Materials Journal, 2003, 100(4): 302-310..
    [141] Polder R B, Peelen W H A. Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity[J]. Cement and Concrete Composites, 2002, 24 (5): 427-435.
    [142] Saleem M, Shameem M, Hussain S E, et al. Effect of moisture, chloride and sulphate contamination on the electrical resistivity of Portland cement concrete[J]. Construction and Building Materials, 1996, 10 (3): 209-214.
    [143] CARéS.Effect of temperature on porosity and porosity and on chloride diffusion in cement pastes[J]. Construction and Building Materials, 2008, 22 (7): 1560-1573.
    [144] Sayder K A, Feng X, Keen B D, et al. Estimating the electrical conductivity of cement paste pore solutions from OH-, Na+and K+concentrations[J]. Cement and Concrete Research, 2003, 33 (6): 793-798.
    [145] GB50057-1994建筑物防雷设计规范[S].
    [146] Sellevold E J, Larsen C K, Blankvoll A A. Moisture state of concrete in a coastal bridge[C]. Proceeding of the Fourth CANMET/ACI International Conference on Concrete Durability, Farmington Hills: U. S. A., 1997, 170.
    [147]王新又,蒋正武,高相东等.混凝土中水分迁移机理与模型研究综述[J].建筑材料学报, 2002, 5 (1): 66-71.
    [148]于韵,蒋正武,唐晓涛.养护条件对混凝土早期内部相对湿度的影响研究[J].江西建材, 2003, 1: 15-18.
    [149]侯景鹏,袁勇.干燥收缩混凝土内部相对湿度变化试验研究[J].新型建筑材料, 2008, 5: 1-4.
    [150]张君,侯东伟.基于内部湿度试验的早龄期混凝土水分扩散系数求解[J].清华大学学报(自然科学版), 2008, 48 (12): 2033-2040.
    [151] Parrott L J. Factors Influencing relative humidity in concrete[J]. Magazine of Concrete Research, 1991, 43 (157): 305-307.
    [152] Parrott L J. Moisture profiles in drying concrete[J]. Advances in Cement Research, 1988, 1(3): 164-170.
    [153] Larrard F, Bostvironnois J L. On the long-term strength losses of silica-fume high-strength concrete[J]. Magazine of Concrete Research, 1991, 43 (155): 109-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700