新拌混凝土抗硫酸盐腐蚀试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了新拌混凝土在硫酸盐腐蚀环境下的耐久性能。考虑Na2S04和MgS04两种腐蚀介质,Na2S04溶液的浓度5000mg/L和50000mg/L,MgS04溶液的浓度4225mg/L和42250mg/L;采用全浸泡的试验方法模拟混凝土所处的实际腐蚀环境,测定了粉煤灰掺量为0%、15%、20%、25%、30%和35%的混凝土试块在腐蚀龄期30天、90天、180天、270天和360天时的抗压强度、回弹值及质量。以抗压强度耐蚀系数作为主要的评价指标,辅以回弹值和质量变化率,并对部分混凝土试块做SEM扫描和XRD衍射技术分析,从宏观和微观两个层面上分析了新拌混凝土的抗硫酸盐腐蚀性能。
     研究结果表明,在360天试验龄期内,新拌混凝土比预制混凝土的抗硫酸盐腐蚀性能好。无论是新拌混凝土还是预制混凝土,掺入粉煤灰有利于提高其抗硫酸盐腐蚀能力,试验研究表明在硫酸钠或硫酸镁溶液中混凝土粉煤灰的最佳掺量为25%。对混凝土回弹值进行回归分析得到了预制混凝土和新拌混凝土受硫酸盐腐蚀后的专用测强曲线回归方程,利用该方程推算的抗压强度与试验值发展趋势吻合较好,能够较好的预测混凝土的抗压强度。
     在全浸泡的腐蚀环境下,无论是新拌混凝土还是预制混凝土,腐蚀介质浓度越高对混凝土的腐蚀程度就越严重;不同腐蚀介质对混凝土的抗硫酸盐腐蚀能力的影响并不相同。在硫酸钠腐蚀环境中,混凝土在极端恶劣腐蚀环境比在普通腐蚀环境中的腐蚀程度严重;在硫酸镁溶液中,混凝土在极端恶劣环境和普通腐蚀环境中的抗腐蚀能力与粉煤灰掺量有关。
     建立了混凝土受腐蚀时的抗压强度计算模型并提出劣化阶段的抗压强度耐蚀系数的修正计算公式,理论计算结果与试验值吻合较好,能够较好的预测受腐蚀混凝土在劣化阶段的抗压强度耐蚀系数退化规律。
The durable performance of fresh concrete under sulfate corrosion environment was studied. Two kinds of corrosive medium, Na2SO4and MgSO4, were considered. The solution concentration of Na2SO4is5000mg/L and50000mg/L, and the solution concentration of MgSO4is4225mg/L and42250mg/L. Specimens were completely immersed in sulfate solution which was aimed at simulating the real corrosion environment. The compressive strength, rebound value and mass of concrete specimens in different corrosion ages (30d,90d,180d,270d and360d) were measured corresponding to different mixing percentage (0%,15%,20%,25%,30%and35%) of fly ash. The evaluation index is corrosion resistance coefficient of compressive strength, rebound value and mass-change rate. Some of concrete specimens were analyzed by using SEM and XRD technology. The sulfate corrosion resistance of fresh concrete was analyzed at both macro level and micro level.
     The results indicate that the sulfate corrosion resistance of fresh concrete is better than that of precast concrete within the experimental period of360days. The sulfate corrosion resistance can be improved by mixing with a certain amount of fly ash both for fresh concrete and precast concrete. The experimental research indicates that the optimal mixing amount of fly ash is25%for specimens immersed in magnesium sulfate or sodium sulfate solution. A regression equation was proposed to predict the compressive strength of fresh concrete and precast concrete corroded by sulfate on the base of rebound values of specimens. The development tendency of calculated compressive strengths agree well with experimental values.
     For fresh concrete and precast concrete both fully immersed in corrosive solution, the higher the corrosion medium concentration, the more serious the corrosion extent of concrete will be. The influence on the sulfate corrosion resistance of concrete by different corrosion medium is various, which is related to the concentration of corrosive medium. In sodium sulfate solution, the corrosion extent of concrete in the extreme corrosion environment is more serious than that in the general corrosion environment. In magnesium sulfate solution, the sulfate corrosion resistance of concrete in the extreme and general corrosion environment is both related to the amount of fly ash.
     A calculation model of the compressive strength for corroded concrete is created and a modified formula of corrosion resistant coefficient of compressive strength in degradation stages is proposed. The theoretical calculation results are in good agreement with the experimental values which indicates that the proposed modified formula can predict the degradation law of corrosion resistant coefficient of compressive strength of corroded concrete in degradation stages.
引文
[1]韩斌斌.掺矿物掺合料砂浆的抗硫酸盐侵蚀性能研究[硕士学位论文].重庆:重庆大学,2007.
    [2]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003.
    [3]Mehta PK.Concrete durability-fifty year's progress[A]//Proceedings of 2nd International Conference on Concrete Durability[C]. American Concrete Institution. ACI SP126-1,1991: 1-31.
    [4]王遵亲,祝寿泉,俞仁培等.中国盐渍土[M].北京:科学出版社,1993.
    [5]杨鸿贵.预制桩与灌注桩的技术经济效益分析和比较[J].西北建筑与建材,2003,(3):19-24.
    [6]中华人民共和国国家标准.《工业建筑防腐蚀设计规范》GB50046-2008[S].北京:中国计划出版社,2008.
    [7]Santhanam M, Cohen M D, Olek J. Sulfate attack research-whither now?[J]. Cement and concrete research,2001,31(6):845-851.
    [8]Marchand J, Samson E, Maltais Y, et al. Theoretical analysis of the effect of weak sodium sulfate solutions on the durability of concrete[J]. Cement and Concrete Composites,2002, 24(3):317-329.
    [9]Roziere E, Loukili A, El Hachem R, et al. Durability of concrete exposed to leaching and external sulphate attacks[J]. Cement and Concrete Research,2009,39(12):1188-1198.
    [10]Pipilikaki P, Papageorgiou D, Dimitroula M, et al. Microstructure changes in mortars attacked by sulphates at 5° C[J]. Construction and Building Materials,2009,23(6): 2259-2264.
    [11]王琴.混凝土硫酸盐侵蚀宏观试验研究[J].盐城工学院学报(自然科学版),2010,23(1):75-78.
    [12]蒋敏强,陈建康,杨鼎宜.硫酸盐侵蚀水泥砂浆动弹性模量的超声检测[J].硅酸盐学报,2005,33(1):126-132.
    [13]左晓宝,孙伟.硫酸盐侵蚀下的混凝土损伤破坏全过程[J].硅酸盐学报,2009,37(7):1063-1067.
    [14]金祖权,孙伟,赵铁军.硫酸盐对混凝土腐蚀研究[J].工业建筑,2008,38(3):90-93.
    [15]Li Guanshu.Sulfate Resistance of Fly Ash Concrete[J]. Journal of the Chinese Ceramic Society,2012,40(1):39-48.
    [16]方祥位,申春妮,杨德斌,陈正汉,张忠发.混凝土硫酸盐侵蚀速度影响因素研究[J].建筑材料学报,2007,10(1):89-96.
    [17]Kumar S, Rao C V S. Sulfate attack on concrete in simulated cast-in-situ and precast situations[J]. Cement and concrete research,1995,25(1):1-8.
    [18]Kumar S. Influence of water quality on the strength of plain and blended cement concretes in marine environments[J]. Cement and concrete research,2000,30(3):345-350.
    [19]Crammond N J, Collett G W, Longworth T I. Thaumasite field trial at Shipston on Stour: three-year preliminary assessment of buried concretes[J]. Cement and Concrete Composites, 2003,25(8):1035-1043.
    [20]汪朝成.硫酸盐强腐蚀环境下灌注桩适应性的试验研究[硕士学位论文].兰州:兰州大学,2011.
    [21]储王应.灌注桩混凝土抗硫酸盐侵蚀试验研究[J].混凝土,2012,(06):40-42.
    [22]P.Kumar Mehta, Paulo J.M.Monteiro混凝土:微观结构、性能和材料(原著第3版)[M].谭维祖,王栋民,丁建彤译.北京:中国电力出版社,2008.
    [23]A-M·内维尔.混凝土的性能(原著第四版)[M].刘数华,冷发光,李新宇,陈霞译.北京:中国建筑工业出版社,2010.
    [24]杜建民,梁永宁,张凤杰著.地下结构混凝土硫酸盐腐蚀机理及性能退化[M].北京:中国铁道出版社,2011.
    [25]刘赞群.混凝土硫酸盐侵蚀基本机理研究[博士学位论文].长沙:中南大学,2009.
    [26]BB.金德.水工建筑物中水泥和混凝土的腐蚀[M].郭成举译.北京:水利电力出版社,1959.
    [27]金雁南,周双喜,混凝土硫酸盐侵蚀的类型及作用机理[J].华东交通大学学报,2006,23(5):4-8.
    [28]R.H.Bogue.波特兰水泥化学(下册):水泥应用的化学[M].杨德骧,朱祖培,黄大能合译.北京:中国工业出版社,1963.
    [29]Lea F M. The chemistry of cement and concrete[J].1970.
    [30]Cohen M D, Mather B. Sulfate attack on concrete:research needs[J]. ACI Materials Journal, 1991,88(1):62-69.
    [31]Knill D C. Thaumasite from Co. Down, Northern Ireland[J]. Mineralogical Magazine,1960, 32:416-418.
    [32]Erlin B, Stark DC.Identification and occurrence of thaumasite in concrete.Symposium on the effects of aggressive fluids in concrete[J]. Highway Research Record.1965, (11):108-113.
    [33]Diamond S. Thaumasite in Orange County, Southern California:an inquiry into the effect of low temperature[J]. Cement and Concrete Composites,2003,25(8):1161-1164.
    [34]Crammond N J. Thausamine in failed cement mortars and renders from exposed brickwork[J]. Cement and Concrete Research,1985,15(6):1039-1050.
    [35]S.A.Hartshorn,R.N.Swamy,J.H.Sharp.Engineering properties and structural implications of Portland limestone cement mortar exposed to magnesium sulfate attack[J]. Advances in cement research,2001,13(01):31-46.
    [36]熊东华,王善拨.抗硫酸盐混凝土的生产途径[J].混凝土,2002,(04):35-38.
    [37]李华,孙伟,左小宝.矿物掺合料改善水泥基材料抗硫酸盐侵蚀性能的微观分析[J].硅酸盐学报,2012,40(8):1119-1126.
    [38]Wang A, Zhang C, Sun W. Fly ash effects:Ⅰ. The morphological effect of fly ash[J]. Cement and Concrete Research,2003,33(12):2023-2029.
    [39]Wang A, Zhang C, Sun W. Fly ash effects:Ⅱ. The active effect of fly ash[J]. Cement and concrete research,2004,34(11):2057-2060.
    [40]Wang A, Zhang C, Sun W. Fly ash effects:Ⅲ. The microaggregate effect of fly ash[J]. Cement and concrete research,2004,34(11):2061-2066.
    [41]高礼雄.掺矿物掺合料水泥基材料的抗硫酸盐侵蚀性研究[博士学位论文].北京:中国建筑材料科学研究院,2005.
    [42]Brown P W. An evaluation of the sulfate resistance of cements in a controlled environment[J]. Cement and Concrete Research,1981,11(5):719-727.
    [43]梁咏宁,袁迎曙.硫酸盐侵蚀环境因素对混凝上性能退化的影响[J].中国矿业大学学报,2005,34(04):452-457.
    [44]V.I.Babushkin, G.M.Matveyev, O.P.Mchedlov-Petrosyan.Thermodynamics of Silicates[M]. Berlin:Springer-Verlag,1985:76-281.
    [45]中华人民共和国国家标准.《水泥抗硫酸盐侵蚀试验方法》GB/T 749-1965[S].北京:技术标准出版社,1965.
    [46]中华人民共和国国家标准.《水泥抗硫酸盐侵蚀快速试验方法》GB/T2420-1981[S].北京:中国标准出版社,1981.
    [47]中华人民共和国国家标准.《硅酸盐水泥在硫酸盐环境中的潜在膨胀性能试验方法》GB/T749-2001[S].北京:中国标准出版社,2001.
    [48]中华人民共和国国家标准.《水泥抗硫酸盐侵蚀快速试验方法》GB/T 749-2008[S].北京:中国标准出版社.2008.
    [49]中华人民共和国国家标准.《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082-2009[S].北京:中国建筑工业出版社,2009.
    [50]曹征良,袁雄洲,邢锋,丁铸.美国混凝土硫酸盐侵蚀试验方法评析[J].深圳大学学报,2006,23(3):201-210.
    [51]中华人民共和国国家标准.《数据的统计处理和解释正态样本离群值的判断和处理》GB4883-2008[S].北京:中国标准出版社,2008.
    [52]中华人民共和国国家标准.《回弹法检测混凝土抗压强度技术规程》JGJ/T 23-2011[S].北京:中国建筑工业出版社,2011.
    [53]陈元素,李听,范颖芳.受盐腐蚀混凝土抗压强度的试验研究[c]//第15届全国结构工程学术会议论文集(第Ⅱ册),2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700