巢湖湿地沉积物中有机碳、氮、磷分布特征及其相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊富营养化是目前国际共同关注的生态环境研究热点和前沿领域。我国湖泊资源丰富,类型多样,湖泊以其自身的丰富资源以及巨大的生态功能对人类社会经济的发展起到了不可忽视的重大作用。相关研究资料表明:湖泊富营养化是目前制约我国湖泊可持续发展的首要问题,巢湖是我国五大淡水湖之一,近年来,因自然和人为因素,湖体富营养化现象严重,水质恶化加剧,严重制约了流域社会经济可持续发展。
     本研究以富营养化严重的浅水型湖泊巢湖为研究对象,以分析巢湖湿地沉积物中有机碳、氮、磷含量的分布特征为主要研究内容,系统地研究了营养盐在巢湖湿地沉积物中的分布规律及其和各种环境介质间的相互关系,揭示了巢湖湿地的富营养化进程及内源污染机制,为了解和掌握巢湖湿地的富营养化内源污染状况、制定和实施巢湖湿地富营养化的防治和修复提供了科学依据。
     本论文研究工作所取得的主要成果如下:
     1.巢湖湿地沉积物中有机碳、氮、磷含量具有明显的垂直剖面分布特征,表层土沉积物中碳、氮、磷含量最高,表现出明显富集现象,随着剖面深度的加深,沉积物中碳、氮、磷含量虽有波折但大致呈递减趋势,至底层达到最低。
     2.巢湖湿地沉积物表层有机碳、氮、磷含量普遍较高;不同地理位置沉积物中碳、氮、磷含量具有明显的差别,总体上西半湖高于东半湖,东半湖个别采样点沉积物中的碳、氮、磷分布出现空间异质化现象,这可能与采样点区域人类的经济活动干预、土壤地球化学背景及矿物组成等的差异有关。水体富营养化现象表现为:西半湖较东半湖严重。
     3.巢湖湿地沉积物中总有机碳与总氮之间存在较好的相关性,磷依旧是影响巢湖富营养化的限制性营养元素;受湖泊沉积动力、环境因子以及沉积速率等影响,巢湖湿地沉积物中的有机质具有混合来源。
     4.表层沉积物中TN、TP和有机质的粒度效应明显。并有粉砂、粘土粒级(Ⅳ)>极细砂粒级(Ⅲ)、细砂粒级(Ⅱ)>中砂以上粒级(Ⅰ)的含量序列。
     5.近年来,随着巢湖流域经济社会的发展,受巢湖富营养化的内源污染以及面源污染影响,巢湖水体富营养化态势仍有进一步加剧的趋势。
Lake Eutrophication is highlighted in international eco-environmental research. Lakes, rich in natural resources and important in eco-environment, play an indispensable role in social and economic development. And China possesses a variety of lakes. According to a related survey, it’s mainly Lake Entrophication that restricts the sustainable development of lakes in China. Chao Lake, one of the five freshwater lakes, has seen an increasing water degradation in recent years due to natural and human factors, which retards the sustainable economic and social growth of the areas along the lake.
     This thesis focuses on Chao Lake of severe entrophication and of shallow water, analyzing the distribution of organic carbon, nitrogen and phosphorus in Chao Lake wetland sediment and of the size of the sediment particles. This thesis also unfolds the entrophication proceeding of Chao Lake wetland and the inner source pollution system, which provides scientific statistics for formulating and implementing measures to prevent and solve the problem of entrophication and pollution.
     The achievements of this thesis:
     1. The distribution of organic carbon, nitrogen and phosphorus in Chao Lake wetland sediment is obviously vertical: In general, the amount of carbon, nitrogen and phosphorus decreases with the deepening of the vertical profile in spite of occasional curves.
     2. The amount of organic carbon, nitrogen and phosphorus in Chao Lake wetland sediment is relatively great in the surface of the soil. In addition, the geographical location of the sediment also determines the amount of these minerals—the western part larger than the eastern part on average. The strange distribution in the eastern part of the lake could be attributed to the disturbance of human economic activities, the chemical features of the soil and the composition of certain minerals, etc. But water entrophication of the western part is more severe than that of the eastern part.
     3. The total amount of organic carbon and nitrogen is well-balanced while phosphorus is still the main cause of entrophication in Chao Lake. Under the influence of lake dynamic sediment, environmental factor and sedimentation rate, the organic substances in Chao Lake wetland sediment have mixed sources.
     4. Study on distributional characteristics of TN, TP and Organic mattter in sediments of different grain size showed that the contents of TN, TP, and organic matter had obvious grains-size effect, and the contents were distributed as silt and clay fraction(Ⅳ)> very fine sand fraction(Ⅲ)and fine sand fraction (Ⅱ)> medium sand fraction(Ⅰ)and larger fractions.
     5. In recent years, with social and economic development of the areas along Chao Lake, Lake Entrophication tends to deteriorate, due to its inner source pollution and outer source pollution.
引文
[1] Waddington J M, Griffis T J, Rouse W R. Northern Canadian wetlands: net ecosystem CO2 exchange and climatic change[J].Climate Change, 1998, 40: 267-275
    [2]陈宜瑜.中国湿地研究[M].长春:吉林科学技术出版社,1995
    [3]陆健健.中国湿地[M].上海:华东师大出版社,1989
    [4]周怀东,彭文启等.水污染与水环境修复[M].北京:化学工业出版社,2005,3:273~275
    [5]王世岩,杨永兴,杨波.三江平原典型湿地土壤温度变化及其影响因子分析.地理研究,2003,22(3):389~396
    [6]杨永兴.国际湿地研究进展和中国湿地科学研究优先领域与展望.地球科学进展,2002,17(4):508~514
    [7]参考湿地公约类型划分部分资料
    [8] http://amuseum.cdstm.cn/AMuseum/marsh/page/shidileixing_010107_65_1.html
    [9]余国营.湿地研究进展与展望.世界科研研究与发展. 22(3)
    [10]赵魁义、刘兴土.湿地研究的现状与展望中国湿地研究,长春:吉林科学技出社,1995 :1~9
    [11] Mitsch W. J . , Gosselink J . G. . Wetlands , Van Nostrand Reinhold Company Inc. 1986
    [12]柴岫.中国的泥炭.第六届国际泥炭会议论文集,美国明尼苏达州德斯,1981
    [13]郎惠清.兴安岭和长白山地森林沼泽类型及其演替.植物学报,1981 ,23(6) :470 - 477.
    [14]黄锡畴主编.中国沼泽研究.科学出版社,1988.
    [15]濮培民、王苏民.湖泊学研究进展[J].湖泊科学,1989,1(1):1~11
    [16]周怀东,彭文启等.水污染与水环境修复[M].北京:化学工业出版社,2005,5,196
    [17]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001
    [18]沈吉.湖泊沉积研究的历史进展与展望[J].J. Lake Sci.(湖泊科学), 2009, 21(3): 307~313
    [19]吕宪国、黄锡畴.我国湿地研究进展—献给中国科学院长春地理研究所成立40周年.地理科学,18(4):294
    [20]戴雄武.中国湖泊的现状和开发途径.地域研究与开发,1989 ,8 (2):4~7.
    [21]王洪道等.中国湖泊资源.科学出版社,1989.
    [22]金相灿,刘鸿亮.中国湖泊富营养化[M].第一版,中国环境科学出版社,1990
    [23]金相灿,刘树坤,章宗涉编.中国湖泊环境(第一册)[M] .北京:海洋出版社,1995.
    [24]马经安,李红清.浅谈国内外江河湖库水体富营养化状况[J].长江流域资源与环境, 2002,11(6): 576~577
    [25]国家环保总局科技标准司编.中国湖泊富营养化及其防治研究[M] .北京:中国环境科学出版社,2001. 23~28 ,98~103.
    [26]高月香.水文气象因子对太湖富营养化和藻类生长的影响研究[Dissertation],扬州大学,硕士论文,2006
    [27]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学.2002,14(3):196
    [28] Wobus A,Bleul C,Massen S,et al. Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbiology Ecology,2003,46:331-347.
    [29] Deng H G,Chen Z L,Zhang X Z. Development and research on phosphorus in sediment.Guang zhou Environmental Sciences,2004,19(1):8-10.
    [30]屈建航,李宝珍,袁红莉.沉积物中微生物资源的研究方法及其进展[J].生态学报, 2007,27(6):2637
    [31] Jenkinson D S,Adams D E.Wild A.Model estimates of CO2 emissions from soil inresponse to glabal warming[J]. Nature,1991,351(23):304~306.
    [32] Knoepp J,Swank W. Forest management effects on surface soil carbon and nitrogen [J]. Soil Science Society of American Journal,1991,61:928~935.
    [33] Dumanski J,Pieri C.Land quality indicator :research plan[J]. Agriculture,Ecosystems and Environment,2000,81:93~102.
    [34] Wallace A. Soil organic matter must be restored to near original levels[J]. Commun.Soil Sci.Plant Anal,1994,25(1&2):29~35.
    [35]李淑芬,俞元春等,土壤溶解性有机碳研究进展[J].土壤与环境,2002,11(4): 422~429.
    [36]王绪伟,王心源,封毅,刘慧兰.巢湖沉积物总磷分布及其地质成因[J].安徽师范大学学报(自然科学版),2007,30(4):496~499.
    [37]张俊华,常庆瑞,贾科利等.黄土高原植被恢复对土壤肥力质量的影响研究[J].水土保持学报,2003,17(4):38~41.
    [38]田积莹,黄义端.子午岭连家砭地区土壤物理性质与土壤抗侵蚀性能指标的初步研究[J].土壤学报.1964,12(31):278~296.
    [39]张兴昌,邵明安.水蚀条件下不同土壤氮素和有机质的流失规律[J].应用生态学报,2000,11(2):231~234.
    [40]李淑芬,俞元春,何晟.南方森林土壤溶解有机碳与土壤因子的关系[J].浙江林学院学报,2003,20(2):119~123.
    [41] Jenkinson D S,Adams D E.Wild A.Model estimates of CO2 emissions from soil inresponse to glabal warming[J]. Nature,1991,351(23):304~306.
    [42] Davis M R, Condron L M. Impact of grassland afforestation on soil carbon in New Zealand:a review of paired~site studies[J]. Aust J Soil Res,2002,40:675~690.
    [43]迟传德,许信旺,潘根兴,等.安徽省升金湖湿地土壤有机碳储存及分布[J].地球与环境,2006,34(3):59~64
    [44]王雨春,万国江,尹澄清,等.红枫湖、百花湖沉积物全氮,可交换态氮和固定铵赋存特征[J].湖泊科学,2002,14(4):301~309.
    [45] Berner R A.Early diagenesis: A theoretical approach [M].Princetion.Princeton University press,1980
    [46] De Lang G J. Distribution of exchangeable, fixed, organic total nitrogen in interbedded turbiditic/pelagic sediments, of the Madeira abyssal plain,eastern North atlantic[J].Marine geology,1992,109.95-114
    [47]冯峰.沉积物中碳氮磷形态含量、微生物量的垂向分布及其相关性研究[Dissertation],中科院水生生物研究所,硕士论文,2006
    [48]李志洪,赵兰坡,窦森主编.土壤学[M].北京:化学工业出版社,2005,7. 134.
    [49] Larsen S. Soil phosphorus[M]. Advance in Agronomy,1976,19:151~210.
    [50] WalkerTW,Syers J K. The fate of P during pedogenesis. Geoderma,1976,14: 1~19.
    [51] Onthong J, Osaki M, Nilnond C,et al. Phosphorus status of some highly weathered soils in peninsular Thailand and availability in relation to citrate and oxalate application[J]. Soil Sci Plant Nutr,1999,45: 627~637.
    [52] NeufeldtH, Da Silva J E, Ayarza M A, et al. Land~use effects on phosphorus fractions in Cerrado oxisols[J]. Biol Fertil Soils,2000,31: 30~37.
    [53]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [54]袁可能.植物营养元素的土壤化学[M].科学出版社,1983.
    [55]朱祖祥.土壤学(上册)[M].北京:农业出版社,1983.
    [56]金相灿等,中国湖泊富营养化,北京:中国环境科学出版社,1990.
    [57] Holdren GC, David E. Armstrong, Factors Affecting Phosphrus Release from Intact Lake Sediments Cores[J].Environ SciTechnol,1980,14(1):79-87
    [58]张路,范成新,王建军,等.太湖水土界面氮磷交换通量的时空差异[J ] .环境科学,2006 ,27(8) :1537-1543.
    [59] Reitzel K,Ahlgren J ,DeBrabandere H , et al . Degradation rates of organic phosphorus in lake sediment [J ] . Biogeochemistry ,2007 ,82 :15-28.
    [60] Zhang T X,Wang X R ,Jin X C. Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu) [J ] . Environmental Pollution , 2007 ,150 :288-294.
    [61]孙慧民.乌梁素海富营养化及其机制研究[Dissertation],内蒙古大学,博士学位论文,2006.
    [62] HOWARTH R W, ROXANNEM. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems : Evolving views over three decades [J ] . Limnology and Oceanography , 2006 , 51 (1/ 2) : 364 - 376.
    [63] Fields S. global nitrogen cycling out of control [J ] . Environmental Health Perspectives , 2004 , 112 (10) : 556 - 563.
    [64]易文利,王圣瑞,金相灿,等.长江中下游浅水湖沉积物中有机质及其组分的赋存特征[J ] .西北农林科技大学学报(自然科学版),2008,36(5):142-148
    [65] National Research Council. Clean Coastal Waters : Understanding and Reducing the Effects of Nutrient Pollution [M] .Washington , DC: National Academy Press , 2000.
    [66]朱广伟,陈英旭.沉积物中有机质的环境行为研究进展[J ] .湖泊学,2001 ,13(3) :272-279.
    [67] D′Angelo E M ,Reddy K R. Diagenesis of organic matter in a wetland receiving hypereut rophic lake water : I. Dist ribution of dissolved nutrients in the soil and water column [J ] . J EnvironQual ,1994 ,23 (5) :928-936.
    [68] Gachter R ,Wehrli B. Ten years of artificial mixing and oxygen-ation : no effect on the internal phosphorus loading of two eu-trophic lakes [J ] . Environ Sci Tech ,1998 ,32 (3) :3659-3665.
    [69] Koning N ,Roos J C. The continued influence of organic pollu-tion on the water quality of the turbid Modder River [J ] . Water S A ,1999 ,25 (6) :285-292.
    [70]范成新,黄漪平,鲍建平.太湖营养元素的变化与浮游生物的演变.中国科学院南京地理与湖泊研究所集刊,第9号.北京:科学出版社,1992
    [71]李学刚,宋金明.海洋沉积物中碳的来源、迁移和转化[J].海洋科学集,第46集,2004,6:107
    [72]陈文新主编.土壤和环境微生物学.北京:北京农业大学出版社,1990.75-78
    [73] Howarth R W, Fruci J R,Sherman D. Inputs of sediment and carbon to an estuarine ecosystem: influence of land use. Biological Applications.1991,1(1):27-39
    [74] Gale P M, Reddy K P. Carbon flux between sediment and water column of a shallow, subtropical, hydroeutrophic lake. J Environ Qual, 1994,23(5):965-972
    [75]沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):35~36
    [76] Qualls,R G. Geochemical and biological properties of dissomlved organic mattter in the soil and stream of a deciduous forest ecosystem:The Influence on re-tention of N and P.Ph.D. diss Univ of Georgiam Athens (Diss, Astr 90—03448) :1989
    [77] Sharpley.A N and Reddy.K.R.Managing agricultural phosphorus for protection of surfaceaters: Issues and options[J].Environ Qual. , 1994,23:437—451
    [78]孙顺才,黄漪平主编.太湖.北京:海洋出版社,1993
    [79]王苏民,窦鸿身主编.中国湖泊志.北京:科学出版社,1998
    [80]周怀东,彭文启等.水污染与水环境修复[M].北京:化学工业出版社,2005
    [81] STUMM W, MORGAN J J . Aquatic Chemistry [M] . New York : John Wiley Interscience , 1970.
    [82] Zehr J P, Ward B B. Nitrogen Cycling in the Ocean:New Perspectives on Processes and Paradigms. Applied and Environmental Microbiology,2002,68(3):1015-1024
    [83]曾巾,杨柳燕,肖琳等.湖泊氮素生物地球化学循环及微生物的作用[J].湖泊科学.2007,19(4):382-389
    [84] David L C. The role of phosphorus in the eutrophication of receiving water: a review[J]. J Environ Qaul,1998,27,261—266.
    [85] Fisher T R. Nutrient Limitation of Phytoplankton and Eutrophi-cation of Inland, Estuarine, and Marine Waters[A].In: Ties-sen H. (Eds). Phosphorus in the Global Environment: Trans-fers, Cycles and Management[C].New York: Wiley,1996
    [86]金相灿等.中国湖泊富营养化,北京:中国环境科学出版社,1990.
    [87]杨荣敏,王传海,沈悦.底泥营养盐的释磷对富营养化湖泊的影响[J].污染防治技术,2007,20(1):50-5
    [88]孙千里,周杰,肖举乐.岱海沉积物粒度特征及其古环境意义[J].海洋地质与第四纪地质.2001,21(1):93~96
    [89]肖晨曦,李志忠.粒度分析及其在沉积学中应用研究[J].《新疆师范大学学报》(自然科学版),2006,25(3):119
    [90]刘运令,汪亚平,高建华.胶州湾沉积物的时空分异特征及运移趋势.海洋通报,2008,27(3):64
    [91]殷志强,秦小光,宁波.湖泊沉积物粒度多组分特征及其成因机制研究[J].第四纪研究,2008, 28(2):345~351
    [92] Khan, F. A.; Ansari, A. A. Eutrophication: an ecological vision.Bot. Rev. 2005, 71 (4), 449-482.
    [93]张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社,2002
    [94]阎伍玖,陈飞星.巢湖流域不同土地利用类型地表径流污染特征研究.长江流域资源与环境,1998,7(3):274~277
    [95]窦鸿身,姜加虎等.中国五大淡水湖[M],合肥:中国科学技术大学出版社,2003,8,38~39
    [96]屠清瑛、顾丁锡、尹澄清等,巢湖—富营养化研究[M],合肥,中国科学技术大学出版社,1990
    [97]中科院南京土壤研究所,土壤理化分析[M],上海科学技术出版社,1987.
    [98]陈敬安,万国江.云南程海现代沉积物环境记录研究[J].矿物学报,2000,20 (2):112~116
    [99]于君宝,刘景双,王金达.三江平原泥炭沼泽沉积物中营养物质的分布规律[J].湿地科学,2004,2 (1):31~35
    [100]王国平,刘景双,张玉霞.向海湿地全硫与有效硫垂向分布[J].水土保持通报,2003,23 (2):5~8
    [101]国家环保总局《2006年中国环境状况公报》
    [102]周鑫;王心源.巢湖流域水污染防治研究[J].资源开发与市场,2007,23(9):814~841
    [103]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001:52-53.
    [104]石健,石润圭.治理巢湖流域农业面源污染的基本思路[J].安徽农学通报,2006,12 (12):44~46.
    [105]王晓铃,巩劫.巢湖流域生态保护与建设初步研究[J].安徽师范大学学报(自然科学版),2000,23(3):273~275.
    [106]窦鸿身,姜加虎.中国五大淡水湖[M].合肥:中国科学技术大学出版社,2003:8
    [107]安徽上报巢湖治理方案[EB/OL]. http://www.nanfangdaily.com.cn/jj/ 2008-5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700