芒属植物生物质化学成分比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芒属(Miscanthus Anderss.)为禾本科多年生C4植物,主要分布在东南亚地区,我国是世界芒属植物资源分布中心。芒属植物共约13个种,我国有7个种,其中分布最广泛的4个种分别是:五节芒(M. floridulus)、芒(M. sinensis)、南荻(M. lutarioriparius)、荻(M. sacchariflorus)
     芒属植物已被公认为最具开发潜力的纤维类能源植物之一,它既可以直接燃烧发电,也可以通过发酵生产纤维乙醇。作为纤维类能源植物,其评价指标一般包括生物质产量、化学成分、热值和生态适应性等,其中化学成分指标主要是指生物质的纤维素、半纤维素、木质素、灰分和水分的含量。全面系统地测定和评价芒属植物的化学成分,有助于我们从中筛选获得高纤维品质的种质资源,为芒属植物核心种质的构建提供了参考,更为进一步研究其木质纤维素的化学结构、相关基因分离、分子辅助育种及能源开发利用提供了种质基础。
     本研究以510份野生芒属植物资源为材料,包括五节芒118份、芒217份、南荻45份、荻130份。采用洗涤纤维分析法测定了其越冬期茎杆半纤维素、纤维素和木质素的含量,采用常规的干燥法和灰化法测定其灰分含量和含水量。
     试验及分析结果如下:
     (1)化学成分测定值比较:
     a.半纤维素含量:五节芒(34.86%)>芒(34.82%)>荻(32.98%)>南荻(32.34%);
     b.纤维素含量:南荻(42.11%)>荻(38.50%)>芒(35.06%)>五节芒(32.71±%);
     c.木质素含量:南荻(13.64%)>荻(11.22%)>芒(9.51%)>五节芒(8.90%):
     d.灰分含量:荻(5.69%)>芒(4.02%)>五节芒(3.75%)>南荻(2.89%);
     e.含水量:五节芒(61.90%)>芒(59.58%)>南荻(50.47%)>荻(48.99%)。
     (2)化学成分变异系数比较:
     a.半纤维素含量:南荻(0.1370)>荻(0.1231)>芒(0.0936)>五节芒(0.0835);
     b.纤维素含量:南荻(0.1470)>芒(0.1235)>荻(0.1101)>五节芒(0.1085)
     c.木质素含量:五节芒(0.2225)>荻(0.1996)>芒(0.1914)>南荻(0.1708):
     d.灰分含量:芒(0.3085)>南荻(0.3080)>荻(0.3040)>五节芒(0.2747);
     e.含水量:荻(0.2317)>南荻(0.1563)>芒(0.1425)>五节芒(0.1234)。
     (3)化学成分Shannon-Weaver多样性指数比较:
     a.半纤维素含量:荻(2.11)>南荻(2.05)>芒(1.99)>五节芒(1.86)
     b.纤维素含量:芒(1.91)>南荻=荻(1.84)>五节芒(1.75)
     c.木质量素含量:荻(1.88)>五节芒(1.85)>芒(1.79)>南荻(1.67);
     d.灰分含量:荻(1.91)>五节芒(1.63)>南荻(1.11)>芒(1.07)
     e.含水量:荻(1.94)>五节芒(1.75)>南荻(1.67)>芒(1.15);
     f.平均多样性指数:荻(1.94±0.10)>五节芒(1.77±0.09)>南荻(1.67±0.35)>芒(1.58±0.43)。
     (4)化学成分之间及化学成分与地理因子之间的关系:
     a.纤维素含量与木质素含量均呈现极显著正相关,相关系数(r)分别为:五节芒(0.667**)、芒(0.246**)、南荻(0.677**)、荻(0.346**);
     b.纤维素含量与经度呈现显著或极显著相关性,相关系数(r)分别为:五节芒(-0.182*)、芒(0.353**)、南荻(-0.691**)、荻(-0.173*)
     c.木质素含量与半纤维素含量均呈现极显著负相关,相关系数(r)分别为:五节芒(-0.241**)、芒(-0.313**)、南荻(-0.691**)、荻(-0.473**);
     d.木质素含量与灰分含量呈现显著或极显著负相关,相关系数(r)分别为:五节芒(-0.481**)、芒(-0.256**)、南荻(-0.306*)、荻(-0.324**)
     根据上述结果,本研究认为在芒属植物这4个种中,南荻是直接燃烧利用的优良种。按各化学组分与不同能源用途之间的关系,初步筛选了58份目的性状优良的材料,为后续研究提供了材料来源。
Members of Miscanthus are herbaceous perennial C4 plants, mainly distributed in southeast Asia, especially in China. There are about 13 species of Miscanthus in the world, among which 7 species in China and M. floridulus, M. sinensis, M. lutarioriparius, M. sacchariflorus are most widely distributed.
     Miscanthus by worldwide attention, is viewed as a potential fibers energy plants, which can be burned to produce electricity or converted to cellulosic ethanol. Generally, evaluation indexes of fiber energy plants are biomass yield, chemical compositions, calorific value and ecological adaptability et al. Chemical compositions of Miscanthus include hemicellulose, cellulose, lignin, ash and moisture content. Therefore, Micanthus chemical compositions were determinated and evaluated to screen the germplasms with high fibers content, which provide the reference to collection of the core germplasms and make the foundation on the reseach of lignocellulose structure, gene isolation, molecular assisted breeding and energy development.
     Chemical compositions of 510 Miscanthus samples, including M. floridulus (n1=118), M. sinensis (n2=217), M. lutarioriparius (n3=45) and M. sacchariflorus (n4=130), collected from 25 provinces in China, were determinated via detergent fiber analysis, normal desiccation and ashing methods. The results are as follows.
     (1) Comparative analysis of chemical compositions content.
     a. Hemicellulose:M. floridulus (34.86%)>M. sinensis (34.82%)>M. sacchariflorus (32.98%)>M. lutarioriparius (32.34%).
     b. Cellulose:M. lutarioriparius (42.11%)>M. sacchariflorus (38.50%)>M. sinensis (35.06±%)>M. floridulus (32.71%).
     c. Lignin:M. lutarioriparius (13.64%)>M. sacchariflorus (11.22%)>M. sinensis (9.51%)>M. floridulus (8.90%).
     d. Total Ash:M. sacchariflorus (5.69%)>M. sinensis (4.02%)>M. floridulus (3.75%)>M. lutarioriparius (2.89%).
     e. Total moisture content:M. floridulus (61.90%)>M. sinensis (59.58%)>M. lutarioriparius (50.47%)>M. sacchariflorus (48.99%).
     (2) Coefficient of variation (CV) analysis of chemical compositions.
     a. Hemicellulose:M. lutarioriparius (0.1370)>M. sacchariflorus (0.1231)>M. sinensis (0.0936)>M. floridulus (0.0835).
     b. Cellulose:M. lutarioriparius (0.1470)>M. sinensis (0.1235)>M. sacchariflorus (0.1101)>M. floridulus (0.1085).
     c. Lignin:M. floridulus (0.2225)>M. sacchariflorus (0.1996)>M. sinensis (0.1914)>M. lutarioriparius (0.1708).
     d. Total Ash:M. sinensis (0.3085)>M. lutarioriparius (0.3080)>M. sacchariflorus (0.3040)>M. floridulus (0.2747).
     e. Total moisture content:M. sacchariflorus (0.2317)>M. lutarioriparius (0.1563)>M. sinensis (0.1425)>M. floridulus (0.1234).
     (3) Comparative analysis of Shannon-Weaver's diversity index on chemical compositio-ns.
     a. Hemicellulose:M. sacchariflorus (2.11)>M. lutarioriparius (2.05)>M. sinensis (1.99)>M. floridulus (1.86).
     b. Cellulose:M. sinensis (1.91)>M. lutarioriparius=M. sacchariflorus (1.84)>M. floridulus (1.75).
     c. Lignin:M. sacchariflorus (1.88)>M. floridulus (1.85)>M. sinensis (1.79)>M. lutarioriparius (1.67).
     d. Total Ash:M. sacchariflorus (1.91)>M. floridulus (1.63)>M. lutarioriparius (1.11)>M. sinensis (1.07).
     e. Total moisture content:M. sacchariflorus (1.94)>M. floridulus (1.75)>M. lutarioriparius (1.67)>M. sinensis (1.15).
     f. The average diversity index of 5 chemical compositions is:M. sacchariflorus (1.94±0.10)>M. floridulus (1.77±0.09)>M. lutarioriparius (1.67±0.35)>M. sinensis (1.58±0.43).
     (4) Correlation analysis of chemical composition and geographical distribution.
     a. The correlations between cellulose and lignin are extremely significant positive, pearson correlation coefficient (r) are:M. floridulus (0.667**), M. sinensis (0.246**), M. lutarioriparius (0.677**), M. sacchariflorus (0.346**).
     b. The correlations between cellulose and longitude are significant, pearson correlation coefficient (r) are:M. floridulus (-0.182*), M. sinensis (0.353**), M. lutarioriparius (-0.691**), M. sacchariflorus (-0.173*).
     c. The correlations between lignin and hemicellulose are extremely significant negative, pearson correlation coefficient (r) are:M. floridulus (-0.241**), M. sinensis (-0.313**), M. lutarioriparius (-0.691**), M. sacchariflorus (-0.473**).
     d. The correlations between lignin and total ash are significant negative, pearson correlation coefficient (r) are:M. floridulus (-0.481**), M. sinensis (-0.256**), M. lutarioriparius (-0.306*), M. sacchariflorus (-0.324**).
     M. lutarioriparius are appropriate for directcombustion according to the results in this article, In addition,58 purpose material were screened in this study according to Miscanthus chemical compositions and way of energy conversion.
引文
[1]http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id= 120798.
    [2]Heaton EA, Long SP, Voigt TB et al. Miscanthus for Renewable Energy Generation: European Union Experience and Projections for Illinois [J]. Mitigation and Adaptation Strategies for Global Change.2004,9(4):433-451.
    [3]梁绪振,陈太祥,白史且,等.芒属(Miscanthus)植物种质资源研究进展[J].草业与畜牧.2010,(10):1-5.
    [4]Khanna M, Dhungana B, Clifton-Brown J. Costs of producing miscanthus and switchgrass for bioenergy in Illinois[J]. Biomass and Bioenergy.2008,32(6):482-493.
    [5]Kahle P, Beuch S, Boelcke B et al. Cropping of Miscanthus in Central Europe:biomass production and influence on nutrients and soil organic matter[J]. European Journal of Agronomy.2001,15(3):171-184.
    [6]Danalatos NG, Archontoulis SV, Mitsios I. Potential growth and biomass productivity of Miscanthus×giganteus as affected by plant density and N-fertilization in central Greece[J]. Biomass and Bioenergy.2007,31(2-3):145-152.
    [7]曾宪录,廖富林,温冠儒,等.梅州地区主要能源草分布及生长情况调查[J].广东农业科学.2008,(07):25-28.
    [8]王春艳,王立志,李忠杰,等.黑龙江省野生植物荻的营养分析[J].黑龙江生态工程职业学院学报.2009,(02):23-24.
    [9]刘大汉,张施耀.南荻北引栽培技术研究[J].山东农业科学.1993,(01):45-46.
    [10]左海涛,武菊英.草本能源植物在北京地区的生产潜力(简报).In;2007;中国海南海口;2007.
    [11]Collura S, Azambre B, Finqueneisel G et al. Miscanthus×Giganteus straw and pellets as sustainable fuels[J]. Environmental Chemistry Letters.2006,4(2):75-78-78.
    [12]Clifton-Brown J, Stampfl P, Jones M. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions[J]. Global Change Biology.2004,10:509-518.
    [13]Michel R, Mischler N, Azambre B et al. Miscanthus x Giganteus straw and pellets as sustainable fuels and raw material for activated carbon[J]. Environmental Chemistry Letters. 2006,4(4):185-189-189.
    [14]邹玲,孙军,谢启强.芒草成型燃料工业化生产影响因素的研究[J].林业科技开发.2008,(02):79-81.
    [15]Hodgson EM, Fahmi R, Yates N et al. Miscanthus as a feedstock for fast-pyrolysis:does agronomic treatment affect quality?[J]. Bioresour Technol.2010,101(15):6185-6191.
    [16]Hodgson EM, Nowakowski DJ, Shield I et al. Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals[J]. Bioresour Technol.2011,102(3):3411-3418.
    [17]Smolinski A, Howaniec N, Stanczyk K. A comparative experimental study of biomass, lignite and hard coal steam gasification[J]. Renewable Energy.2011,36(6):1836-1842.
    [18]袁振宏,孔晓英,颜涌捷,等.芒草稀硫酸水解工艺条件的正交试验[J].太阳能学报.2006,(06):631-634.
    [19]宁祖林,陈慧娟,王珠娜,等.几种高大禾草热值和灰分动态变化研究[J].草业学报.2010,(02):241-247.
    [20]刘运权,龙敏南.几种不同生物质的快速热解[J].化工进展.2010,(S1):126-132.
    [21]汪杏芬,李来庚.木质素含量降低的转基因芒草研究.In;2009;中国河南开封;2009.
    [22]萧运峰,高洁,王锐.五节芒的生产性状及饲用价值的研究[J].四川草原.1997,(01).
    [23]王宗和,梁文芷,卢今怡,等.芒杆原料的结构及其纤维形态[J].华南工学院学报.1980,(02):72-85.
    [24]刘亮.中国特有造纸原料——南荻[J].植物杂志.1990,(05):6-7.
    [25]王连敏,王立志,李忠杰,等.野生植物荻的利用途径浅析[J].黑龙江生态工程职业学院学报.2008,(05):27-28.
    [26]杨静丹,陈友静,张崇邦,等.五节芒定居对尾矿砂重金属形态与微生物的影响[J].生态学杂志.2009,(05):907-914.
    [27]张崇邦,王江,柯世省,等.五节芒定居对尾矿砂重金属形态、微生物群落功能及多样性的影响[J].植物生态学报.2009,(04):629-637.
    [28]秦建桥,夏北成,赵鹏,等.五节芒(Miscanthus floridulus)不同种群对镉积累与转运的差异研究[J].农业环境科学学报.2011,(01):21-28.
    [29]解新明,周峰,赵燕慧,等.多年生能源禾草的产能和生态效益[J].生态学报.2008,(05):2329-2342.
    [30]Xu HX, Kadota S, Hattori M et al. Inhibitory effect of the water extract of spikes of Miscanthus sinensis on IgE formation in mice[J]. Planta Med.1993,59(6):529-532.
    [31]武菊英,滕文军,袁小环,等.分株和遮荫对花叶芒生长的影响[J].园艺学报.2009,(11):1691-1696.
    [32]席庆国,刘玉新.高大禾草加工技术概况[J].草业科学.2005,(01):32-33.
    [33]冯金朝,周宜君,石莎,等.国内外能源植物的开发利用[J].中央民族大学学报(自然科学版).2008,(03):26-31.
    [34]施雪华,余敏,曲有鹏,等.利用木质纤维素类生物质生产燃料酒精[J].酿酒.2008,(06):64-68.
    [35]邢启明,孙启忠,高凤芹.木质纤维素类物质生产燃料乙醇的研究进展[J].中国农业科技导报.2008,(S1):41-45.
    [36]陈洪章.纤维素生物技术.第一版.北京:化学工业出版社;2005.
    [37]Hans-Joachim G J. Analysis of Forage Fiber and Cell Walls in Ruminant Nutrition[J]. The Journal of Nutrition.1997,127(5):810S-813S.
    [38]冯继华,曾静芬,陈茂椿,等.应用Van Soest法和常规法测定纤维素及木质素的比较[J].西南民族学院学报(自然科学版).1994,(01).
    [39]张红漫,郑荣平,陈敬文,等.NREL法测定木质纤维素原料组分的含量[J].分析试验室.2010,(11):15-18.
    [40]熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业.2005,(08):40-41.
    [41]范鹏程,田静,黄静美,等.花生壳中纤维素和木质素含量的测定方法[J].重庆科技学院学报(自然科学版).2008,(05):64-67.
    [42]P·BhamaIyer,郑宇林.测定木质纤维素纤维中纤维素含量的方法[J].国外纺织技术.1998,(09):37-40.
    [43]李高扬,李建龙,王艳,等.优良能源植物筛选及评价指标探讨[J].可再生能源.2007,(06):84-89.
    [44]刘志斋,郭荣华,石云素,等.中国玉米地方品种核心种质花期相关性状的表型多样性研究[J].中国农业科学.2008,(06):1591-1602.
    [45]潘伟彬.能源植物狼尾草品种筛选评价指标分析[J].漳州师范学院学报(自然科学版).2009,(04):87-91.
    [46]岳建芝,张杰,徐桂转,等.玉米秸秆主要成分及热值的测定与分析[J].河南农业科学.2006,(09):30-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700