热耦合反应精馏塔的可行性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近代以来,能源问题一直受到全世界各国的关注,尤其是经历过两次石油危机之后,各国都高度重视起了能源问题。能源问题在化学工业尤为突出,化工业是能源密集型工业,工业过程中能耗较大,尤其是分离过程。相比传统精馏塔,热耦合技术具有能耗小、成本低的优点。因此,如何将热耦合技术的优点发挥到最大化,成了现阶段国内外研究热点,也是本文的研究依据。
     本文讨论的热耦合技术主要是内部热耦合、外部热耦合两种。内部热耦合是在同一个塔的高压塔段和低压塔段间进行,低压塔段的上升蒸汽需要被压缩以提高压力,保证传热温差,因此内部热耦合是要用蒸汽再压缩机提高压力。而外部热耦合则是在两个不同操作压力的精馏塔之间进行。
     常规的反应精馏塔,精馏段的产物需要使用冷凝器进行冷凝,而提馏段产物需要使用再沸器使之汽化,此操作过程使得常规精馏塔的耗能高、热力学效应低。内部热耦合反应精馏塔(简称IHIRDC)是将原来反应塔的反应段塔板数平均分为高压塔段和低压塔段进行热传递。外部热耦合原理是提高精馏塔压力,使高压塔塔顶冷凝器的温度高于低压塔塔底再沸器的温度,从而进行热量传递,使高压塔塔顶冷凝放出的能量回收。外部热耦合又分为精馏段/提馏段热耦合和冷凝器/再沸器热耦合。
     本文通过对理想四元反应精馏体系A+B(?)C+D的常规反应精馏、内部热耦合和外部热耦合分别进行研究,以年总费用TAC为目标函数,从而比较总结,得出一种最优的结构。
In modern times, the problem of energy resources has always been focused by all countries in the world, especially after the two crises of petroleum. Every country is paying high attention to the problem of energy resources. The problem is more obvious in the chemical industry as the chemical industry is energy intensive industries and the energy consumption is very huge, especially in separation process. Compared with traditional distillation column, heat integration technology shows the advantages of less energy consumption and low capital investment. Hence, how to maximize the advantages of heat integration of the reactive distillation column has become the hot point home and abroad nowadays and it is also the research theoretical basis of this paper.
     This paper mainly discusses two kinds of heat integration, the internal heat integration and the external heat integration. The internal heat integration is realized between the rectifying section and the stripping section of a single distillation column. In order to keep the temperature difference between the stripping section and the rectifying section, the ascending vapor flow from the stripping section is sent into the compressor to increase the pressure. Compared with the internal heat integration, the external heat integration is operated between two individual distillation columns with different operating pressures.
     In the traditional reactive distillation column, the product from the top of the distillation column needs to be condensed in the condenser and the product from the bottom needs to be vaporized by reboiler. In this case, the traditional reactive distillation column shows the disadvantage of high energy consumption and low thermodynamic effect. In the internal heat-integrated reactive distillation column (IHIRDC), the reaction zone is divided into a high pressure section and a low pressure section to achieve the heat transfer. The basic theory of external heat integration is to increase the pressure of reactive column. On that situation, the temperature of the condenser in the top of the high pressure column will be higher than that of the low pressure column. The temperature difference makes the heat transfer possible and the energy from the condenser in the top of high pressure column can be recycled. Also external heat integration includes rectifying section/stripping section heat integration and condenser/reboiler heat integration.
     In this paper, the reactive distillation system including an ideal reactive distillation column separating a hypothetical reaction, A+B(?)C +D, is employed to study and compare the following three systems:the conventional reactive distillation system, the reactive distillation system with internal heat integration and the reactive distillation system with external heat integration. Finally an optimum reactive distillation system in obtained based on the goal function of total annual costs (TAC).
引文
[1]Doherty M F, Buzad G. Reactive distillation by design[J]. Chem. Eng. Res.,1992, 70A:448-458.
    [2]Malone M F, Doherty M F. Reactive distillation[J]. Ind. Eng. Chem. Res.,2000,39: 3953-3597.
    [3]Nijhuis S A, Kerkhof F P J M, Mak A N S, Multiple Steady states during reactive distillation of methyl tert-Butyl ether[J]. Industrial and Engineering Chemistry Research,1993,32:2767-2774.
    [4]Oudshoorn O L, Janissen M, Kooten W E J van, et al. A novel structured catalyst packing for catalytic distillation of ETBE[J]. Chemical Engineering Science.,1999, 54:1413-1418.
    [5]Broekhuis R R, Lynn S, King C J. Recovery of propylene glycol from dilute aqueous solutions via reversible reaction with aldehydes[J]. Industrial and Engineering Chemistry Research,1994,33:3230-3237.
    [6]Han S J, Jin Y, Yu Z Q. Application of a fluidized reaction-distillation column for hydrolysis of methyl acetate[J]. Chemical Engineering Journal,1997,66:227-230.
    [7]吴燕翔,谭天恩,王良恩等.醋酸甲酯水解催化精馏过程的模拟计算[J].化工冶金,2000,21(1):24-29.
    [8]Zhang Jirui, et al. Process and apparatus for preparation of ethylbenzene byalklation or benzene with dilute ethylene contained in dry gas by catalytic distillation[P]. US patent Application:20010018545.2001.
    [9]Gonzlez J C, James R F. Preparation of tertiary amyl alcohol in a reactive distillation column.1. reaction kinetics, chemical equilibrium, and mass-transfer issues[J]. Industrial and Engineering Chemistry Research,1997,36:3833-3844.
    [10]Gonza J C, Subawalla H, James R F. Preparation of tert-amyl alcohol in a reactive distillation column.2. experimental demonstration and simulation of column characteristics[J]. Industrial and Engineering Chemistry Research,1997,36: 3845-3853.
    [11]Higler A, Taylor R, Krishna R. Modeling of a reactive separation process using a nonequilibrium stage model[J]. Comp. Chem. Eng.,1998,22:S111-S118.
    [12]Baur R. Modeling reactive distillation dynamices[D]. Postam:Clarkson University, 2002.
    [13]Baur R, Higler A, Taylor R, et al. Comparison of equilibrium stage and nonequilibrium stage models for reactive distillation[J]. Chem. Eng. J.,2002, 76(1):33-47.
    [14]Lee J H, Dudukovic M P. A comparison of the equilibrium and nonequilibrium models for a multicomponent reactive distillation column[J]. Comp. Chem. Eng., 1998,23(1):159-172.
    [15]Peng J J. A comparison of steady-state equilibrium and rate-based models for packed reactive distillation columns[J]. Ind. Eng. Chem. Res.,2002,41: 2732-2744.
    [16]Subawalla H, Fair J R. Design guidelines for solid-catalyzed reactive distillation systems[J]. Ind. Eng. Chem. Res.,1999,38:3696-3709.
    [17]Mail S V, Jana A K. A Partially Heat Integrated Reactive Distillation:Feasibility and Analysis. Sep. Pur. Tech.2009, in press.
    [18]李奕成,热整合反应蒸馏塔应用于乙酸甲酯水解系统,硕士论文,国立台湾大学化学工程学研究所(2009).
    [19]Freshwater D C. Thermal Economy in Distillation. Trans. Inst. Chem. Eng.1951, 29,149.
    [20]Mah R, Nicholas J J, Wodnik R B. Distillation with Secondary Reflux and Vaporization:A Comparative Evaluation. AIChE J.1977,23,651.
    [21]Takamatsu T, Nakaiwa M, Nakanishi T. The Concept of an Ideal Heat Integrated Distillation Column (HIDiC) and Its Fundamental Properties. Kagaku Kogaku Ronbunshu 1996,22,985.
    [22]Huang K, Nakaiwa M, Akiya T. Dynamics of Ideal Heat Integrated Distillation Columns. J. Chem. Eng. Japan 1996,29,344.
    [23]Huang K, Nakaiwa M, Akiya T. A Numerical Consideration on Dynamic Modeling and Control of Ideal Heat Integrated Distillation Columns. J. Chem. Eng. Japan 1996,29,108.
    [24]Huang K, Nakaiwa M, Akiya T, Owa M, Nakane T, Sato M, Takamatsu T. Identification and Internal Model Control of an Ideal Heat Integrated Distillation Column. J. Chem. Eng. Japan 1998,31,159.
    [25]Nakaiwa M, Huang K, Endo A, Ohmori T, Akiya T, Takamatsu T. Internally Heat Integrated Distillation Columns:A Review. Trans. Inst. Chem. Eng.2003,81,166.
    [26]Iwakabe K, Nakaiwa M, Huang K, Nakanishi T, Rosjorde A, Ohmori T. Energy Saving in Multi-component Separation Using an Internally Heat-integrated Distillation Column (HIDiC). Appl. Therm. Eng.2006,26,1362.
    [27]Olujic Z, Fakhri F, Rijke A D, Graauw J D, Jansens P J. Internal Heat Integration-the Key to an Energy-Conserving Distillation Column. J. Chem. Tech. Biotech.2003,78,241.
    [28]Olujic Z, Sun L, Rijke A D, Graauw J D, Jansens P J. Conceptual Design of an Internally Heat Integrated Propylene and Propane Splitter. Energy 2006,31,3083.
    [29]Nakaiwa M, Naito K, Huang K, Endo A, Aso K, Nakanishi T, Nakamura T, Noda H, Takamatsu T. Operation of a Bench-Scale Ideal Heat Integrated Distillation Column (HIDiC):an Experimental Study. Comput. Chem. Eng.2000,24,495.
    [30]Chiang T P, Luyben W L. Comparison of Energy Consumption in Five Heat-Integrated Distillation Configurations, Ind. Eng. Chem. Res.1983,22,175
    [31]Luyben W L. Distillation Design and Control Using Aspen Simulation. John Wiley & Sons Inc., New Jersey, U.S.A.2006.
    [32]Luyben W L. Design and Control of a Fully Heat-Integrated Pressure-Swing Azeotropic Distillation System. Ind. Eng. Chem. Res.2008,47,2681.
    [33]Annakou O, Mizsey P. Rigorous Comparative Study of Energy-Integrated Distillation Schemes. Ind. Eng. Chem. Res.1996,35,1877.
    [34]Huang K, Shan L, Zhu Q, Qian J. Adding Rectifying/Stripping Section Type Heat Integration to a Pressure-Swing Distillation (PSD) Process. Appl. Therm. Eng. 2008,28,923.
    [35]Wang Yun, Huang Kejin, Wang Shaofeng.A Simplified Scheme of Externally Heat-Integrated Double Distillation Columns (EHIDDiC) with Three External Heat Exchangers, Ind. Eng. Chem. Res 49,3349-3364,2010
    [36]王芸,黄克谨,陈海胜.外部热耦合复合精馏塔模型化研究[A].中国石油与化工自动化协会第八届技术年会论文集.2009,333-340.
    [37]王建忠,马文婵,王鹏辉.精馏过程的节能现状与对策[J].河北化工.2006,29(4),27-30.
    [38]邓修,吴俊生.化工分离工程[M].北京,科学出版社,2000,135-213.
    [39]刘运权.精馏过程的节能途径[J].现代节能.1992,2,8-13.
    [40]马庆元.精馏过程的节能方法[J].冶金能源.2004,23(5):13-15.
    [41]秦正龙,孟庆华.精馏过程的节能技术[J].节能.1997,4,16-19.
    [42]倪进方.化工过程设计[M].北京,化学工业出版社,1999,182-248.
    [43]Rong B, Turunen I. Synthesis of New Distillation Systems by Simultaneous Thermal Coupling and Heat Integration[J]. Ind. Eng. Chem. Res.2006,45, 3830-3841.
    [44]Shimizu K, Mah RSH. Dynamic Characteristic of Binary SRV Distillation Systems. Comp. & Chem. Eng.1983,7,105-112.
    [45]黄克谨,钱积新.理想热耦合精馏塔及其稳态特性[J].石油炼制与化工.1997,28(11),55-58.
    [46]Gadalla M, Jimenez L, Olujic Z, Jansens P J. A Thermo-Hydraulic Approach to Conceptual Design of an Internally Heat-Integrated Distillation Column (I-HIDIC)[J]. Computers and Chemical Engineering.2007,31,346-354.
    [47]Fitzmorris R E, Mah RSH. Improving Distillation Column Design Using Thermodynamic Availability Analysis[J]. AICHE.1980,20,265-271.
    [48]Takamatsu T, Nakaiw M. Modeling, Design Method for Internal Heat Integrated Packed Distillation Column[J]. Journal of Chemical Engineering of Japan.1988, 21(6),595-601.
    [49]Nakaiwa M, Huang K, Owa M, Akiya T, Nakane T. Operating an Ideal Heat Integrated Distillation Column with Different Control Algorithns[J]. Comput. Chem. Eng.1998,22,389-394.
    [50]Huang K, Liu W, Ma J, Wang S. Externally Heat-Integrated Double Distillation Columns (EHIDDiC):Basic Concept and General Characteristic[J]. Ind. Eng. Chem. Res.2009,49,1333-1342.
    [51]Olujic Z, Sun L, Gadalla M, Rijke A De, Jansens P J. Enhancing Thermodynamic Efficiency of Energy Intensive Distillation Columns via Internal Heat Integration[J]. Chem. Biochem. Eng.2008,22,383-391.
    [52]Kaymak D B, Luyben W L. Quantitative Comparison of Reactive Distillation with Conventional Multiunit Reactor/Column/Recycle Systems for Different Chemical Equilibrium Constants[J]. Ind. Eng. Chem. Res.2004,43,2943-2953.
    [53]郭继志.石油化工新技术反应精馏[J].石油知识.1997,3,17-18.
    [54]郎玉成.反应精馏技术及其应用[J].南化科技信息.1995(1),47-50.
    [55]盖旭东,孙锦昌.反应精馏过程模拟研究进展[J].化学工程.1996,24(1),8-14.
    [56]张澍源.连续反应精馏技术及其应用[J].现代化工.1990,10(4),51-54.
    [57]成弘,余国琮.蒸馏技术现状与发展方向[J].化学工程.2001,29(1),52-55.
    [58]Zhu Y, Liu X. Dynamics and Control of High Purity Heat-Integrated Distillation Columns[J]. Ind Eng Chem Res,2005,44:8806.
    [59]刘元高,刘耀儒.Mathematica 4.0实用教程[M].北京:国防工业出版社,2000:71-110.
    [60]Gadalla M, Olujic Z, Rijke A De, Jansens P J. Pinch Analysis-Based Approach to Conceptual Design of Internally Heat-Integrated Distillation Columns[J]. Chem. Eng. Res. Des.2005,31,987-994.
    [61]Malinen I, Tanskanen J. Thermally Coupled Side-Column Configurations Enabling Distillation Boundary Crossing.2. Effects of Intermediate Heat Exchangers[J]. Ind. Eng. Chem. Res.2009,48,6372-6378.
    [62]Petlyuk F B, Platonov V M, Slavinskii D M. T hermodynaically Optimal Method for Separating Multicompnent Separation Systems with Energy Integration[J]. AICHE J.1974,20,940-947.
    [63]王以清.非绝热精馏节能[J].节能技术.2000,18(6),43-45.
    [64]赵贤广,饶骏.国内催化精馏技术研究进展及应用[J].化学工业与工程技术.2002,23(5),24-26.
    [65]Tung H, Davis J F, Mah R S H. Fractionating Condensation and Evaporation in Plate-Fin Devices[J]. AIChE J.1986,32,1116-1123.
    [66]林立强,不同相对挥发度排序在反应性蒸馏设计的影响:过量反应物设计,硕士论文,国立台湾大学化学工程学研究所(2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700