注射用大蒜油固体脂质纳米粒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为中药现代化的最前沿的创新技术,纳米中药必将成为中药现代化中的重要组成部分,这不仅可以大大提高中药的现代化和标准化,加速中药向国际市场进军的步伐,而且还可以对中药的发展产生革命性的影响。本文以具有抗真菌、抑肿瘤、降血脂等较强药理活性的大蒜油为模型药物,运用高压匀质法和熔融乳化超声法制备了固体脂质纳米粒。利用大蒜油与脂质良好的相容性,既解决了大蒜油水溶性差的问题,又提高了固体脂质纳米粒载药量。本论文首先分离纯化了大蒜油中二烯丙基二硫化物(DADS)和二烯丙基三硫化物(DATS),制备了大蒜油及其制剂的质量控制用对照品:利用精制大蒜油制备了大蒜油固体脂质纳米粒,并用冷冻干燥技术制备大蒜油固体脂质纳米粒冻干制剂,提高了其贮存稳定性;采用中药指纹图谱作为控制制剂质量的手段;最后通过大鼠体内药动学和组织分布研究揭示了大蒜油固体脂质纳米粒的体内行为的规律。
     采用制备液相纯化了GO中二种主要组分DATS和DADS,HPLC、GC-FID和GC-2ECD的纯度均达到95%以上;降解动力学研究表明DATS和DADS在不同pH溶液中有一定的降解,pH>13时,降解速度加快;DATS和DADS在20%血浆和10%不同组织匀浆液中的降解比非生物样品中的快得多。采用GC-MS法确证了DATS主要降解产物为DADS。
     以单硬脂酸甘油酯为脂质材料,卵磷脂和泊罗沙姆188为乳化剂,采用高压匀质法和熔融超声法制备了大蒜油固体脂质纳米粒。二种方法制备的大蒜油固体脂质纳米粒粒径小,包封率均在90%以上。通过单因素实验考察了工艺因素(如加入顺序、匀化压力和次数、超声功率和时间等)和处方因素(脂质相种类和用量、乳化剂浓度、乳化剂比例和大蒜油用量)对GO-SLN粒径大小及分布的影响,并进一步通过正交设计优化了处方。最佳处方的大蒜油固体脂质纳米粒粒径为106.5±40.3nm,包封率为98.6%±1.8%。
     利用冷冻干燥技术,通过优化冷冻干燥的工艺和处方,将GO-SLN制备成具有良好外观和再分散性的冻干制剂,GO损失低于10%,提高了制剂的稳定性。冻干保护剂对冻干纳米粒的质量有很大的影响。使用单一保护剂时,再分散性均较差,葡萄糖、果糖、山犁醇的处方则出现了萎缩、起泡,部分产品发生喷瓶,外观很差。使用混合保护剂时,有葡萄糖和果糖的处方依然出现起泡、萎缩的现象,而其他处方的外观均较好。从再分散角度看,海藻糖和麦芽糖有提高再分散速度的作用,海藻糖更为明显。最佳处方为10%海藻糖和10%蔗糖,手摇振动的再分散时间小于10s,再分散后的粒径从106.5nm长至155.3nm,能够满足临床要求。显微摄影技术观察了冻干纳米粒的微观形态。残留水分研究表明,未经过二次升温干燥的冻干品的残余含水量仅占5.4%,自由水基本完全除去。通过室温减压干燥可去除部分结合水(2.2%),热重分析法的加热条件不同测得残留水分的比例也有所差异。100℃加热使冻干品产生严重的萎缩、变色,所测残留水分比例较大,有可能是GO挥发的结果。稳定性研究表明,GO-SLN制成冻干品后,依然对光和热不稳定。长期留样观察结果表明,在4℃避光条件下,GO-SLN冻干品基本稳定,含量和再分散后粒径基本不变。
     从粒子形态、粒径大小及分布、药物分散状态、包封率和体外释放行为方面对GO-SLN进行表征。采用透射电镜观察了自制的GO-SLN和DATS-SLN的形态,结果表明所制得的纳米粒均为表面圆整的类球形粒子。采用光子相关光谱法测定了自制SLN的粒径和分布,相同优化处方的GO-SLN粒径大小顺序为熔融超声法>高压乳匀法。以电泳法测定了GO-SLN的ζ电位,结果表明本研究制得的纳米粒表面带负电荷,空白SLN的ζ电位为-9.9±6.6mv,3~4天就出现纳米粒的聚集分层,稳定性较差;优化处方的GO-SLN的ζ电位冻干前为-31.9±16mv,能维持40~45天未见可见颗粒,冻干后为-34.7±9.6mv。冻干前后比较可知,冷冻干燥没使ζ电位发生很大变化。
     DSC法研究了药物在SLN中的分散状态,结果表明制成SLN后,大部分药物与脂质形成固体溶液,均匀分散在脂质材料中,使脂质的结晶度也有所下降。包封率是SLN的一个重要的测定指标。本研究中比较了葡聚糖凝胶过滤法、超速离心法、超滤法和冷冻聚结过滤法。结果表明,超速离心法和冷冻聚结过滤法的测定结果比较接近,葡聚糖凝胶过滤法结果偏低,超滤法对GO完全截留。体外释放的研究表明GO-SLN在体外经轻微突释后缓慢释放。
     分别采用HPLC法和GC法建立了注射用GO-SLN的标准指纹图谱,相似度评价结果良好,相似系数均在0.99以上,可作为控制注射用GO-SLN的质量标准。
     最后研究了大鼠颈静脉注射GO-SLN和GO注射液后的体内药动学,并比较了两种制剂的组织分布。药动学研究结果表明,GO制备成SLN后加快了其向组织分布的速度,减少了在血液中驻留时间,GO-SLN~-的MRT(13.8 min)比GO注射液的MRT(19.5 min)短,但C_(max)、AUC均为GO注射液的近两倍,生物利用度有较大的提高。组织分布研究结果表明,GO与脂质结合形成SLN后,在体内有释放的过程,一定程度上减少了体内酶对GO的代谢和破坏,延长了GO在组织中的作用时间。
As the most advancing technology of traditional Chinese drug modernazition, nano traditional Chinese drug will become one of the most parts of traditional Chinese drug modernazition, which not only elevate the modernization and standardization of traditional Chinese drug and accelerate the step into international market, but also have revolutionary influence on the development of it. In this article, garlic oil(GO) was selected as model drug, which exhibit a variety of biological activities including hypolipidemic, antithrombotic, antiatherosclerotic, antimutagenic, anticarcinogenic and antibacterial effects, and solid lipid nanoparticle(SLN) was prepared by high pressure homogenization(HPH) and melt-ultrasound technology. On account of the good compatibility of GO and lipid, the problem of poor solubility of GO and the low drug loading capacity may be solved simultaneously. Firstly, diallyl trisulfide(DATS) and diallyl disulfide(DADS) were separated from GO as the standards of quality control; GO-SLN was prepared by HPH and melt-ultrasound technology and the freeze drying preparation of GO-SLN was prepared by lyophillization to enhance the storage stability. The finger print was made as the method of quality control. Finally, the pharmacokinetics and tissue distribution in rats was studied to reveal the fate in vivo of GO-SLN.DATS and DADS were separated and purified by preparation HPLC. The both contents were evaluated to be >95% by the methods of HPLC, GC-FID and GC-ECD. The results of degradation dynamics showed that both degraded to some extent in different pH solution, while pH was higher than 13, the degradation rate accelerated markedly. Both degraded more quickly in 20% plasma and 10% tissue homogenates than in water solution. The main degradation product of DATS was DADS identified by GC-MS.GO-SLN was prepared by HPH and melt-ultrasound technology, which glyceryl monostearate was lipid material and lecithin and poloxamer 188 as emulsifier. The particle size of GO-SLN by two methods was small and encapsulation efficiency was higher 90%. The single factor experiments were investigated the effects of technology factors (adding order, homogenization pressure and cycles, ultrasound power and time, et al) and formulation factors(the kinds and content of lipid phase, the kind and ratio of emulsifier and the content of GO) on particle size and distribution of GO-SLN. The orthogonal design was carried to optimize the formulation further. The particle size of the best formulation was 106.5±40.3nm and the encapsulation efficiency was 98.6%±1.8%.
     GO-SLN was prepared into freeze drying preparation with good appearance and reconstitution by lyophillization after the process and formulation parameters were optimized. The lose of GO was lower 10%and the stability of GO-SLN was highly improved. The cryoprotectants are necessary to protect SLN during lyophillization. The reeonstitution of the freeze drying preparation of GO-SLN with single cryoprotectant was poor and the phenomena of shrinking, bubbling or spurt bottle will happen in the formulations with glucose, fructose and sorbitol as cryoprotectant. However, the mixture of cryoproteetants can notably improve the appearance and reconstitution. Trehalose and maltose can accelerate the reeonstitution rate. The best formulation with 10%trehalose and 10%sucrose can reconstitute in 10s with manual shaking and the particle size increase from 106.5nm to155.3nm, which can reach the requirement. The microform was observed by microphotograph. The study of retained moisture showed that the retained moisture was about 5.4%after sublimation drying and free water in GO-SLN was almost removed. 2.2%of the retained moisture can be removed further by the drying under reduced pressure at room temperature. The retained moisture can be removed wholly by being heated at 100℃. However, the shringkage and change color happened visibly. The results of stability study showed that the freeze drying preparation of GO-SLN are still instable to heat and light, but it is stable away from light at 4℃,
     The characters of GO-SLN include the shape, particle size and distribution, drug status in SLN, encapsulation efficiency and release in vitro. In this study, the shape of GO-SLN and DATS-SLN was observed by transmission electron microscope(TEM), which is spherelike. The particle size and distribution was determined by PCS. The particle size of GO-SLN prepared by melt-emulsified ultrasound was higher than that by HPH.ζpotential of GO-SLN was determined by electrophoretic method, which was negative.ζpotential of drug-free SLN and GO-SLN was --9.9±6.6mv and --31.9±16mv, respectively. potential of the freeze drying preparation of GO-SLN was --34.7±9.6mv, which didn't nearly change.
     The result of DSC indicated that GO dispersed into lipid uniformly and form solid solution. Encapsulation efficiency is one of important index. In this study, sephadex filtration method, ultraeentrifugalization, ultrafiltration and freeze- coalescence filtration was used to determined encapsulation effieiency(EE). The results showed that EE was alike by ultraeentrifugalization and freeze-coalescence filtration, while the result by sephadex filtration method was lower. GO was wholly entrapped by ultraflltration membrane, so ultrafiltration method is not suitable to determine the EE of GO-SLN. The release study in vitro showed that GO-SLN in vitro first slight burst release, then release slowly.
     The standard finger print of GO-SLN was erected by I-IPLC and GC, respectively. Good similarities were found in fingerprints in 10 batches of GO-SLN. The similarity coefficient was higher than 0.99, so it can act the quality control standard of Go-SLN for injection.
     A GC-ECD method was developed for the determination of DATS and DADS in the plasma and biological samples of rats. The intravenous pharmacokinetic behaviors of GO solution and GO-SLN were investigated. The results showed that compared with GO solution, MRT of GO-SLN(13.8min) was shorter than that of GO solution(19.5 min). However, C_(max), and AUC of GO-SLN was twice of that of GO solution. GO-SLN significantly enhanced the bioavailability. The results of tissue distribution showed that GO-SLN distributed more quickly into tissues after intravenous injection and maintained a higher concentration and longer time in tissues, which indicated that the target efficiency enhanced.
引文
1.徐辉碧,杨祥良,谢长生.纳米技术在中药研究中的应用.中国药科大学学报[J],2001,22(1):82~86
    2.刘晓来,赵东林,梁峻.纳米科技与中药现代化.中国中医药信息杂志,2004,10(11):850~851
    3.余秋颖.中药现代化的研究与发展.沈阳医学院学报,2003,6(5):134~135
    4.白吉庆,王昌利.纳米技术在中药制剂研究中的应用.现代中医药,2005,25(6):48~50
    5. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles(SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm. 50(2000): 161-177.
    6.郑虎占,董泽宏,余靖.中药现代研究与应用[M].北京:学苑出版社,1998,478-524.
    7.樊振民.大蒜有效成分研究进展.西安医学院学报,1985,6(3):292~296
    8. Yu,T.H.; Wu,C.M.; Liou, Y.C. Volatile compounds from garlic. Journal of Agricultural and Food Chemistry. 1989, 37, 725-730
    9.沈联慈,潘炯光,徐植灵等.大蒜油挥发油的化学成分与质量研究。中药学,1993,24(2):66~69
    10.李时珍.本草纲目.下册.北京:人民卫生出版社,1985:1594-1596
    11. Lau, B.H.S.; Tadi,P.P. Allium sativum(garlic) and cancer prevention. Nutrition Research. 1990,10, 937-948
    12. Yang,C.S.; Wang,Z.Y.; Hong, J.Y. Inhibition of tumorigenesis by chemicals from garlic and tea. Advances in Experimental Medicine and Biology.1994, 354,113-122
    13. Taiichiro S, Kentaro T, Yumi H, et al. Garlic and onion oils inhibit proliferation and induce differentiation of HL-60 cells. Cancer Letters. 2000, 160, 29-35
    14. J.M. Pezzuto, Cancer chemopreventive agents: from plant materials to clinical trials, in: A.D. Kinghom, M.F. Balandrin (Eds.), Human Medical Agents from Plants, ACS Symposium Series No. 534 American Chemical Society, Washington, DC, 1993, pp. 205-217.
    15. J.A. Milner, Garlic: its anticarcinogenic and antitumorigenic properties, Nutr. Rev., 1996, 54: 82-85.
    16.刘永忠.龚千锋,魏学鑫.大蒜挥发油主要化学成分的药理作用研究进展.江西中医学院学报.1998,10(1):44~45
    17. Agarwal,K. C. Therapeutic actions of garlic constituents. Medicnal Research Reviews 1996,16,111-124.
    18. Wargovich MJ. Diallyl sulfide, a flavor component of garlic (Allium sativum), inhibits dimethylhydrazine-induced colon cancer. Carcinogenesis. 1987, 8(3):487-489.
    19. Sedhana AS, Rao AR Kucheria K, et al. Inhibitory action of garlic oil on the initiation of benzo[a]pyrene-induced skin carcinogenesis in mice. Cancer Lett, 1988;40(2): 193-197
    20.谭润生,费青,李克贤等.大蒜油对亚硝胺诱发大鼠肝癌前病变的抑制及生化机理。中国医学科学院学报.1989;11(6):406
    21.唐整,李荣玲,王端礼等,5-FC、二性霉素B、大蒜素、中药对烟曲霉的抑菌试验。中华皮肤科杂志,1986;19(6):335~336
    22.高玉民,谢锦玉,朴英杰等。大蒜油诱发瘤灶内中性粒细胞和巨噬细胞的超微结构观察。中国中西医结合杂志,1993;13(9):546~548
    23. Wattenberg LW, Sparnins VL, Barany G. Inhibition of N-nitrosodiethylamine carcinogenesis in mice by naturally occurring organosulfur compounds and monoterpenes. Cancer Res. 1989 May 15;49(10):2689-92.
    24.周建忠,戚仁驿,张茂宏等。大蒜素体外抗白血病作用的研究。山东医科大学学报,1988;37(1):135;
    25.刘近周等,大蒜阻断串珠镰刀菌促进二甲亚硝胺合成的观察。山东中医学院学报,1985;23(2):31
    26.林希蕴,刘近周,吴孔叨等。大蒜阻断霉曲对亚硝胺合成的促进作用。营养学报,1986;8(3):262~265
    27.颜鸣,郭涛,张美侠等。大扶康、大蒜素、大蒜油注射液对深部真菌的抑杀作用。沈阳药科大学学报,2000,17(3):214~216
    28.何进,何力,张美霞,等。大蒜油B2环糊精包合物的抗深部真菌作用.沈阳药科大学学报,1998,15(2):134~135
    29. Kim, J., Marshall, M. R., & Wei, C. Antibacterial activity of some essential oil components against five foodbome pathogens. Journal of Agriculture and Food Chemistry. 1995,43, 2839-2845.
    30.吴炳根,吴绍熙,郭宁如等.大蒜的研究及应用。中级医刊,1981,(8):7~9
    31.叶元康.大蒜油提取物与大蒜素抗深部真菌的实验研究.蚌埠医学院学报,1990,15(2):82~84
    32.刘近周,林希蕴,吴孔叨,彭恕生等。大蒜阻断亚硝胺合成机理的研究。营养学报,1986;8(4):327~329
    33.中药大辞典(上册),上海,上海人民出版社,1975;112
    34.邓启辉,孙秀泓,张长青.大蒜对肺泡巨噬细胞溶菌酶活型的影响等。湖南医学院学报,1998;13(4):333~334
    35. Lawson, L. D. Garlic: a review of its medicinal effects and indicated active compounds. In L. D. Lawson, & R. Bauer (Eds.), Phytomedicines of Europe: Their chemistry and biological activity. 1996). (pp. 176-209). Washington DC: ASC Press.
    36. 金小君,彭清芝,许友芝等。大蒜素对血小板聚集能力的影响。湖北医学院学报,1993;14(1): 60
    37. Adoga GI, et el. The mechanism of the hypolipidemic effect of garlic oil extract in rats fed on high sucrose end alcohol diets. Biochem Biophys Res Cormmun,1987;142:1046-1052
    38. Bordia A, Verma SK, Srivastava KC,et el. Effect of garlic on platelet aggregation in humans: a study in healthy subjects end patients with cononary artery disease. Prostaglandins Leukotrienes and Essential Fatty Acids. 1996,55:201-205
    39. Ariga T, Oshiba S, Tamada T. Platelet aggregation inhibitor in garlic. Lancet Ⅰ, 1981;(8212):150-151
    40. Ariga T, Oshiba S, Tamada T. Platelet aggregation inhibitor in garlic. Lancet. 1981, 17 (1): 150-151.
    41.于新蕊,丛月珠.大蒜的化学成分及其药理作用研究进展.中草药,1994,25(3):158~160
    42.刘直。大蒜的研究进展。上海中医药杂志,1989:(5):45~48
    43.王美玲,韩娜等。大蒜素对健康人葡萄糖耐量的影响。中国中西医杂志,1992,12(11):674
    44.叶景华.大蒜药用研究现状。山东中医学院学报。1996,20(5):350~352
    45.王晶华,王志胱,郭海民等。大蒜的化学及药理作用研究进展。黑龙江医药,1996,9 (6):340
    46.韩娜,王芸,刘斌等。大蒜素对实验性糖尿病作用机理的研究。中国药理学通报,1991,7(6):450
    47.王欣富等。大蒜的研究进展。医学理论与实践,1995;8(4):147-148
    48. Hikino et al. Planta Med, 1986;(3):163
    49.张岳生,袁振华,陈星岩,余应平等。大蒜和二烯丙三硫的抗MNNG诱变作用。营养学报,1990;12(3):243~247
    50.韩金祥,王美岭,叶祖光等.大蒜抗动脉粥样硬化研究进展。国外医学。中医中药分册,1990;12(1):1~4
    51.陈淑华,尹钟洙,马彬彬等。硫代蒜素的钙拮抗作用。中国药理学报,1988;9(6):533~535
    52.王浴生主编,中药药理与应用,北京:人民卫生出版社,1983:84
    53.刘启勋。大蒜的有效成分及其在大蒜糖衣药片和大蒜胶囊中的应用。中国生化药物杂志,1992;(4):71~72
    54.徐叔卿,赵余庆,杨志强等。复方大蒜油胶丸稳定性的研究。中成药,1992,(4):7
    55.何进,毕殿洲,刘宝庆,等。均匀设计法优选大蒜油β-环糊精的包合工艺条件。中成药,1997,19(3):1~2
    56.郭涛,储晓琴,宋洪涛等。静脉注射用大蒜油亚微乳的制备。中国药物杂志,2005,40(8):602~605
    57. Couvreur P, Dubernet C, Puisicux F. Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur. J. Pharm. Biopharm. 41 (1995): 2-13.
    58. Smith A., Hunneyball LM. Evaluation of polylactid as a degradable drug delivery system for parenteral administration. Int. J. Pharm. 30 (1986) 215-230.
    59. Mehnert W, Mader K. Solid lipid nanoparticles-Production, characterization and applications. Adv. Drug Deliv. Rev.47(2001): 168-196.
    60. Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 56 (2004):1257-1272.
    61. Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int. J. Pharm. 257 (2003):153-160.
    62. Hu FQ, Yuan H, Zhang HH, et al. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int. J. Pharm. 239 (2002):121-128.
    63. Sjostrom B., Bergenstahl B. Preparation of submicron drug particles in lecithin-stabilized o/w emulsions. Ⅰ. Model studies of the precipitation of cholesteryl acetate, Int. J. Pharm. 88 (1992) 53-62.
    64. Siekmann B., K. Westesen, Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions, Eur. J. Pharm. Biopharm. 43(1996) 104-109.
    65. Marengo E, Cavalli R Caputo O, et al. Scale-up of the preparation process of solid lipid nanosphere. Part Ⅰ. [J] Int. J. Pharm. 205(2000):3-13.
    66. A. De Labouret, O. Thioune, H. Fessi, J.P. Devissaguet, F.Puisieux, Application of an original process for obtaining colloidal dispersions of some coating polymers. Preparation, characterization, industrial scaling up, Drug Dev. Ind. Pharm. 21(1995) 229-241.
    67. Hu FQ, Yuan H, Zhang HH, et al. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physiochemical characterization[J]. Int. J. Pharm.,2002, 239:121-128.
    68. Muhlen A, Muhlen E, Niehus H, et al. Atomic force microscopy studies of solid lipid nanoparticles. Pharm. Res. 13(1996):1411-1416.
    69. Anger S, Caldwell KD, Niehus H, et al. High resolution size determination of 20nm colloidal gold particles by SedFFF. Pharm. Res. 16(1999):1743-1747.
    70. Westesen K, Siekmann B, Koch MHJ. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int. J. Pharm. 93(1993):189-199.
    71. Lippacher A, Muller RH, Mader K. Investigation on the viscoelastic properties of lipid based colloidal drug carriers, Int. J. Pharm. 196(2000):227-230.
    72. E. Zimmermann, S. Liedtke, R.H. MUller, K. Ma der, H-NMR as a method to characterize colloidal carrier systems, Proc. Intern. Symp. Control. Rel. Bioact. Mater. 26(1999), 595-596.
    73. Siekmann B, Westesen K. Melt-homogenized solid lipid nanoparticles stabilized by the nonio0nic surfactant tyloxapol. Ⅰ. Preparation and particle size determination. Pharm. Pharmacol. Lett. 3(1994):194-197.
    74. P. Ahlin, J. Kristl, J. Smid-Kobar, Optimization of procedure parameters and physical stability of solid lipid nanoparticles in dispersions, Acta Pharm. 48(1998)257-267.
    75. Heiati H, Tawashi R, Phillips NC. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. J Microencapsul, 1998,15(2): 173-184
    76. Lukowski G, Flegel P. Electron diffraction of solid lipid nanoparticles loaded with aciclovir. Pharmazie 52(1997):642-643.
    77. Muhlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery—Drug release and release mechanism. Eur. J. Pharm. Biopharm. 45(1998):149-155.
    78. MUller RH, Mader K, Gohla S. Solid lipid nanoparticles(SLN) for controlled delivery-a review of the state of the axt[J].Eur.J. Pharm. Biopharm. 50(2000):161-177
    79. Yang S, Zhu J, Lu Y, et al. Body distribution of camptothecin solid lipid nanoparticles after oral administiontration. Pharm. Res. 16(1999):751-757.
    80. Bargoni A, Cavalli R, Caputo O, et al. Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats. Pharm. Res. 15(1998):745-750.
    81. De Jaeghere F, Allenann E, Doelker E, et al.pH-dependent dissolving nano-and for improved peroral delivery of a highly liphphilic compound in dogs. 2001,3:28-31
    82. Zata GP, Cavalli R, Fundaro A, et al. Phannacokinetics of doxorubicin incorporated in solid lipid nanospheres(SLN). Pharm. Res. 44(1999):281-286.
    83. Muller RH, Olbrich C. Solid lipid nanoparticles: phagocytic uptake, in vitro cytotoxicity and in vitro biodegradation, 2nd communication. Pharm. Ind. 61(1999):564-569.
    84. Reddya LH, Sharmab RK, Chuttanib K, et al. Influence of administration route on tumor uptake end biodistribution of etoposide loaded solid lipid nanoparticles in Dalton's lymphoma tumor bearing mice. J. Controlled Rel. 105(2005):185-198.
    85. Wissing SA, Muller RH. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity-in vivo study. Eur. J. Pharm. Biopharm. 56(2003):67-72.
    86. Jenning V, Gysler A, Schafer-Korting M, et al. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm. 49(2000):211—218.
    87. Maia CS, Mehnert W, Schafer-Korting M. Solid lipid nanoparticles as drug carriers for topical glucocorticoids.. Int. J. Pharm. 196(2000):165-167.
    88.陈玲,周建平。固体脂质纳米粒的研究进展,药学进展,2003,27(6):354~358
    89. Westesen K, Bujes H, Koch MH. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential[J].J Controlled Released, 1997,48:223-236
    90. Jenning V, Thunemann AF,Gohla SH. Charaterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and soil lipids[J]. Int. J. Pharm. 199 (2000):167-177
    91. Schwarz C., Mehnert W. Freeze-drying of drug-free and drug-loaded solid lipid nanoparicles, Int. J. Pharm. 157(1997)171-179.
    92. Mobley W.C., Schreier H., Phase transition temperature reduction and glass transformation in dehydroprotected lyophilized liposomes, J. Controlled Rel. 31(1994)73-87.
    93. Freitas C., Muler R.H. Spray-drying of solid lipid nanoparticles (SLN_(TM)), Eur. J. Pharm. Biopharm. 46(1998)145-151.
    [1] 刘直.大蒜的研究进展。上海中医药杂志,1989,5:45~48
    [2] Wu C.C., Sheen L.Y., Chcn H.W., et al. Effects of organosulfur compounds from garlic oil on the antioxidation system in rat liver and red blood cells. Food and chemical toxicology, 39(2001):563~569
    [3] David S.Weinberg, M. Lisa Manier, Mark D. Richardson, et al. Identification and Quantification of anticarcinogens in garlic extract and licorice root extract powder. J High Resolution Chromatography. 1992,15:641~654
    [1] Muller RH, Karsten M, Sven G. Solid lipid nanoparticles.(SLN) for controlled drug delivery—a review of the state or the art. Eur J Pharm Biopharm 2000;50:161-177.
    [2] S.A. Wissinga, O. Kayserb, R.H. Mu¨ller, Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews 56(2004)1257-1272.
    [3].王建新.张志荣.固体脂质纳米粒的研究进展[J].中国药学杂志,2001,36(2):73-76.
    [4]. Lim S.J., Kim C.K. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded withall-trans retinoic acid. Int. J Pharm., 243(2002): 135-146
    [5] B. Siekmann, K Westesen, Submicron-sized parenterel carrier systems based on solid lipids, Pharm. Pharmacol. Lett. 1(1992)123-126.
    [6] R.H. Mu¨ller, W. Mehnert, J.S. Lucks, C. Schwarz, et el. Solid lipid (SLN)—An alternative colloidal carrier system for controlled, drug delivery, Eta. J. Pharm. Biopharm.,41(1995) 62-69.
    [7] 应晓英,胡富强,袁弘。卡马西平硬脂酸固体脂质纳米粒的制备与理化性质研究。中国医药工业杂志,2002,33(11):543—545
    [8] Hu FQ, Yuan H, Zhang HH, et al. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physiochemical characterization[J]. Int. J. Pharm.,2002, 239:121-128.
    [9] 李新中,刘韵,雷鹏等.薄膜—超声法制备黄芩苷固体脂质纳米粒的研究[J].中国医学工程,2004,12(5):21-23
    [10] 何军,奉建芳.庞家忠等.水飞蓟素固体脂质纳米粒载药机制的研究[J].中草药,2004,35(8):864~866
    [11] Schwarz C., Mehnert W. Freeze-drying of drug-free and drug-loaded solid lipid nanoparicles, Int. J. Pharm. 157(1997)171-179.
    [12] C. Freitas, R.H. Mu¨ller, Spray-drying of solid lipid nanoparticles(SLNE), Eur. J. Pharm. Biopharm. 46(1998):145-151.
    [13] 崔福德.药剂学.中国医药科技出版社。2002:397
    [14] 崔福德.药剂学.中国医药科技出版社。2002:399
    [15] Patrick Shahgaldian, JerOme Gualbert, Kais Aissa, et el. A study of the freeze-drying conditions of calixarene based solid lipid nanoparticlcs. Euro. J Pharm. Biopharm. 55(2003): 181-184
    [16] 于志江,陈旭,欧阳藩.冷冻干燥技术在基因工程药物中的应用.生物加工过程,2005,3(2):58-63
    [17] Wang W. Lyophilization and development of solid protein pharmaceutical[J]. Int. J Pharm., 2003, 203(1-2): 1-60
    [18] Yu L, Milton N,Groleau EG, et el. Existence of a Mannitol Hydrate during Freeze-Drying end Practical Implications. J Pharm Sci,1999,88:196-198
    [19] E. Zimmermann, R.H. MUller, K Mader. Influence of different parameters on reconstitution of lyophilized SLN. Int. J Pharm.. 196(2000): 211-213
    [1] Driscoll DF, Etazlr F, Barber TA, et al. Physicochemical assessments of parenteral lipid emulsion:light obscuration versus laser diffraction, lnt J Pharm,2001,219:21-37
    [2] Nicoli DF, Mckenzie DC,Wu JS. Applicati on of dynamic light scattering to particle size ananlysis of macromolecules. American Laboratory,1991,23(17):32-40
    [3] 徐辉碧,杨样良等。纳米技术在中药研究中的应用。清华大学出版社.2002:57
    [4] 王思玲,孙长山,王仁胜等.激光散射法分析异丙酚纳米乳剂的粒径大小与分布.沈阳药科大学学报,2003,20(5):336-339.
    [5] Nicomp user manual, ppl0-16.
    [6] 王思玲,孙长山,于建军等.比较Gaussian曲线分布与Nicomp多波型分布分析在纳米分散液粒径测定中的应用.沈阳药科大学学报,2003,20(5):321-323.
    [7] Komatsu H, Kitajima A, Okada S. Phamaceutical characterization of commercially available intravenous fat emulsions: estimation of average particle size, size distribution and surface potential using photon correlation spectroscopy. Chem. Pham. Bull. 43(1995): 1412-1415.
    [8] DELSA 440SX user manual.Supplement for the coulter DELSA 440SX. pp4
    [9] Freitas C, Muller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur. J. Pharm. Biopharm. 47(1999):125-132.
    [10] Westesen K, Bunjes H, Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Controlled Rel. 48(1997): 223-236.
    [11] Alexandridis P, Hatton TA. Poly(ethylene oxide)-poly(propyleneoxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf., B Biointerfaces 96(1995):1-46.
    [12] Komatsu H, Kitajima A, Okada S. Phamaceutical characterization of commercially available intravenous fat emulsions: estimation of average particle size, size distribution and surface potential using photon correlation spectroscopy. Chem. Pham. Bull. 43(1995): 1412-1415.
    [13] Mehnert W, Mader K. Solid lipid nanoparticles Production, characterization and applications. Adv. Drag Deliv. Rev. 47(2001):165-196.
    [14] 陈宗淇,王光信,徐桂英.胶体与界面化学.高等教育出版社.pp150.
    [15] Muhlen A, Mehnert W. Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie. 53(1998): 552.
    [16] Radomska A, Dobrucki R, Muller RH. Chemical stability of the lipid matrices of solid lipid nanoparticles(SLN)-development of an analytical method and determination of long-term stability. Pharmazie 54(1999):903-909.
    [17] Westesen K, Bunjes H,Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Controlled Rel.48(1997): 223-236.
    [18] Westesen K, Siekmann B, Koch MHJ. Investigations on the Technology: physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int. J. Pharm. 93 (1993): 189-199.
    [19] 郭涛.储晓琴,宋洪涛,等.静脉注射用大蒜油亚微乳的制备[J].中国药学杂志,2005,40(8):602-605
    [20] Muller RH, Mader K, Gohla S. Solid lipid nanoparticles(SLN)for controlled drug deliverya review of the state of the art. Eur.J. Pharm. Biopharm. 50(2000): 161-177,
    [21] Marcos GF, MJ Alonso, D Torres. Design and characterization of a new drug nanocarrier made from solid-liquid lipid mixtures. Journal of Colloid and Interface Science 285 (2005):590-598.
    [22] Zhang XM, Patel AB, Graaf RA,et al. Determination of liposomal encapsulation efficiency using proton NMR spectroscopy. Chem.Phys.lipids 127(2004): 113-120.
    [23] Vistnes AI, Puskin JSA.Spin label method for measuring internal volumes in liposomes or cells,applied to Ca dependent fusion of negatively charged vesicles. Biochim Biophs Acta 644(1981): 244-250.
    [24] Muhlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery—Drug release and release mechanism. Eur. J. Pharm. Biopharm. 45 (1998):149-155.
    [25] Mehnert W, Mader K. Solid lipid nanoparticles-Production, characterization and applications. Adv. Drug Deliv. Rev. 47(2001):168-196.
    1.谢培山.色谱指纹图谱是中药质量控制的克可行策略[J].中药新药与临床药理,2001,12(3):141-14.
    2.谭尉.不同地区大蒜中大蒜油组分分析[J].中国中药杂志,2000,25(6):343-344.
    3.郎蠡江,张光远.大蒜有效成分的研究[J].中草药,1981,,12(1):4-6.
    4.郑恒,魏日胞,陈香美.中药质量标准与中药指纹图谱[J].中国医院药学杂志,2003,23(2):112-113.
    5.杨义芳,蔡定建.中药指纹图谱研究概况[J].中草药,2003,34(6):附2.
    6.吴玉田.中医药现代化与中药指纹图谱分析[J].中国中西医结合杂志,2002,22(9):645-646.
    7.王玺,王文宇,,张克荣等.中药HPLC指纹图谱相似性研究的探讨[J].沈阳药科大学学报,2003,20(5):360-364.
    8.聂磊,曹进,罗国安等.中药指纹图谱相似度评价方法的比较[J]。中成药,2005,27(3):249-252
    [1] 郭涛主编.新编药物动力学.中国科学技术出版社,2005,338。
    [2] 梁文权主编,生物药剂学与药物动力学[B].人民卫生出版社,2000,155—157.
    [3] 刘永忠,龚千锋,魏学鑫.大蒜挥发油主要化学成分的药理作用研究进展.江西中医学院学报.1998,10(1):44~45
    [4] 王智华,洪莜坤,钱文箐等.气相色谱法测定大蒜素在家兔体内的血药浓度、分布及其生物利用度.中草药,1988,19(2):12~13,31
    [5] Lachmann G, Lorenz D, Radeck W, Steiper M. The pharmacokinetics of the S35 labeled labeled garlic constituents alliin, allicin and vinyldithiine Arzneimittelforschung. 1994;44(6):734-43.
    [6] Amault Ⅰ, Haffner T, Siess MH, Vollmar A, Kahane R, Auger J. Analytical method for appreciation of garlic therapeutic potential and for validation of a new formulation. J Pharm Biomed Anal. 2005 Apr 29;37(5):963-70.
    [7] Rosen RT, Hiserodt RD, Fukuda EK, et al. Determination of allicin, S-allylcysteine and volatile metabolites of garlic in breath, plasma or simulated gastric fluids. J Nutr. 2001; 131(3):968-971
    [8] 钟大放.以加权最小二乘法建立生物分析标准曲线的若干问题。药物分析杂志,1996,16(5):343~346
    [9] N. Scholer, H. Hahn, R.H. Muller, O. Liesenfeld, Effect of lipid matrix and size of solid lipid nanoparticles(SLN)on the viability and cytokine production of macrophages, Int. J. Pharm. 231(2002)167-176.
    [10] N. Scholer, C. Olbrich, K. Tabatt, R.H. Muller, H. Hahn, O. Liesenfeld. Surfactant, but not the size of solid lipid nanoparticles(SLN)influences viability and cytokine production of macrophages, Int. J. Pharm. 221(2001)57-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700