多参数自供电水质监测无线传感器网络节点的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对大面积湖泊养殖水域的水质监测,应用无线传感器网络监测系统实时,可大面积布置的监测特点,研究并完成了多参数和可持续实时自供电无线传感器网络节点的主要关键技术。
     无线传感器网络监测系统节点分为传感器监测节点和网关节点,论文对两个节点进行硬件设计以及接口驱动设计,并对接口驱动进行仿真测试,结果表明接口驱动芯片可以正常工作,数据可以实时接收与转换;
     采用混沌检测强噪声下微弱信号的算法,研究提出用新的双混沌振子之间相互约束来检测噪声中的弱信号,并对新的检测方法进行了仿真验证与分析,新的算法抗噪声性能更加好,而且能够估计信号频率,提高了节点在恶劣环境下监测微弱水质信号的性能;
     研究新的光伏电源代替干电池成为无线传感器网络监测系统传感器监测节点的电源,并对所设计的电源进行了仿真分析以及PCB板的制作。新的光伏电源能够输出稳定的节点所需电压,可以使传感器节点在大面积水域中长时间稳定工作,增强了节点的实用性;
     研究用新的风光互补电源代替大的干电池或蓄电池用于相对较大能耗的网关节点,对新电源进行了设计与仿真分析。风光互补电源使网关节点在大面积的外部环境中自行供电,提高了自动化检测的效率与节点作用的范围,减少了人为作用成本。
     综上所述:应用以上关键技术,能够实现水质监测无线传感器网络节点的多参数弱信号监测和自供电工作,实时性好,可以长期稳定工作,适合应用于大面积水域监测。
For the application of water quality monitoring in large lake aquaculture area,and the application of wireless sensor network monitoring system for real-time and large area layout monitoring features,the paper studied and completed key technologies of multi-parameters and sustainable real-time wireless sensor network nodes.
     Designed sensor monitoring nodes and gateway nodes for the wireless network, and designed the hardware and interface driven for the two nodes. Then, make the simulation test about the interface-driven. The results show that the driven chip can work properly and the data can be real-time reception and conversion.
     Detected weak signal in strong noise background based on chaotic algorithm, and put forward a new method to detect weak signal with dual mutual-constraint chaotic oscillator, and the method is validated by simulation and analysis, which shows that the anti-noise performance ability of the new algorithm is better, and can estimate the signal frequency, improve the node capability of monitoring weak water quality signal in harsh environment.
     Study of new solar power instead of dry battery for monitoring sensor node power in wireless sensor network monitoring system, and simulated and analyzed the designed power and make the PCB board. New solar power can supply a stable voltage that required, and can make the sensor nodes steady worked in large area of water for a long time, which enhance the practicability of nodes.
     Study of new scenery complementary power supply instead of the dry battery or accumulator for gateway node with large energy consumption, designed and simulated the new power. Scenery complementary power supply to the gateway node in a large area of the external environment of power, improving the automation testing efficiency and node action range, reduces the artificial cost.
     According to the above, with these key technologies, we can achieve water quality through monitoring multi-parameters weak signal of wireless sensor network nodes and self power supply, which is suitable for water monitoring in large area.
引文
[1]武静涛,马长宝,刘永波.水质监测无线传感器网络节点的设计[J].计算机测量与控制,2008,12(17):19-24.
    [2]马祖长,孙怡宁,梅涛.无线传感器网络综述[J].通信学报,2004,4(25):114-124.
    [3]赵静,宋刚,周驰岷,魏杰.无线传感器网络水质监测系统的研究与应用[J].通讯技术,2008,41(4):124-126.
    [4]Adam Czubak, Jakub Wojtanowski. On Applications of Wireless Sensor Networks[M].Springer Berlin/Heidelberg,2009,(64):2-6.
    [5]Cullar D,Estrin D,Strvastava. Overview of Sensor Network Computer[M]. IEEE Computer Society Press Los Alamitos, CA, USA,2004,8(37):41-49.
    [6]辛朝军,姚静波.无线传感器网络技术的军事应用[J].单片机与嵌入式系统应用,2010,6:12-15.
    [7]周应宾.基于ARM与Linux的无线传感器网络节点的设计与实现[D].成都:西南交通大学.2009.
    [8]CHRISTOPHER W, MARCO C, JAN R. Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor[J].Applied and Environmental Microbiology,2004,70(1):45-51.
    [9]Pro, J.D.Roen, M.E. Characteristic impedance and signal loss measurements of head-to-preamplifier interconnects[J].Magnetics,IEEE Transactions on. 2006,2(42):261-265.
    [10]Mustafa Altun,Hakan Kuntmana. Design of a fully differential current mode operational amplifier with improved input-output impedances and its filter applications[J].AEU-International Journal of Electronics and Communications.2008,3(62):239-244.
    [11]陈莉.基于ZigBee协议的环境监测无线传感网络测量节点的设计[D].上海:上海交通大学.2008.
    [12]Dimitrios Lymberopoulos, Quentin Lindsey, Andreas Savvides. An Empirical Characterization of Radio Signal Strength Variability in 3-D IEEE 802.15.4 Networks Using Monopole Antennas [J]. Lecture Notes in Computer Science,2008,(3868):326-341.
    [13]陈积明,林瑞仲,孙优贤.无线传感器网络通信体系研究[J].传感技术学报,2006,4(19):1290-1295.
    [14]F. Zabin,S. Misra,I. Woungang,H.F. Rashvand,N.-W.Ma,M. Ahsan Ali. REEP: data-centric, energy-efficient and reliable routing protocol for wireless sensor networks[J]. Vir. J. Nan. Sci. & Tech,2006,9(18):123-128.
    [15]Junghyon Jun, Young June Choi, Saewoong Bahk. Analysis of a robust and energy efficient transmission scheduling protocol in single-hop ad hoc networks[J]. Wireless Communications and Mobile Computing,2010,2(10):257-269.
    [16]涂巧玲.一种可执行功耗管理的无线传感器网络节点电源[J].测控技术,2008,10(28):8-10.
    [17]李帅,刘宏立,刘述钢.基于ZigBee的无线传感网络节点能耗性能分析[J].科技导报,2009,27(13):64-66.
    [18]R A Ponce,A Kumar,J Luis. A network of sellsorbased framework rflr automated visual smweillance[J]. JournaI of Net workArnt Computer Applications,2007,30(3):1244-1271.
    [19]Ping Song,Jize Li, Kejie li,Li Su. Researching on Optimal Distribution of Mobile Nodes in W irelessSensor Networks being Deployed Randomly[C].2008 International Conference on Computer Science and InformationTechnology.2008:322-326.
    [20]周亮,李广军.无线传感器网络节点低功耗MCU设计与实现[J].计算机技术与应用,2007,9:126-129.
    [21]何科爽,马正华.无线传感器网络在环境监测中的应用[J].环境监测管理与技术,2009,2(21):60-62.
    [22]罗东云,蔡苗苗,李丽霞.鄱阳湖水质检测的无线传感网络设计[J].电子技术应用,2009,10(6):(47-52).
    [23]Rabia Koklu.Bulent Sengorur.Bayram Topal. Water Quality Assessment Using Multivariate Statistical Methods—A Case Study: Melen River System (Turkey)[J]. Water Resources Management.2010,5(24):959-978.
    [24]Goel S K, Marinissen E J. Optimization of on-chip design-for-test infrastructure for maximal multi-site test throughput. Computers and Digital Techniques,2005,152(3):442-456.
    [25]Ciardiello T.Wireless communications for industrial control and monitoring. Computing&ControlEngineeringJournal,2005,4(16):12-13.
    [26]程春荣,毛祥根,武利珍.基于ZigBee技术的水质监测系统[J].电子器件,2009,5(32):942-945.
    [27]孙彩云,李世中,李海军.ZigBee协议的研究及应用[J].四川兵工学报,2009,(31):124-126.
    [28]李文仲,段朝玉.ZigBee无线网络与定位实战[M].北京航空航天大学出版社.2008.
    [29]聂春燕.混沌系统与弱信号检测[M].清华大学出版社,2009:63-69.
    [30]聂春燕.混沌系统与弱信号检测[M].清华大学出版社,2009:63-69.
    [31]王俊国,周建中,付波,彭兵.基于duffing振子的微弱信号混沌检测[J].电子器件,2007,30(4):1380-1383.
    [32]Gamal M. Mahmoud, Emad E. Mahmoud, Ahmed A. Farghaly etc. Chaotic synchronization of two complex nonlinear oscillators[J]. Chaos, Solitons and Fractals,2009,42(5):2858-2864.
    [33]Qingguo Wang, Wenjun Yan, Peiliang Wang. The Research of signal synchronization for Duffing chaotic system with uncertainty [C].2009 IEEE International Conference on Control and Automation Christchurch, New Zealand,2009:542.
    [34]Weiyang Qin, Yongfen Yang, Zhaohui Kang.etc. Controlling Chaos and response of dynamical system by synchronization [J]. Chaos, Solitons and Fractals,2009,42(3):1466-1473.
    [35]王茂林,刘少伟,孙晓东.复杂噪声背景下正弦频率估计新方法[J].吉林大学学报,2009,39(增2):371-375.
    [36]Birx D L,Pipenberg S J. Chaotic oscillators and complex mapping feed forward networks (CMFFNS) for signal detection in noisy environments[C].IEEE Int.conf.On Neural Networks,1992,2:881-888.
    [37]张林,王莲芬,宁小磊,陈明欢.基于Duffing振子的微弱正弦信号检测研究与仿真[J].传感技术学报,2009,22(8):1137-1141.
    [38]Anchun Xu;Chunling Yang;Xiaodong Qu. The research of weak signal frequency detection based on chaos system and PD control.Communications, Circuits and Systems,2009. ICCCAS 2009. International Conference on.2009:414-418.
    [39]徐艳春,杨春玲.基于混沌振子的微弱信号检测技术研究[J].电气应用.2008,27(8):38-41.
    [40]李健,周激流,孙涛,任磊磊.自相关级联混沌振子法实现随相弱正弦信号的检测[J].四川大学学报(工程科学版),2010,42(1):191-195.
    [41]朱斌.基于混沌理论的微弱信号检测[J].电子科技,2010,32(2):65-67.
    [42]王永生,姜文志,刘立佳,范洪达.考虑噪声影响的Duffing振子弱周期信号检测[J].数据采集与处理,2008,23(增):127-130.
    [43]Jian-xiong Wang, Chulin Hou.A Method of Weak Signal Detection Based on Duffing Oscillator.2010 International Conference on e-Education, e-Business, e-Management and e-Learning,IEEE,2010:387-390.
    [44]蔡国营,王亚军,谢晶等.超级电容器储能特性研究[J].电源世界,2009(1):33-38.
    [45]周丽梅,薛钰芝,林纪宁,董刚.小型太阳能光伏发电系统的实现[J].大连铁道学院学报.27(1),2006,94-96.
    [46]梅勇成.陈华晖.独立太阳能光伏发电系统防雷技术探讨[J]。气象科技.37(6),2009,763-766.
    [47]程莉莉,赵建龙,熊勇,纪虹,张为,郑殷.用太阳能电池供电的锂电池充电管理集成电路的设计[J].中国集成电路,2010,48:48-52.
    [48]孙陆梅,何井彪.由太阳能供电的水位无线监测系统设计[J].中国电力,2006,39(9):53-54.
    [49]WANG Zhen-hao,ZHANG Yan-qi,LI Guo-qing, et al.Research on hybrid energy storage for DC system ofsubstations and power plants based on super capacitors [J].Power System Technology,2010,34(4):158-162.
    [50]苗风东,郝夏斐,潘三博.太阳能光伏电源在智能控制系统中的应用研究[J].电源技术研究与设计,2011,35(2):186-188.
    [51]刘百芬,冷雄春.一种实用蓄电池内阻测试仪的研制[J].中国测试技术,2007(1):136-138.
    [52]刘其辉,贺益康,张建华:交流励磁变速恒频风力发电机的运行控制及建模仿真[j].中国电机工程学报,2006,25(5):43-50.
    [53]张伯泉,杨宜民.风力和太阳能光伏发电现状及发展趋势[J].中国电力,2006(6):121-127.
    [54]彭秀英,曹阳,邱望标.基于蓄电池分支均充的小型高效风光互补电源的研究设计[J].华东电力,2008(4):17-22.
    [55]曹阳,彭秀英,杨桃月.小型风光互补电源的蓄电池智能充电装置设计[J].电源技术,2011(3):29-32.
    [56]陈博.风光复合发电的初探[J].上海电力,2008(2):139-141.
    [57]李勇,邢文凯.通信稳压电源中单片机技术的应用[J].通信技术,2008,41(08):213-214.
    [58]程立文.手机电池的未来发展方向[J].电源技术,2008(1):6-8.
    [59]李晓延.多节锂离子电池的充放电保护[J].今日电子,2008(7):37-38
    [60]Kamaruz zam an S opian, Azam i Zaharim, Yus of f Ali, Zulkif li Mohd N opiah. Opt imal Operati onal Strategy for Hybrid Renew able Energy Syst em U sing Gen et ic Algorithms [J].Ws eas Transact ions on Mathemat ics,2008,24(7):130-140.
    [61]彭军,李丹,王清成,余岳峰.户用型可再生能源发电系统在苏尼特右旗应用的调查 分析[J].农业工程学报,2008,24(9):193-198.
    [62]赖克中.风光互补移动通信电源的设计与应用[J].能源与环境,2009(2):104-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700