地磁匹配导航算法及地磁场模拟系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地磁辅助导航系统是一种自主导航方法,隐蔽性强,不受地形和恶劣天气的影响,具有全天时、全天候和全地域的特点,作为一种新的导航方法,地磁辅助导航在航空、航天和航海等领域将发挥越来越重要的作用。因此开展地磁辅助导航理论研究,建立用于地磁导航系统评估和验证的地磁场模拟系统,具有重要的理论和实际意义。
     地磁匹配算法作为地磁辅助导航系统的核心技术之一,它的优劣将直接影响整个系统的导航精度和匹配效率。本论文首先针对常见的地磁匹配算法MAGCOM算法和ICCP算法进行了研究,并对这两种算法的匹配效果进行了仿真,结果表明MAGCOM算法简单,运算速度快,但是精度比较低,不能校正航向误差;ICCP算法可以对航向误差进行校正,并且精度比较高,但是初始误差不能过大,否则容易匹配失败,并且容易陷入局部最优。
     其次,针对上述算法的不足,提出了将遗传模拟退火混合算法和ICCP算法相结合的新的匹配方法。这种方法首先采用遗传模拟退火混合算法进行全局最优搜索,然后用ICCP算法进行进一步校正,以提高匹配精度。最后对该方法进行了仿真,取得了较好的匹配效果。
     最后,为了开展地磁导航地面试验,本文对地磁场模拟系统进行了研究,主要内容包括亥姆霍兹线圈生成磁场的均匀度、误差源、线圈参数优化设计、三轴亥姆霍兹线圈的垂直度校正和耦合误差分析等,为设计和建立地磁场模拟系统提供了一些参考依据,并对于可能出现的问题,提出了可供参考的解决方案。
As a novel passive navigation method, the geomagnetic aided navigation system is not influenced by weather, terrain and other factors, can work in all time, all seasons and all regions. As a new navigation method, it’s is widely used in the aviation, aerospace, marine and other fields, and will play an important role. So, it has important theoretical and practical significance to carry out theoretical research of the geomagnetic aided navigation, and to establish the geomagnetic field simulation system for the assessment and verification of the geo magnetic navigation system.
     As one of the key technologies in the geomagnetic aided navigation system, the matching algorithm will directly affect the navigation accuracy and matching efficiency of the system. This paper firstly studies the MAGCOM algorithm and ICCP algorithm which is commonly used and researched, and the two matching algorithms are simulated. The accuracy of MAGCOM algorithm is relatively low, and can not correct the heading error, although it’s simple and has a high computing speed. The heading error of ICCP algorithm can be corrected with a high accuracy, but the initial error can not be too large, otherwise it’s easy to get a failed match, and to fall into local optimum.
     In connection with the shortcomings of the two algorithms, then the new combination of Genetic simulated annealing algorithm and ICCP algorithm is proposed. With Genetic simulated annealing algorithm, we can get the global optimal solution, and then ICCP algorithm is used to improve the matching accuracy. Finally, the simulation of this method is made and obtains a better simulation result.
     In the end ,in order to carry out ground tests of geomagnetic navigation, this paper mainly works on the geomagnetic field simulation system, including the Helmholtz coil magnetic field uniformity, the source of error, the design of optimal coil parameters, the vertical error and coupling error analysis of three-axis Helmholtz coils, and so on. The research may provide some references for the subsequent researchers in the design and build geomagnetic field simulation system, and some solutions to the potential problems.
引文
1. R. M. Alkan, H. Kamman, M. Sahin M. GPS, GALILEO and GLONASS satellite navigation systems and GPS modernization. Recent Advances in Space Techno- logies. 2005: 390~394.
    2. Pan Mook Lee, Sea Moon Kim, Bong Hwan Jeon, Hyun Taek Choi, Chong-Moo Lee. Improvement on an inertial-Doppler navigation system of underwater vehicles using a complementary range sonar. Underwater Technology. 2004: 133~138.
    3.孙玉山,万磊,庞永杰.潜水器导航技术研究现状与展望.机器人技术与应用. 2010, 01: 31~42.
    4. F. Goldenberg. Geomagnetic Navigation Beyond Magnetic Compass. PLANS 2006, San Diego, California: 684~694.
    5. C. Tyrén. Magnetic Anomalies As A Reference for Ground Speed and Map Matching navigation. Journal of Navigation, 1982, 35(2) : 242~254.
    6. C. Tyrén. Magnetic terrain navigation. Proceedings of the 5th Int Symp on Unmanned Untethered Submersible Tech-nology, 1987: 245~256.
    7. Matthias Wiegand. Autonomous satellite navigation via Kalman filtering of magnetometer data. Joumal of Guidanee Control and Dynamies, 1999, 22(2): 296~303.
    8. Mark L. Psiaki. Autonomous LEO Orbit Determination From Magnetometer and Sun Sensor Data. Acta Astronautiea, 1996, 38(4-8): 395~403.
    9.冯浩楠,杨照华,房建成.地磁辅助导航系统发展及应用研究.仪器仪表学报. 2008, 29(4): 640~643.
    10.路超.弱磁传感器在地磁探测应用中的功能优化研究.南京理工大学硕士论文, 2008: 4~5.
    11.谢仕民,李邦清,刘峰,鲁建.地磁匹配导航技术浅析.飞航导弹. 2008, 02: 35~43.
    12.李素敏,张万清.地磁场资源在匹配制导中的应用研究.制导与引信. 2004, 25 (3): 19~21.
    13.晏登洋,任建新,宋永军.惯性/地磁组合导航技术研究.机械与电子. 2007, 25 (1): 19~22.
    14.史连艳,宋文渊.地磁匹配制导在飞航导弹中的应用研究.飞航导弹. 2009: 44~48.
    15.朱鹏磊,方立恭,慎龙.磁匹配技术应用于巡航导弹的研究.控制与制导.2010, 04: 61~65.
    16. Xiaojiao Ma, Hongwei Liu, Di Xiao, Hankui Li. Key Technologies of Geomagn- etic Aided InertialNavigation System. IEEE. 2009: 464~469.
    17.寇义民.地磁导航关键技术研究.哈尔滨工业大学博士论文.2010:54~55.
    18. Jianhu Zhao, Shengping Wang, Aixue Wang. Study on Underwater Navigation System Based on Geomagnetic Match Technique. The Ninth International Conference on Electronic Measurement and Instruments. IEEE.2009: 255~259.
    19.杨昆.重力场和地磁场辅助惯性导航技术研究.电子科技大学硕士论文, 2006: 7~12.
    20. Shitu Luo, Yanling Wang, Yin Liu, Xiaopin Hu. Research on Geomagnetic matching technology based on improved ICP algorithm. Proceedings of the 2008 IEEE International Conference on Information and Automation, Zhangjiajie, China. 2008: 815~819.
    21. Zhixin Ren, Longwei Chen, Hui Zhang, meiping Wu. Research on Geomagnetic- matching localization algorithm for unmanned underwater vehicles. Proceedings of the 2008 IEEE International Conference on Information and Automation, Zhangjiajie, China. 2008: 1025~1029.
    22.李豫泽,石志勇,杨云涛,冯俊.基于ICCP算法的地磁匹配定位方法.现代电子技术. 2008, 20: 121~125.
    23.王凌.智能优化算法及其应用.清华大学出版社. 2001:11~61.
    24.蒋卓强.基于遗传模拟退火算法的静态路径规划研究.重庆大学硕士学位论文. 2007: 10~15.
    25.周明,孙树栋.遗传算法原理及应用.国防工业出版社. 2002: 4~54.
    26.王小平,曹立明.遗传算法:理论、应用及软件实现.西安交通大学出版社. 2002: 4~16.
    27.刘逻.遗传算法和模拟退火算法在车辆线路问题上的研究及应用.长春理工大学硕士论文. 2009: 13~27.
    28. Wang Changhong, Liu Rui, Li Baohua, Kou Yimin. A geomagneticpositioning method with Adaptive Genetic Algorithm. 3rd International Symposium on Systems and Control in Aeronautics and Astronautics. 2010: 1014~1018.
    29. Ge Zhi lei, Zhoujun. A new approach to Geomagnetic matching Navigation. Second International Conference on Space Information Technology.2007: 1:6.
    30.刘颖玮,胡长德,朱砂.地磁仿真环境系统的构建.电子测量技术. 2010, 33(1): 4~7.
    31.张景鑫,马醒华,许亚峰,张瑞媛,马永革,刘明,非冯哲.一种复合式磁场空间装置的探讨.现代科学仪器.2005: 49~51.
    32. M. Pastena, M. Grassi. Optimum Design of a three-axis magnetic field simulator. Transactions on Aerospace and Electronic systems.2002, 38(2): 488~501.
    33.司文建,周楠,曹玉松.基于MATLAB的亥姆霍兹线圈轴线磁场均匀分布的动态仿真.许昌学院学报. 2010, 29(5): 72~74.
    34. Edwin L. Bronaugh. Helmholtz Coils for calibration of probes and sensors: limits of magnetic field accuracy and uniformity.IEEE.1995: 72~76.
    35. Edward R. Javor, Theodore Anderson. Design of a Helmholtz Coil For Low Frequency Magnetic Field Susceptibility Testing. IEEE.1998: 912~917.
    36. D. Cvetkovic, I. Cosic. Modelling and design of extremely low frequency uniform magnetic field exposure apparatus for in vivo bioelectromagnetic studies. Proceedings of the 29th Annual International Conference of the IEEE EMBS CitéInternationale, Lyon, France. 2007: 1675~1678.
    37. L.M.Millanta, A.Agostini, S.Lazzerini. Helmholtz Coils: Static and frequency- dependent performance limitations. IEEE.1993: 377~378.
    38. R.S. Rautela, V. Bhatt, P.Sharma, S.Khushu, Delhi, P.Walia. Mathematical approach for designing &development of Helmholtz Coil for hyperpolarized xenon gas used in MRI.
    39. Theodore Anderson. Design of a Helmholtz Coil for susceptibility testing using variational calculus and experimental verification. IEEE. 1999: 601~604.
    40. M. P. Lassahn , G. Trenkler. Vectorial Calibration of 3D Magnetic Field Sensor Arrays.IEEE.1994: 360~362.
    41.胡海滨,林春生,龚沈光.基于共轭次梯度法的非理想正交三轴磁传感器的修正.数据采集与处理. 2003, 18 (1): 88~91.
    42.杨云,于晓东.三轴传感器非正交性误差分析及测量方法研究.水雷战与舰船防护. 2009, 17 (1): 53~55.
    43.袁胜华,易忠,马慧媛.中低轨道地磁动态模拟器.航天器环境工程. 2006, 23(3): 146~148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700