产活性多糖猴头菌株筛选及其生长过程中代谢产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猴头菌(Hericium erinaceus)是一种食药两用菌,隶属于菌物界担子菌门担子菌纲猴菇目猴菇科猴菇属。在古代,人们把它与鳖鱼、海参、熊掌刺并列为“四大名菜”,并且有“山珍猴头,海味燕窝”的美称。文献报道,猴头菌具有抗溃疡、抗炎症、抗肿瘤、降血糖、抗衰老、抗突变、保肝等多方面的药理作用。本论文从食药用价值两个角度对猴头菌进行研究,主要对不同菌株进行了活性多糖高产菌株的筛选,并对筛选出的菌株的不同生长发育过程中非挥发性呈味代谢产物以及大分子活性代谢产物的含量及体外免疫活性的变化规律进行了研究,然后对发育后期三个阶段的多糖进行分离纯化、理化性质研究及结构鉴定。本论文分为五个部分,主要研究结果如下:
     1、对收集来的10个猴头菌株进行了亲缘关系的分析及菌丝体和子实体活性多糖高产菌株的筛选
     拮抗实验和ITS序列的分析对10个菌株的聚类分析结果基本一致,分析中发现,0608菌株和920菌株亲缘关系很近,可能是同种异名,不能有效区分;长刺猴头与其余菌株亲缘关系较远,单独聚为一类。
     对10个菌株进行液体发酵培养,分别收集菌丝体和胞外液,经水提、70%醇沉,苯酚硫酸法测定得到10株菌株胞内多糖和胞外多糖的产量,其中猴头王的胞内多糖、胞外多糖产量均最高,分别达到0.13g/L和128.76g/L;对10个菌株胞内多糖进行体外免疫试验,结果表明,0627菌株的体外免疫活性最好。
     对10个菌株进行子实体栽培,分别收集10个菌株的子实体,烘干的子实体经经水提、70%醇沉,苯酚硫酸法测定子实体中的多糖含量,结果表明0605菌株的子实体多糖含量最高,达到1.74%,其次为华中猴头1.70%,与其余菌株之间有显著性差异;对10个菌株的子实体多糖进行体外免疫试验,结果表明0605菌株不仅子实体多糖含量高而且多糖体外免疫活性最好,所以选择0605菌株作为以下试验栽培取样所用菌株。
     2、对猴头菌生长发育过程中非挥发性呈味代谢产物进行了比较分析
     对0627、0605菌株进行子实体栽培,并将猴头菌的整个生长发育过程划分为六个时期—现蕾期、无菌刺期、分裂期、小菌刺期、中菌刺期和成熟期,分别对0627、0605菌株的六个发育时期进行取样,对不同发育时期子实体进行非挥发性呈味代谢产物的分析,结果表明不同的菌株在非挥发性呈味物质的含量上表现出一定的差异性,相同菌株生长发育过程中所含的非挥发性呈味物质的量上也是有差异的。0627菌株在成熟期新鲜子实体中的阿糖醇和海藻糖的含量最高,分别达到23.41和1.55 mg/g,小菌刺期甘露醇的含量最高,达到1.13mg/g,而0605菌株在小菌刺期阿糖醇的含量最高,为13.98 mg/g,分裂期的海藻糖和甘露醇的含量是最高的,分别为1.97和0.78μg/g;0627菌株在分裂期新鲜子实体中的5’-CMP、5’-UMP、5’-GMP、5’-IMP和5’-AMP的含量最高,分别为475.58、88.33、24.58、43.83和91.05μg/g,谷氨酸和天冬氨酸的含量也是最高,分别为1.70和0.05μg/g,而0605菌株成熟期的5’-CMP含量最高,达到488.13,分裂期的5’-UMP、5’-GMP、5’-IMP和5’-AMP含量最高,分别为95.81、46.60、41.38和65.35μg/g,成熟期的谷氨酸的含量最高,为1.43μg/g,小菌刺期的天冬氨酸的含量最高,为0.04μg/g;并且经计算0605菌株的小菌刺期的等鲜浓度EUC的值是最高的。
     3、猴头菌生长发育过程中大分子活性代谢产物的研究
     对生长发育六个时期的子实体进行了粗蛋白含量、β-葡聚糖含量、子实体多糖含量的测定并对热水提取、70%醇沉的六个生长发育期的多糖进行体外免疫活性的研究,结果表明,在猴头菌的整个生长发育过程中,子实体粗蛋白含量总体呈下降的趋势,现蕾期最高26.56%,成熟期最低16.18%,小菌刺期出现了一个反升高的过程;子实体β-葡聚糖含量整体上呈上升的趋势,中菌刺期含量最高33.58%,小菌刺期出现了一个反下降的过程;子实体多糖的含量呈现上升的趋势,成熟期含量最高1.54%,分裂期含量最低仅0.89%;相同条件提取的粗多糖透析之后多糖含量不断的上升,成熟期最高,达到50.67%;现蕾期、分裂期、中菌刺期、成熟期的多糖均能很好地刺激巨噬细胞RAW264.7产生NO,且这四个时期的多糖的体外免疫活性均优于无菌刺期和小菌刺期的多糖。
     4、0605菌株的小菌刺期、中菌刺期和成熟期的子实体多糖的分级分离及理化性质研究
     分别采用30%、50%和70%的乙醇终浓度对0605菌株3个时期的热水浸提物进行分级醇沉,对分级分离多糖进行理化性质研究,结果如下:三个发育期50%醇沉的多糖的糖含量比30%和70%醇沉的多糖糖含量都高,其中成熟期50%醇沉多糖糖含量最高,达到67.14%;从各个时期每个醇沉浓度所得多糖所占的比例上来看,小菌刺期30%醇沉所得多糖比例远远高于中菌刺期和成熟期对应多糖所占的比例,而小菌刺期70%醇沉多糖远低于中菌刺期和成熟期对应多糖所占的比例;不同时期不同醇沉浓度所得的多糖的分子量分布不同,小菌刺期30%醇沉多糖中大于590万分子量段的所占比例比中菌刺期和成熟期30%醇沉多糖中的比例高很多;3个时期50%和70%醇沉多糖分子量相差不大;3个时期分级分离多糖的单糖种类基本上相同,都含有岩藻糖、半乳糖、葡萄糖、甘露糖,但是单糖的摩尔比例有差异;3个时期分级分离多糖均能刺激巨噬细胞株RAW264.7分泌N0,每个时期30%醇沉的多糖均比50%和70%醇沉多糖组分的活性好,70%醇沉多糖组分活性最差,成熟期分级分离多糖的活性最好,优于其它生长阶段。
     5. H5FP4B. H5FP5B. H5FP6B的进一步分离纯化及结构鉴定
     0605菌株小菌刺期、中菌刺期和成熟期50%醇沉多糖(H5FP4B.H5FP5B. H5FP6B)经过Sephacryl S300凝胶层析进行进一步分离纯化,共得到九个组分分别为H5FP4B-1、H5FP5B-1、H5FP6B-1、H5FP4B-2、H5FP5B-2、H5FP6B-2、H5FP4B-3、H5FP5B-3、H5FP6B-3,对这九个组分的分子量分布进行研究,发现每个时期的第3部分(即主峰部分)分子量基本相同,分子量分布差异较大的是三个时期的第1组分,在体外免疫活性上也表现出较大差异;第2、3组分体外免疫活性差异不大;H5FP4B-3的分子量为1.59万,由岩藻糖,半乳糖和葡萄糖组成,三者摩尔比为5.2:23.9:1,甲基化分析结果表明,岩藻糖以端基的形式存在,半乳糖主要为1,6、1,2,6两种连接方式存在。经红外光谱、甲基化和核磁共振综合分析,得出H5FP4B-3均一多糖是以α-D-1,6连接的半乳糖和α-D-1,2,6连接的半乳糖构成主链,侧链为a构型的端基岩藻糖,一级结构重复单元为:α-L-Fucp(?) 1(?)↓(?) 2(?)→6)-α-D-Galp-(1→6)-α-D-Galp-(1→6)-α-D-Galp(1→6)-α-D-Galp-(1-6)
Hericium erinaceus is an edible and medicinal fungi belonging to Basidiomycota. In ancient times, people took it and Trionyx sinensis, sea cucumbers and bear's paw as "four famous dishes". And we have a saying"Hericium delicacies, seafood bird's nest". Reported in the literature, Hericium erinaceus has anti-ulcer, anti-inflammatory, antitumor, hypoglycemic, anti-aging, anti-mutation, hepatoprotective, and many other pharmacological effects. Based on the edible and medicinal value, the paper attempted to Screen of Hericium erinaceus Strains with High Active Polysaccharide Productivity and Researched on its non-volatile flavor metabolites and the variation of the macromolecular active metabolite content and in vitro immune activity Harvested at Different Developmental. And then polysaccharides of the later three stages were isolated and purified and studied the physicochemical properties and structural identification. This thesis is divided into five parts, the main findings are as follows:
     1、Mycelium comparison and Screening of ten Hericium erinaceus Strains with High Active Polysaccharide Productivity
     The researches of antagonistic test and ITS sequence analysis was basically the same, the analysis showed that phylogenetic relationship of 0608 and 920 strains was closed and could not effectively distinguish. But the long thorned strain and other strains distantly related, separately clustered into one group.
     Mycelium and extracellular fluid of ten strains were collected by Liquid fermentation. By water extraction,70% alcohol precipitation, intracellular polysaccharides and extracellular polysaccharide were obtained,and polysaccharides yields were determined by phenol sulfuric acid method. Intracellular polysaccharides, extracellular polysaccharide production of H9 strain were the highest, respectively, 0.13g/L and 128.76g/L. Immune activity in vitro of H1 strain was the best.
     Fruiting bodies of ten strains were collected.By the determination of the polysaccharide content in the fruiting body, results showed that polysaccharide content of the 0605 strain was the highest and reached 1.74%, followed by 1.70% for the Huazhong strain, and there were significant differences with other strains. Immune test results in vitro of polysaccharide of ten strains showed that the 0605 strain was not only polysaccharide content was high but also immune activity in vitro of was the best, so 0605 strain was used as the following experiment. 2、Comparative analysis of non-volatile flavor metabolites of Hericium erinaceus harvested at different developmental stages
     The whole developmental stages were divided into six stages, including button formation、without fungal spine age、split age、small fungal spine age、mid-fungal spine age、maturing stage.Samples were collected by industrialized cultivation. Then non-volatile flavor analysis of the metabolites of different developmental stages of fresh fruiting bodies, the results showed that the contents of non-volatile flavor substances of different strains were different, the contents of different developmental stages of the same strain were also different.The contents of arabitol and trehalose from maturing stage of 0627 strain were highest, respectively,23.41 and 1.55 mg/ g.The content of the mannitol was the highest at small fungal spine age, up to 1.13mg/ g.While the content of arabitol of the 0605 strain was the highest at small fungal spine age,13.98 mg/g. The content of trehalose and mannitol was the highest at split age, respectively,1.97 and 0.78μg/g. The content of 5'-CMP,5'-UMP,5'-GMP,5'-IMP and 5'-AMP of 0627 strain were the highest at split age, respectively for 475.58,88.33,24.58,43.83, and 91.05μg/g And glutamate and aspartate content were also the highest, respectively,1.70 and 0.05μg/g.While 5'-CMP content of the 0605 strain was the highest at maturing stage, to reach 488.13, the 5'-UMP,5'-GMP,5'-IMP and 5'-AMP content were the highest at split age respectively for 95.81,46.60,41.38 and 65.35μg/g. The glutamate content was the highest at maturing stage, for 1.43μg/ g,while aspartate content the highest at small fungal spine age,for 0.04μg/g.And the EUC value of 0605 strain was the highest at small fungal spine age. 3、Research on macromolecular active metabolite of Hericium erinaceus harvested at different developmental stages
     The analysis determined the crude protein content,β-glucan content, polysaccharide content and immune activity in vitro of Hericium erinaceus harvested at different developmental stages.The results showed that in the whole developmental stages of Hericium erinaceus, crude protein content of the fruiting body presented overall downward trend, up to 26.56% at button formation,only 16.18% at maturing stage.β-glucan content in fruiting bodies presented the overall rising trend,the highest content of 33.58% at mid-fungal spine age and had an anti-drop process at small fungal spine age.Polysaccharide content of fruiting bodies showed an upward trend, up to 1.54% at maturing stage, only 0.89% at split age. Polysaccharide content of crude polysaccharide extracted from the same conditions showed continuous rising process, the maximum 50.67% at maturing stage. Immune activity in vitro of the polysaccharides of the button formation, split age, mid-fungal spine age and maturing stage were better than that of without fungal spine age and small fungal spine age.
     4、Fractionation of polysaccharide from small fungal spine age, mid-fungal spine age and maturing stage of the 0605 strain and research of physicochemical properties
     Hot water extracts of the three periods of the 0605 strain were graded alcohol precipitation by 30%,50% and 70% ethanol final concentration. Then physicochemical properties of polysaccharide were studied, the results were as follows:sugar content of polysaccharides obtained by 50% alcohol precipitation were higher than that of 30% and 70% alcohol precipitation, in which sugar content of H5FP6B was the highest,up to 67.14%. The total polysaccharide from small fungal spine age is the most. The proportion of polysaccharide derived from the different concentration of alcohol was different.Yield of H5FP4A was far higher than the yield of H5FP5A and H5FP6A,but the proportion of H5FP4C far lower than that of H5FP5C and H5FP6C. Molecular weight distribution of the different polysaccharides were different. HPLC atlas of polysaccharide from 30% alcohol precipitation was divided into three molecular weight segment,including 5.9 million, more than 1.4 million less than 5.9 million and less than 12,000, where the main peak was less than 12000 parts.5.9 million molecular weight segment of H5FP4A in proportion was bigger than that of H5FP5A and H5FP6A. Polysaccharide molecular weight of 50% and 70% alcohol precipitation with three periods was basically the same.These polysaccharides all contained fucose, galactose,glucose, mannose, but the molar ratio of each monosaccharide differed. Polysaccharides obtained by fractionation could stimulate macrophage cell RAW264.7 secret NO, and immune activity of polysaccharides of 30% alcohol precipitation was better than that of 50% and 70% alcohol precipitation. Immune activity of polysaccharide by 70% alcohol was the lowest. Immune activity of polysaccharide from maturating stage was the best.
     5、Further separation, purification and structural identification of H5FP4B, H5FP5B, H5FP6B H5FP4B, H5FP5B, H5FP6B for further separation and purification Sephacryl S300 gel filtration chromatography, a total of nine components were H5FP4B-1 H5FP5B-1, H5FP6B-1, H5FP4B-2, H5FP5B-2, H5FP6B-2, H5FP4B-3, H5FP5B-3, H5FP6B-3, these nine components of the molecular weight distribution of research, found in part 3 of each period (ie, the molecular weight spectrum of the peak part) share essentially the same area, the molecular weight distribution the big difference between a component of the three periods; 2,3 components of the three periods in vitro immune activity differences are not found in vitro immune activity of a component of the three periods of in vitro immune activity show very different; H5FP4B-3 molecular weight of 15,900, composed of fucose, galactose, glucose, three molar ratio 5.2:23.9:1, methylation analysis results show that H5FP4B-3 was terminal fucose linkage and 1,6、1,2,6 galactose linkage. NMR analysis further showed that main chain was composed of a-D-1,6 linkeda-D-galactan backbone and branches composed of terminala-L-fucose.Its structure was: a-L-Fucpv 1(?)↓(?) 2(?) 6)-α-D-Galp-(1→6)-α-D-Gaip-(1→6)-α-D-Galp-(1→6)-α-D-Galp-(1→6)
引文
[1]Hawdswoith D L.Ainsworth&Bishby's dietionary of the fungi(8th ed)[M].IMI CAB International,1995.
    [2]张雪岳.食用菌学[M].重庆:重庆大学出版社,1988.
    [3]黄年来.自修食用菌学[M].南京:南京大学出版社,1986.
    [4]李应华.食用菌栽培与加工[M].北京:金盾出版社,1985.
    [5]陈士瑜,陈慈.猴头轶话[J].中国食用菌,1985,(4):40.
    [6]胡小加,周宏斌,周平贞.猴头菌及猴头酒营养成分分析[J].食品科学,1992,(12):47-48.
    [7]张浩等.猴头96生物特性及栽培技术[J].山西农业大学学报,2001,2.
    [8]马谈斌,吴永宏,刘文海等.猴头菌液体培养技术及其应用[J].江苏农业科技,1995,(4):55-72.
    [9]李胜奇等.野生猴头菌主要营养成分的测定与评价[J].陕西师范大学学报(自然科学版),1998,26(1):124-125.
    [10]王晓玉,蒋秋燕,凌沛学,等.猴头菌活性成分及药理作用研究进展[J].中国生化药物杂志,2010,31(1):70.
    [11]刘梅森,陈海晏,孙红斌.猴头菌的药用价值概述.中国食用菌,1999,18(1):24-25.
    [12]石勇民,苏凤岩.猴头多糖的初步提取及分析[J].微生物学杂志,1989,9(2):47-48.
    [13]徐锦堂.中国药用真菌学[M].北京医科大学中国协和医科大学联合出版社.1997
    [14]杨焱,周昌艳等.猴头菌子实体和菌丝体多糖的分离纯化与理化特征的比较[J].菌物系统,2001,20(3):397-402.
    [15]Wang Z J,Luo D H,Liang Z Y.Structure of polysaccharides from the fruiting body of Hericium erinaceus Pers[J].Carbohydr Polym,2004,57 (3):241-247.
    [16]Dong Q, Jia L M,Fang J N. A β-D-glucan isolated from the fruiting bodies of Hericium erinaceus and its aqueous conformation[J].Carbohy-dr Res,2006,341(6): 791-795.
    [17]张安强.猴头菌子实体多糖的分离纯化、结构鉴定、结构修饰和生物活性研究
    [D].[博士学位论文].南京:南京农业大学.2006.
    [18]Zhang A Q,Sun P L,Zhang J S.Structural investigation of a novel fucoglucogalactan isolated from the fruiting bodies of the fungus Hericium erinaceus[J].Food Chem,2007,104(2):451-456.
    [19]王宁.猴头健胃灵治疗慢性胃炎53例临床疗效观察[J].中国药理与临床,1987,3(1):46-48.
    [20]王祯荃.猴头健胃灵的药效学研究[J].山西中医,1994,10(5)34-35.
    [21]于成功.猴头菌对实验大鼠胃粘膜保护作用的研究[J].胃肠病学,1999, 4(2):93-96.
    [22]唐选训.联用黄连素、维酶素、猴头菌治疗慢性萎缩性胃炎观察[J].广西科学,1995,17(4):355-357.
    [23]杨炎等.食用菌提取物对大鼠胃粘摸损伤保护作用的研究[J].食用菌学报,1999,6(1):14-17.
    [24]杨焱,周昌艳,王晨光,等.猴头菌多糖调节机体免疫功能的研究[J].食用菌学报,2000,7(1):19-22.
    [25]聂继盛,祝寿芬.猴头多糖抗肿瘤及对免疫功能的影响[J].山西医药杂志,2003,32(2):107-109.
    [26]YimMH,Shin JW,Son JY,et al.Soluble components of Hericium erinaceum induce NK cell activation via production of interleukin-12 in mice splenocytesl[J].Acta Pharmacol Sin,2007,28(6):901-907.
    [27]MizunoT, Kawagishi H, SuedaT, et al.An Isoindoline Derivative from Hericium erinaceus for Treatment of Uterine Caneer[J].JPN Kokai Tokkyo Koho, JP03.157-347.
    [28]MizunoT, Kawagishi H.Isoindoline of phyhalide Derivative as Uteroeervial Caneer Inhabitor[J] J JPN Kokai Tokkyo Koho, JP03:157-37.
    [29]刘金庆,张松,杨小兵.食(药)用菌活性成分抗衰老研究进展[J].生命科学研究,2005,9(4):82-86.
    [30]周慧平,刘温理,陈钱华,等.猴头菌多糖的抗衰老作用[J].中国药科大学学报,1991,22(2):86-88.
    [31]殷关英,申建和,陈琼华.猴头菇多糖和蛋白多糖的抗凝血和降血脂作用[J].生化药物杂志,1991,57(3):36-38
    [32]聂继盛,祝寿芬.猴头多糖遗传毒性评价及抗突变实验研究[J].山西医科大学学报,2003,34(1):33-34
    [33]祝寿芬,赵淑杰.大刺猴头(88)多糖抗突变,抗氧化及对免役功能影响的研究[J].癌变.畸变.突变,1994,6(2):23-27.
    [34]成静,祝寿芬.大刺猴头(88)多糖的抗突变作用研究[J].山西临床医药杂志,1999,8(2):157-159.
    [35]周惠萍,孙立冰,陈琼华.猴头多糖的抗突变和降血糖作用[J].生化药物杂志,1999,58(4):35-36
    [36]薛惟建等.糖和猴头多糖对实验性高血糖的防治作用[J].中国药科大学学报,1989,20(6):378-350
    [37]刘曙晨,张慧娟,骆传环等.猴头菇多糖的抗辐射作用实验研究[J].中华放射医学与防护杂志,1999,19(5);328-329
    [38]林雨露.多糖化学结构及构效关系的研究[J].武汉教育学院学报,2000,19(6):34-37.
    [39]BLASCHEK W, KASBAUER J, KRAUS J, et al.Pythium aphanidermatum: culture, cell-wall composition, and isolation and structure of antitumour storage and solubilised cell-wall (1→3), (1→6)-β-D-glucans[J].Carbohydr Res,1992, 231:293-307.
    [40]诸葛健,赵振峰,芳慧英.功能性多糖的构效关系[J].无锡轻工大学学报2002,21(2):209-212.
    [41]贾建会,徐宝梁等.羊肚菌发酵制品保健机理初探[J].食用菌,1991(5):40-42.
    [42]杜巍,李元瑞,袁静.食药用菌多糖生物活性与结构的关系[J].食用菌,2001,(2):3-5.
    [43]王兆梅,李琳,郭祀远等.活性多糖构效关系研究评述[J].现代化工,2002,22(8):18-22.
    [44]Mulloy B, Mourao PAS, Gray E.Structure/function studies of anticoagulant sulphated polysaccharides using NMR[J]. Journal of Biotechnology,2000,77(1): 123-135.
    [45]王长云,管华诗.多糖抗病毒作用研究进展Ⅱ.硫酸多糖抗病毒作用[J].生物工程进展,2000,20(1):17-20.
    [46]Perret J, Bruneteau M, Michel G, et al. Effect of growth conditions on the structure of β-D-glucans from Phytophthora parasitica Dastur, a phytophathogenic fungus[J]. Carbohydrate Polymer,1991,17(2):231-236.
    [47]胡文祥,王来曦,恽榴红等.多糖及其衍生物的医药学研究[J].科学(中文版),1994,187(3):4-8.
    [48]Gao Y, Fukuda A,Kat suraya K, et al. Synthesis of regioselective substituted curdlan sulfates with medium molecular weights and their specific anti-HIV-1 activities[J].Macrom,1997,30(11):3224-3228.
    [49]Groth T, Wagenknecht W. Ant icoagulant potential of regioselective derivatized cellulose[J]. Biomaterials,2001,22(8):2719-2729.
    [50]Misaki A, Kawagnchi K. Structure of pestalotan, a highly branched (1,3)-β-D-glucan elaborat ed by pestlotiasp.815, and the enhancement of its antitumor act ivit y by polyol modificat ion of the side chains[J]. Carbohydr Res,1984,129(1):209-227.
    [51]Gohdes M,Mischnick P.Det ermination of the substitut ion pattern in the polymer chain of cellulose sulfates[J]. Carbohydr Res,1998,309(1):109-115.
    [52]Zhang P, Zhang L, Cheng S.Effect of urea and sodium hydroxide on the molecular weight and conformation of β-(1,3)-D-glucan from Letinus edodes in aqueous solut ion [J]. Carbohydr Res,2000,327(2):431-438.
    [53]Young S H, Jacobs R R. Sodium hydroxide induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue [J].Carbohydr Res,1998, 310(1):91-99.
    [54]Saito H, Yoshioka Y, Uehara N, et al. Relationship between conformation and biological response for(1,3) β-D-glucans in the activation of coagulation Factor G from limulus amebocytelysate and host mediated antitumor activity[J]. Carbohydr Res, 1991,217(1):181-190.
    [55]Shu-Yao Tsai, Tsai-Ping Wu, Shih-Jeng Huang,et al. Nonvolatile taste components of Agaricus bisporus harvested at different stages of maturity[J]. Food Chemistry,2007,103:1457-1464.
    [56]付立忠,吴学谦等.灵芝不同生长发育期粗多糖和三萜含量变化规律[J].食用菌学报,2008,15(3):47-50.
    [57]张晓云,李朝谦,杨春清.不同生长期赤灵芝子实体多糖含量变化研究[J].食用菌,2008,30(1):10-11.
    [58]丁平,曾元儿等.产地及生长期对灵芝中灵芝酸B含量的影响[J].中药材,1999,22(6):271-272.
    [59]Carla Maisa Camelini,Marcelo Maraschin,Margarida Matos de Mendonca,et al. Structural characterization of β-glucans of Agaricus brasiliensis in different stages of fruiting body maturity and their use in nutraceutical products[J]. Biotechnology Letters,2005,27:1295-1299.
    [60]Lillian Barros, Paula Baptista, Leticia M.,et al. Effect of Fruiting Body Maturity Stage on Chemical Composition and Antimicrobial Activity of Lactarius sp. Mushrooms[J].Food and Feed Chemistry,2007,55 (21):8766-8771.
    [61]Shu-Yao Tsai, Tsai-Ping Wu, Shih-Jeng Huang,et al. Antioxidant Properties of Ethanolic Extracts from Culinary-Medicinal Button Mushroom Agaricus bisporus (J. Lange) Imbach (Agaricomycetideae) Harvested at Different Stages of Maturity[J]. International Journal for Medicinal Mushrooms,2008,10(1):127-137.
    [62]Francielly Mourao, Suzana Harue Umeo, Orlando Seiko Takemura,et al. Antioxidant activity of Agaricus brasiliensis basidiocarps on different maturation phases.
    [J]. Brazilian Journal of Microbiology,2011,42:197-202. [63] Jose Pedro Friedmann Angeli,Lucia Regina Ribeiro,Carla M. Camelini, et al. Evaluation of the antigenotoxicity of polysaccharides and β-glucans from Agaricus blazei, a model study with the single cell gel electrophoresis/Hep G2 assay[J]. Journal of Food Composition and Analysis,2009,22:699-703.
    [64]Dowson CG, Rayner DM, Boddy L.Spatialdynamics and intractions of the woodland fariry ring fugus Clitocybe nebularis[J].The New Phytologist,1989, 111:699-705.
    [65]Barrett DK, UscuPlie M. The field distribution of interacting strains of PolyPorus sehweinitzii and their origin[J].The New Phytologistogist,1971, 70:581-598.
    [66]杨爽.猴头菌菌株鉴定与主要性状评价研究[D].[硕士学位论文].四川:四川农业大学,2011.
    [67]张红,秦莲花,谭琦,等.用改进的CTAB法提取香菇基因组DNA[J]上海大学学报,2006,12(5):547-550.
    [68]谭旭华.猴头菌菌属菌种鉴定[D].[硕士学位论文].长春:吉林农业大学,2006.
    [69]潘辉.工厂化生产相关工艺对灰树花生长发育影响的研究[D].[硕士学位论文].重庆:西南大学,2011.
    [70]WriteT J, Brims T, Lee S, Taylor J.1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:Innis M A, Gelfand D H, sninsky J J, Wilte T J(eds) PCR protocols:A guide to methods and applications. Academic Press,315-322.
    [71]陈明.抗癌菌类药常用种类及近代研究进展[J].食用菌,1994,2(2):40-41
    [72]Usui T., Yoshio 1., Katsuyuki H., et al.Antitumor activity of water solutble β-D-Glucan elaborated by Ganoderma applanatum[J].Agric BiolChem,1981, 45(1):323-332
    [73]Jong SL, Jae YC, Eock KH. Study on macrophage activation and structural characteristics of purified polysaccharides from the liquid culture broth of Hericium erinaceus[J]. Carbo Poly,2009,78(1):162-168.
    [74]王明霞,管笪,经美德.五株优良猴头菌营养成分的分析及其利用的研究.微生物学通报,1992,19(2):68-72
    [75]张维杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1994.
    [76]张树政.糖生物化学和糖生物工程[M].北京:清华大学出版社,2002.
    [77]李敏,刘耕陶.双环醇对脂多糖诱导巨噬细胞iNOS蛋白的表达和NF-K B活化的抑制作用[J].中国药理学通报,2006,22(12):1438-1443.
    [78]耿慧.碱提猴头发酵菌丝体多糖的分离纯化及结构研究[D].吉林:东北师范大学,2003.
    [79]刘颖.猴头菌属不同菌种发酵产物的比较研究[D].[硕士学位论文].长春:吉林农业大学,2008.
    [80]黄丽萍等.小刺猴头菌液体深层培养过程中多糖积累及其特征的研究[J].生物技术.1998,8(3):30-33.
    [81]黄年来,林志彬,陈国良,等.中国食药用菌学[M].上海:上海科学技术文献出版社,2010:740-747.
    [82]游兴勇,许杨,李燕萍.食用菌非挥发性呈味物质的研究[J].中国调味品,2008,8(8):32-35.
    [83]Yamaguchi S. Yoshikawa T, Ikeda S, et al. Measurement of the relative taste intensity of some α-amino acid and 5'-nucleotides[J]. Journal of Food Science, 1991,36:846-849.
    [84]MauJ L, ChyC C, LiJ Y, et al. Flavor compounds in straw mushrooms Volvariella volvacea harvested at different stages of maturity[J]. Journal of Agricultural and Food Chemistry,1997,4514726-4729.
    [85]Chen H K. Studies on the characteristics of tasteactive components in mushroom concentrate and its powderization[D].1986.
    [86]周帅,薛俊杰,刘艳芳等.高效阴离子色谱-脉冲安培检测法分析食用菌中海藻糖、甘露醇和阿糖醇[J].食用菌学报,2011,18(1):49-52.
    [87]Lioe H N, Apriyantono A, Takara K, et al. Umami taste enhancement of MSG /NaCI mixtures by subthreshold L-α-aromatic amino acids[J]. Journal of Food Science,2005,70(7):401-405.
    [88]李雪芹,包天同,王雁.比色法测定冬虫夏草中甘露醇的含量[J].中草药, 1999,1(1):9-14.
    [89]韩少卿,彭奇均,舒菊霞.HPLC法测定酵母中海藻糖[J].中国食品添加剂,2005,(2):107-109.
    [90]刘敬兰,陈连文.衍生化毛细管气相色谱法分离测定山梨醇和甘露醇[J].分析化学,2001,29(10):1185-1187.
    [91]于泓,牟世芬.离子色谱中的安培检测方法及其应用[J].化学通报,2007,70(7):483-488.
    [92]杨勇杰.猴头多糖化学成分研究[D].[硕士学位论文]吉林:吉林大学,2004.[93]甘勇,吕作舟.阿魏蘑多糖理化性质及免疫活性研究[J].菌物系统,2001,20(2):228-232
    [94]董洪新,吕作舟.阿魏侧耳多糖的分离纯化与抗肿瘤活性的研究[J].微生物学通报,2003,30(2):16-19
    [95]陈文星,陆茵,王爱云,等.不同提取工艺灵芝多糖抗肿瘤作用比较[J].南京中医药大学学报,2003,19(4),227-228
    [96]林志彬.灵芝的抗肿瘤作用机制[J].基础医学与临床,2000,20(5):7-9
    [97]Jong SL, Jae YC, Eock KH. Study on macrophage activation and structural characteristics of purified polysaccharides from the liquid culture broth of Hericium erinaceus[J]. Carbo Poly,2009,78(1):162-168.
    [98]邢增涛,江汉湖,周昌艳,等.不同灵芝中粗多糖含量的比较研究[J].食用菌,2001,23(6):425.
    [99]韦会平,李学刚,蒲盛才,等.灵芝生长过程中灵芝多糖含量变化规律研究[J].中医药学报,2006,(34)5:10212
    [100]付立忠,吴学谦,李明焱,等.灵芝不同生长发育期粗多糖水提物和三萜含量变化规律[J].食用菌学报,2008,15(3):47-50.
    [101]冯娜,张劲松,唐传红,等.不同生育期灵芝子实体水提物与其免疫活性[J].食用菌学报,2010,17(4):52-57.
    [102]陈璐.不同栽培基质和生长期的灵芝药效品质特异性研究[D].[硕士学位论文]四川:四川农业大学,2008.
    [103]任一平,黄百芬,陈青俊.应用高效液相色谱法测定香菇多糖[J].食品与发酵工业,1996(5):31-35
    [104]张卫国,赵云涛,刘欣.固体发酵紫芝菌丝体多糖分子量分布研究[J].食用菌,2003,(6):36-37
    [105]诸葛健、赵振峰、芳慧英.功能性多糖的构效关系,无锡轻工大学学报2002,21(2):209-212
    [106]Kurakata Y, Sakagami H, Sato A et al. Functional maturation of monocytes/macrophages induced by PSK subfractions[J]. Anticancer Res, [99](?)11(5):1767-1772
    [107]Sakagami H, Ikeda M, Konno K. Stimulation of tumor necrosis factor-induced human myelogenous leukemic cell differentiation by high molecular weight PSK subfraction[J]. Biochem Biophys Res,1989,162(2):597-603
    [108]耿慧.碱提猴头发酵菌丝体多糖的分离纯化及结构研究[D].吉林:东北师范大学,2003.
    [109]贾建会、徐宝梁等.羊肚菌发酵制品保健机理初探,食用菌,1991(5):40-42.
    [110]林雨露.多糖化学结构及构效关系的研究,武汉教育学院学报,2000,19(6):34-37.
    [111]刘芳,刘桂友,周晶,等.冬凌草多糖RPPS Ⅱa的分离纯化及其性质研究[J].中草药,2011,2(42):241-243.
    [112]宫春雨,唐庆九,张劲松,等.龙须菜免疫活性多糖的分离纯化及结构鉴定
    [J].天然产物研究与开发,2010,(22):603-606.
    [113]刘晓雯,陈向东,吴梧桐.灰树花菌丝体多糖的分离纯化和理化性质研究[J].药物生物技术,2005,12(3):175-178.
    [114]Fan J M, Zhang J S, Tang Q J, et al. Structural elucidation of a neutral fucogalactan from the mycelium of Coprinus comatus [J]. Carbohydr Res,2006,341: 1130-1134.
    [115]Harding L P, Marshall V M, Hernandez Y, et al. Structural characterisation of a highly branched exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB2074 [J]. Carbohydr Res,2005,340:1107-1111.
    [116]Staaf M, Urbina F, Weintraub A, et al. Structural elucidation of the O-antigenic polysaccharides from the enteroaggregative Escherichia coli strain 62D1[J]. Euro J Biochem,1999,262:56-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700