大型模锻液压机机架疲劳寿命研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳破坏是工程结构和机械设备中最常见的破坏形式,液压机的主要零部件大多是在承受了多次交变载荷之后而疲劳破坏的。800MN大型模锻液压机机架采用C形板框组合预紧结构,作为压机中最主要的部件之一,机架在工作中承受着巨大的载荷。因此机架在设计时不仅要保证机架的强度和刚度,其结构疲劳特性也是保证压机是否能正常服役的关键。
     本文利用大型非线性有限元分析软件MSC.Marc,分析了机架在工作状态下各主要零部件的变形特点及应力分布情况,根据分析结果确定了机架可能疲劳破坏的危险点。
     以800MN模锻液压机主机架为原型,按照1:30的比例设计制备了试验机架,进行了静态加载试验,测试并给出了危险点的监测数据,验证了数值模拟的分析结果,为800MN模锻液压机可靠性设计提供了依据。
     在有限元静态分析结果的基础上利用MSC.Fatigue疲劳分析软件,结合名义应力法和Miner线性损伤累积理论对机架进行了疲劳寿命分析,给出了机架各主要构件的预测寿命,同时揭示了工作载荷、预紧力、平均应力补偿方法、存活率、缺口系数、以及加工方式和表面处理方法等因素对机架寿命的影响规律。
Fatigue damage of engineering structures and mechanical equipment is the mostcommon form of destruction The damage of most main parts of hydraulic press arefatigue damage under many times of alternating load. As one of the main components of800MN large die forging hydraulic press, the frame adopts combined C shaped plate andpreloading structure and endures heavy load in the work. So when designing the frame,not only the strength and stiffness, but also the reliability should be guaranteed.
     Using the large nonlinear finite element analysis software MSC.Marc, thedeformation and stress distribution of the major components were analyzed in thepreloading and working state. The dangerous points in the frame were determinedaccording to the results.
     Taking 800MN hydraulic die forging press machine frame as the prototype, the testframe was designed according to the proportion of 1 to 30. The stress of the dangerouspoints were gained through the static loading test, verifying the results of the numericalsimulation and giving a basis for the reliability designing of 800MN hydraulic press.
     Based on the results of the static finite element analysis, the fatigue life of the framewas analyzed, using the fatigue analysis software MSC.Fatigue, and combining with thenominal stress method and Miner linear cumulative damage theory. The predicted lives ofthe main components were gained. The laws of the influence of the factors on the framewere revealed, such as working load, preload, average stress compensation method,survival rate, notch coefficient, processing and surface treatment method.
引文
[1]李彬.我国将建世界最大模锻压机[J].有色金属, 2008,(2): 41.
    [2]刘忠伟,邓英剑,刘少军,等. 300MN模锻水压机主工作缸缸体的可靠性分析[J].重型机械,2006,(5): 16-19.
    [3]蒋鹏.我国锻造技术装备60年的进步与发展(上)[J].金属加工(热加工), 2010,(11): 1-4.
    [4]张清华,刘鑫刚,祁荣盛,等. 800MN模锻液压机主缸缸底锻件关键成形技术的研究[J].大型铸锻件, 2010,(6): 1-5.
    [5]林峰,颜永年.重型模锻液压机承载结构的发展[J].锻压装备与制造技术, 2007: 27-30.
    [6]俞新陆.液压机设计与应用[M].北京:机械工业出版社, 2006: 12.
    [7]岳玉梅,宋大毅.油压快锻机机架疲劳强度分析[J].沈阳航空工业学报, 2004,(1): 29-32.
    [8]肖凌俊,刘安中,王涛. 1700mm热轧飞剪机机架疲劳寿命分析[J].武汉科技大学学报,2010,(6): 628-631.
    [9]肖汉斌,顾必冲,刘刚.抓斗装卸桥主梁疲劳寿命的估算[J].起重运输机械, 2000,(5): 4-5.
    [10]程育仁,缪龙秀,候炳麟.疲劳强度[M].北京:北京铁道出版社, 1990: 23-28.
    [11]贡金鑫,王海超,赵国藩.结构疲劳累积损伤与极限承载能力可靠度[J].大连理工大学学报,2002,(6): 714-718.
    [12]田会然,张庆. 800MN多向模锻液压机本体结构设计与分析[D].秦皇岛:燕山大学材料加工工程学科硕士学位论文, 2005: 1-15.
    [13]邹春来,黄明辉,湛利华,等.巨型压机主工作缸柱塞与活动横梁连接方式的研究[J].现代制造工程, 2009,(2): 101-103.
    [14]曹兴强,黄明辉,湛利华,等.大型模锻液压机活动横梁整体工作性能有限元分析[J].现代制造工程, 2009,(5): 101-105.
    [15]黄宁,黄明辉,湛利华,等.巨型压机C形机架的结构分析与改进[J].锻压技术, 2009,(5):93-95.
    [16]王亚军,黄明辉,湛利华,等.组合式机架C形板与十字键接触状态研究[J].现代制造工程,2009,(1): 124-127.
    [17]刘忠伟,刘少军,黄明辉.巨型模锻液压机同步控制系统控制性能影响因素研究[J].锻压技术,2010,(5): 64-68.
    [18]熊欢欢,黄明辉,湛利华,等.大型模锻液压机监控系统设计研究[J].仪表技术与传感器,2010,(1): 92-94.
    [19]文新海,黄明辉,湛利华.大型组合承载结构整体有限元建模研究[J].现代制造工程, 2010,(1):10-14.
    [20]李毅波,黄明辉.考虑制造误差的模锻压机C形板组配顺序研究[J].中国机械工程, 2011,(20):2442-2446.
    [21]李江波,黄明辉,陆新江.模型预测控制在大型液压机同步平衡控制系统中的仿真研究[J].锻压技术, 2011,(2): 78-82.
    [22]杨固川,于江,陈文,等.大型模锻液压机机架结构分析研究[J].锻压技术, 2010, (3): 78-82.
    [23]杨固川,于江,陈文,等.大型模锻液压机的工作压力及工作缸布置分析研究[J].锻压技术,2011,(3): 77-79.
    [24]杨固川,于江,陈文,等.大型模锻液压机工作介质的选择及系统技术方案分析研究[J].锻压技术, 2011,(1): 73-77.
    [25]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社, 2002: 71-75.
    [26]王国军.疲劳分析实例指导教程[M].北京机械工业出版社, 2009: 18-20.
    [27]徐灏.疲劳强度[M].北京:高等教育出版社, 1988: 25-40.
    [28]曾春华,邹十践.疲劳分析方法与应用[M].北京:国防工业出版社, 1911: 50-54.
    [29] Gerber T.L., Fuchs H.O. Analysis of non-propagating cracks in notched parts with compressivemean stress [J]. Journal of Materials, 1968,(3): 359-374.
    [30] Goodman J. Mechanics Applied to Engineering [M].London: Longmans Green.1899.
    [31] Basquin O.H. The exponential law of endurance tests [J]. Proceedings of the American Societyfor Testing and Materials, 1910, (10): 625-630.
    [32] Almen J O.Residual stresses and fatigue in metals[M].New York: Mc Graw-Hill Book Co.,1963: 70-73.
    [33] Miner M A.Cumulative damage in fatigue[J].Journal of Applied Mechanics, 1945(12): 159-164.
    [34] Coffin L.F. A study of the effects of cyclic thermal stresses on a ductile metal [J]. Transactions ofthe American Society of Mechanical Engineers, 1954, (76): 931-950.
    [35] Manson S.S. Behavior of materials under conditions of thermal stress [C]. National AdvisoryCommission on aeronautics: Report 1170. Cleveland: Lewis Flight Propulsion Laboratory, 1954.
    [36]葛庭燧,王中光.在疲劳载荷下含铜4%的铝合金中的位错钉扎和解脱[J].物理学报, 1962,(8): 392-398.
    [37]葛庭燧,王中光.失效、断续载荷溶处理对于铝铜合金的疲劳过程的影响[J].物理学报,1962, (8): 400-409.
    [38]朱景鹏,周思诚.低碳钢及工业纯铝的金属疲劳过程[J].上海交通大学学报, 1964, (3): 43-53.
    [39]谭文峰,王银海,张文志.板状构件的疲劳裂纹形成及疲劳寿命预估[J].重型机械, 2010, (6):34-37.
    [40]杨兴宇,阎晓军,赵福星,等某型航空发动机涡轮盘低循环疲劳寿命分析[J].机械强度, 2004:229-233.
    [41]姚磊江,童小燕.关于疲劳能量理论若干问题的讨论[J].机械强度, 2004: 278-281.
    [42]童小燕姚磊江等疲劳能量法回顾[J].机械强度, 2004: 216-221.
    [43] EsinA. The microplastic strain energy criterion applied to fatigue [J]. Basic Engineering, 1968(1):28-31.
    [44] EsinA, Jones WJD. A theory of fatigue based on the micro structural accumulation of strainenergy [J]. Nuclear Engineering and Design, 1966(4): 292-299.
    [45] Zhao Tingshi. Low cycle fatigue life and plastic strain energy of medium carbon steel.[J] ActaMetallurgica Sinica A Physical Metallurgy &Materials Science, 1993(4): 168-271.
    [46] Tchankov D S, Vesselinov K V. Fatigue life prediction under random loading using totalhysteresis energy [J]. Int J Pressure Vessel Poping, 1988 (13): 955-962.
    [47]张行,赵军.金属构件应用疲劳损伤力学[M].北京:国防工业出版社, 1998: 1-172.
    [48] Dusan Krajcinovic. Damage mechanics: accomplishment trends and needs[J]. InternationalJournal of Solids and Structures, 2000, (37): 267-277.
    [49]杨秀萍,宗升发,等.液压机结构设计的有限元法[J].重型机械, 2003, (6): 38-41.
    [50]余心宏,李天恩,张盛华,等.快锻液压机机架静动态数值模拟[J].重型机械, 2005, (2): 25-27.
    [51]吴生富,金淼,聂绍珉,等.液压机全预紧组合机架的整体性分析[J].锻压技术, 2006, (3):111-114.
    [52]吴生富,金淼,聂绍珉,等.大型锻造液压机全预紧组合机架的整体性及影响因素分析[J].塑性工程学报, 2006, (4): 110-113.
    [53]吴曼林,唐其环,万军.加速寿命试验与高加速寿命试验的比较分析[J].装备环境工程, 2007,
    (2): 43-44.
    [54]周祖勇,巫祖烈.钢桥纵梁与横梁交叉节点疲劳寿命研究[D].重庆:重庆交通大学工程力学学科硕士学位论文, 2008: 23-25.
    [55]盛延忠,李兆锐.门座起重机金属结构疲劳寿命测试与估算[J].起重运输机械, 2004, (1):17-20.
    [56]夏青元,崔海涛,温卫东.榫联接结构微动疲劳裂纹的检测技术[J].航空动力学报, 2005, (6):920-924.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700